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1. Introduction

Air pollution has long been known to adversely affect
public health, in both the developed and developing world.

A recent report by the UK government estimates that
particulate matter alone reduces life expectancy by 6
months, with a health cost of £19 billion per year.

Epidemiological studies into the effects of air pollution
have been conducted since the 1990s, with one of the first
being that conducted by Schwartz and Marcus (1990) in
London.

Since 1990 a large number of studies have been conducted,
which collectively have investigated the short-term and
long-term health impact of air pollution.
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Study designs

Pollution legislation continues to be informed by
epidemiological studies investigating both the short-term and
long-term health effects of air pollution exposure.

Acute studies investigate the effects resulting from a few
days of high exposure.

e.g. NMMAPS in the USA, Dominici et al
(2002) and APHEA in Europe, Katsouyanni
et al (2001).

Chronic studies investigate the effects of cumulative
(long-term) exposure over months and years.

e.g. Dockery et al (1993) in six US cities, and
Elliot et al (2007) in the UK.
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Chronic studies

There are two main study designs when investigating the effects
of long-term exposure to air pollution.

Cohort studies e.g. The Six Cities study by Dockery et al
(1993) and the American Cancer study by Pope et
al (2002), which relate average air pollution
concentrations to the health status of a large
pre-defined cohort of people.

Spatial ecological studies e.g. Elliot et al (2007) and Lee et al
(2009), which relate yearly average air pollution
concentrations in a set of contiguous areas (such as
electoral wards), against yearly numbers of health
events from the population living in that area.
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2. Spatial ecological studies

Spatial ecological studies relate to populations living in a
set of n non-overlapping areal units, rather than to
individuals.

Examples of such studies include Jerrett et al. (2005),
Elliott et al. (2007), Lee et al. (2009) and Greven et al.
(2011).

The health data are denoted by Y = (Y1, . . . ,Yn) and
E = (E1, . . . ,En), which are the observed and expected
numbers of disease cases in each areal unit over a year.

The expected numbers of cases are computed using
external standardisation, based on age and sex specific
disease rates.
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Example - 323 local authorities in England

Respiratory hospitalisation risk in 2010 - SIRk = Yk/Ek.
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Pollution data

Pollution data comes from two distinct sources.

Observed data from the AURN network at single fixed
geographical points located throughout the study region.
These data are known to be measured with little error but
do not provide complete spatial coverage of England.

Estimated background concentrations over 12 Kilometre
grid cells from the Air Quality in the Unified Model
(AQUM) run by the Met Office. These model estimates
provide complete spatial coverage of the study region, but
are known to contain biases and are less accurate then the
monitoring data.

Both data sets can be available at an hourly resolution.
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PM2.5 in local authorities in England
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How best to combine these two sources of data to estimate
annual average pollution levels in each local authority?
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A common statistical model for these data

Yk ∼ Poisson(EkRk),

log(Rk) = zT
kβz + xkβx + φk,

where
Rk quantifies disease risk in area k, so Rk = 1.2 means a
20% increased risk of disease.

zk is a vector of other covariates influencing health risk in
the kth areal unit, such as measures of deprivation.

xk is the estimated annual average pollution concentrations
in the kth areal unit, and βx is the log-risk of air pollution
on health.

φ = (φ1, . . . , φn) are random effects to model residual
spatial autocorrelation not captured by the covariates.
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Residual spatial autocorrelation

Spatial autocorrelation occurs when observations
geographically close are more similar than those further
apart.

The residuals from fitting a regression model to the health
data with just (zT

k , xk) are typically spatially autocorrelated,
requiring the random effect φk to account for it.

The autocorrelation is typically caused by unmeasured
confounding, namely the presence of important spatially
smooth risk factors that have been omitted from the
regression model.

Ignoring this autocorrelation is known to bias βx.
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Modelling spatial correlation

Conditional Autoregressive (CAR, Besag et al. (1991)) models
are typically specified to capture the spatial autocorrelation in
φ, and can be written as a set of n univariate full conditional
distributions f (φk|φ−k) for k = 1, . . . , n as:

φk|φ−k, τ
2,W ∼ N

(∑n
i=1 wkiφi∑n

i=1 wki
,

τ 2∑n
i=1 wki

)
.

Here W = (wki) is a binary n× n neighbourhood matrix, with
wki = 1, denoted k ∼ i if areal units (k, i) share a common
border and wki = 0 otherwise. Here wkk = 0.
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Interpreting βx

The relative risk for a 1µgm−3 increase in pollution
concentrations measures the proportional increase in health risk
from increasing pollution by 1µgm−3, and is calculated as

RR(βx, 1) =
Ek exp(zT

k βz + (xk + 1)βx + φk)

Ek exp(zT
k βz + xkβx + φk)

= exp(1× βx).

Hence a relative risk of 1.03 means a 3% increase in disease
risk when the pollution level increases by 1µgm−3.
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Limitations - spatial autocorrelation

The CAR prior forces the random effects (φ1, . . . , φn) to be
globally spatially smooth everywhere. This causes two
problems:

Collinearity with covariates that are also globally smooth
such as air pollution, as was illustrated by Clayton et al.
(1993) and Hughes and Haran (2013).

