# Characterisation of Near-Earth Magnetic Field Data for Space Weather Monitoring

Qingying Shu



Space Glasgow Research Conference 28 October 2014

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

# Acknowledgments

- This is an interdisciplinary PhD studentship
  - under the joint supervision of
    - Prof. Marian Scott, Dr. Peter Craigmile (Statistics)
    - Dr. Matteo Ceriotti (Space Engineering)
    - Prof. Lyndsay Fletcher (Physics & Astronomy)



- funded by a Sensors University Scholarship, University of Glasgow.
- Travel support from STATMOS (NSF)

# Outline

- Introduction
  - space weather
  - solar wind, magnetosphere, plasma interactions
- Motivation
  - geomagnetic storms
  - risk and priorities
- Goals
  - space storm prediction
  - constellations of small satellite
- Progress
  - exploratory analysis
  - characterization of magnetic field data
- Some Results
- Future Plans



NASA Space Weather Enterprise Forum

# What is space weather?

- electromagnetic disturbances in the near-Earth environment
- caused by solar activity (flares, ejections, solar wind)
- associated with plasma interactions inside the magnetosphere



Space Weather: The Physics Behind a Slogan (2005), edited by Klaus Scherer

## Why monitoring space weather?

- Severe space weather: geomagnetic storms
- Space weather is recognised as a significant and growing risk to infrastructure resilience (e.g. electric power grid, satellite communications, GPS, satellites and spacecraft).
- "Assessed risk of space-weather disruption in the next 5 years is:
  - Higher impact than a volcanic eruption
  - Same likelihood as weather extremes (heavy snow, heatwaves)"
    UK's National Risk Register, 2012

Space weather monitoring and early storm detection can be used to mitigate risks in sensitive technological systems.

#### Space weather monitoring

What are the best strategies for space weather monitoring with a network of small satellites?

Our goals:

- To develop new statistical methods which recognise the change in spatio-temporal sampling around an orbit
- To design a CubeSat constellation for sampling the magnetic field around the Earth



- ∢ ≣ →

#### Progress - First Steps

To understand the near-Earth space physics

- exploring the magnetic field vector  $\mathbf{B} = (B_X, B_Y, B_Z)$  with
  - its corresponding position vector
  - satellite observation
  - model simulation
  - geomagnetic indices
- characterising the time-dependent variation in B
  - case study hourly sampled  $B_X$  in 2003
  - fitting statistical models to  $B_X$  with its potential covariates

### Cluster mission

- use the data from Cluster mission as a pilot study.
- satellite measurements  $(B_X, B_Y, B_Z)$
- position vector (X, Y, Z)
- coordinates transformation





http://poleshift.ning.com

#### Cluster mission - temporal analysis



Credits: Peter F. Craigmile, The Joint Statistical Meetings 2014



# Model simulation

> The simulated magnetic field vector can be decomposed into

$$\mathbf{B} = \mathbf{B}_{\mathbf{I}} + \mathbf{B}_{\mathbf{E}}.$$

- ▶ the internal part **B**<sub>I</sub> is generated from the Earth's dynamo
  - International Geomagnetic Reference Field (IGRF)
  - based on Gauss harmonic expansion for the scalar potential of the main geomagnetic field, static
- the external part B<sub>E</sub> is associated with induced electric currents
  - Tsyganenko (T96) model
  - semi-empirical, best-fit representations, inputs of solar wind ram pressure, IMF, Dst index are needed
- can obtain IGRF and T96 values that coincide with the cluster measurements

The T96 model tells about the "average" conditions of the magnetic field at any location.



Orbit & magnetic vector (Tsyganenko model)



Sensors Systems Update Meeting 2012

The T96 model tells about the "average" conditions of the magnetic field at any location.



Orbit & magnetic vector (Tsyganenko model)



Sensors Systems Update Meeting 2012

The T96 model tells about the "average" conditions of the magnetic field at any location.



Orbit & magnetic vector (Tsyganenko model)



Sensors Systems Update Meeting 2012

The T96 model tells about the "average" conditions of the magnetic field at any location.