The spatial autocorrelation in the data remaining after
accounting for the covariates is unlikely to be globally
spatially smooth, because the disease data (e.g. the SIR)
are not globally smooth so the residuals after removing
covariate effects are also unlikely to be.

Both these may result in biased estimates of βx.
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Limitations - Pollution data
The pollution concentration for area k, xk is typically taken to
be the average value from the set of modelled concentrations
lying in area k. However, this has the following limitations:

1 The modelled AQUM data are known to contain biases, so
the estimate of the average pollution concentration in each
unit may be biased. In contrast, the AURN monitoring data
are likely to measure with little error, but do not cover the
entire study region.

2 The concentration for area k, xk is assumed to be a true
known measurement when estimating its health effect.
However, the true average is unknown and xk is an estimate
and is subject to error and uncertainty.

Ignoring these two issues may result in biased estimates of βx.
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3. Modelling

This project aims to address all of these statistical
shortcomings, by:

1 Developing a spatial regression model linking the
monitoring and modelled pollution data, thus allowing
average pollution concentrations xk to be predicted for
each areal unit with an associated measure of uncertainty.

2 Extending the health model so that it allows for the
uncertainty in xk.

3 Extending the health model so that it models the spatial
autocorrelation (a prior for (φ1, . . . , φn)) more flexibly than
the global CAR model, allowing for local rather than
global patterns of spatial structure.
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3.1. A model for the pollution data

A spatial regression model was developed, which has the
monitoring data as the response and the modelled data as a
covariate.

This model allows for spatial autocorrelation in the
pollution data, which is used to predict the monitoring
values at unmeasured locations.

Predictions were made at each 12 kilometre grid square (to
align with the modelled data), and the predictions were
averaged over each local authority to give the predicted
average concentration of pollution in each area.

A Bayesian modelling approach was taken, allowing a set
of N predictions to be made for each local authority
average concentration xk. That is, xk is predicted by the set
(x(1)k , . . . , x(N)

k ), which quantifies its uncertainty.
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Average PM2.5 concentrations in 2010
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Standard deviation in PM2.5 concentrations
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3.2. Allowing for uncertainty in xk

The standard regression model assumes xk is a known value
measured without error, which is unrealistic in this setting. Two
main statistical approaches have been proposed for correcting
this.

1 Measurement error models - This approach assumes the
predicted values (x(1)k , . . . , x(N)

k ) are error prone
measurements of the single true but unknown
concentration xk.

2 Ecological bias models - This approach assumes the
predicted values (x(1)k , . . . , x(N)

k ) represent the range of
concentrations in area k, allowing for within area variation
in the concentrations.
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Ecological bias models

As the health data Yk summarises disease burden over a
population, the standard model naively assumes the
pollution concentration xk is the same for each individual
within area k.

Work by Wakefield and Salway (2001) and others has
shown that when there is within area variation in pollution
concentrations, the estimated βx from the ecological level
model does not equal the individual level association βI .

They show this by taking a hypothesised individual level
models and aggregating it to the population level, and
showing that is has a different mathematical form to the
standard ecological model.

E[exp(x(i)k βI)] 6= exp(E[x(i)k ]βx)
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A model for ecological bias

Richardson et al (1987) show that one solution to overcome this
problem is to change the model for Rk from

Rk = exp(zT
k βz + µkβx + φk),

to

Rk = exp(zT
k βz + µkβx + σ2

kβ
2
x/2 + φk),

thus explicitly incorporating the variation in xk. Here (µk, σ
2
k )

respectively denote the mean and variance of (x(1)k , . . . , x(N)
k ).

This change is based on assuming the within area exposure
distribution is Gaussian, and comes direct from the moment
generating function E[exp(x(i)k βI)].
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The impact of ecological bias

The difference between the naive ecological model and the
corrected model is the term σ2

kβ
2
x/2, which is likely to be small

if:

βx is small.
σ2

k is small.

The former is likely to be true and the latter may or may not be,
and preliminary analyses show that the impact of ecological
bias may be small for these studies.

We are currently investigating the exact extent of this problem.
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3.3. The problem with CAR models for φ

Recall that in the CAR spatial autocorrelation model for
(φ1, . . . , φn), spatial autocorrelation is induced by the binary
neighbourhood matrix W, where if areas (k, i) share a common
border (are spatially close) then wki = 1. This induces spatial
autocorrelation between (φk, φi) as can be seen from their
partial correlations:

Corr[φk, φi|φ−ki] =
wki√

(
∑n

j=1 wkj)(
∑n

l=1 wil)
.

Hence all pairs of areas sharing a common border (wki = 1) will
be correlated. This assumes the same level of spatial
smoothness across (φ1, . . . , φn) and is not realistic.
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Alternatives?

Ignore the spatial autocorrelation entirely and let φk = 0
for all areas k.

Replace the random effects (φ1, . . . , φn) with an alternative
spatial smoothing component that is forced to be
orthogonal (unrelated) to the air pollution covariate, so that
spatial confounding cannot occur. Such an approach was
proposed by Hughes and Haran in (2013).

Extend the CAR model to make it more flexible and allow
for localised smoothness in the random effects, so that
geographically adjacent values can be modelled as similar
or very different.
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Locally smooth CAR models

A number of approaches have been proposed to extend the
standard CAR model to allow for localised spatial smoothness.
They can be broken into two main approaches