Orbit & magnetic vector (Tsyganenko model)



Sensors Systems Update Meeting 2012

### Geomagnetic indices

- Dst and Kp indices are indicators of geomagnetic activity
- two pre-defined storm periods





 Dst and Kp indices give partial information about storm conditions

# Exploratory analysis - Statistical issues

#### Question of interest

How does the actual satellite data deviate from the model simulation, systematically or especially in storm conditions?

- Regression modelling
  - to understand the relationship between the satellite observations and the global model;
  - help achieve our goal of designing a network and identifying storms.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Important covariates
  - $IGRF_X$  and  $T96_X$
  - X, Y, Z position or orbital effect
  - proxy magnetic condition: Dst and Kp indices
- Residual autocorrelations and non-constant variance

#### Exploratory analysis - Linear regression

best fit representation

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_{p-1} X_{p-1} + \delta$$

- the response Y is  $B_X$ ;
- the predictors  $X_1, \dots, X_{p-1}$  are  $X, Z, IGRF_X, T96_X, Dst, Kp$ ;
- $\triangleright$   $\delta$  is a discrepancy term:

| Coefficients:                                     |            |            |         |          |     |  |
|---------------------------------------------------|------------|------------|---------|----------|-----|--|
|                                                   | Estimate S | Std. Error | t value | Pr(> t ) |     |  |
| (Intercept)                                       | 3.277e+00  | 3.371e-01  | 9.722   | < 2e-16  | *** |  |
| х                                                 | 1.847e-05  | 2.257e-06  | 8.184   | 3.15e-16 | *** |  |
| z                                                 | 9.660e-05  | 4.424e-06  | 21.834  | < 2e-16  | *** |  |
| IGRFx                                             | 9.963e-01  | 2.116e-03  | 470.857 | < 2e-16  | *** |  |
| T96x                                              | 8.199e-01  | 8.031e-03  | 102.101 | < 2e-16  | *** |  |
| Dst                                               | 2.288e-01  | 3.943e-02  | 5.803   | 6.77e-09 | *** |  |
| Кр                                                | -8.431e-01 | 1.003e-01  | -8.402  | < 2e-16  | *** |  |
|                                                   |            |            |         |          |     |  |
| Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1 |            |            |         |          |     |  |
| 지나가 지금 지수는 것 같은 것 같 |            |            |         |          |     |  |

Exploratory analysis - Linear model diagnostics

Adjusted R-squared: 0.9695

from R output means that the fit explains 96.95% of the total variation in the data about the average.

Diagnostics plots of our regression model suggest:



• the discrepancy term  $\delta$  does not follow a normal distribution;

< 🗇 🕨 🔺 🖃

non-variance is not accounted for by the model.

#### Exploratory analysis - Autoregressive model

• the discrepancy term forms a time series  $\delta_t$ 



the AR(p) model is defined as

$$\delta_t = c + \sum_{i=1}^p \phi_i \delta_{t-i} + \epsilon_t$$

Where  $\phi_1, \dots, \phi_p$  are the parameters, c is a constant, and  $\epsilon_t$  is the error term.

▶ p = 3 is chosen, coefficients  $\phi_1, \phi_2, \phi_3$  and c are given in R output.

#### Some results

- Mode-based simulations, IGRFx and T96x, capture the main features in B<sub>X</sub>;
- Geomagnetic indices, Dst and Kp, give partial information about the variation in B<sub>X</sub>;
- Orbital effects can be modelled by the X and Z components in position vector;

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Time-varying effects exist in the discrepancy term.

### The future

- Building multivariate spatio-temporal processes for magnetic field measurements (B<sub>X</sub>, B<sub>Y</sub>, B<sub>Z</sub>)
  - to investigate  $\epsilon_t$  for non-constant variance;
  - to consider interaction terms in linear model fitting
  - to perform analysis in terms of storm and non-storm behaviours.
- Identifying the signatures of space storm onsets;
- Designing satellite networks to detect and predict storm events.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <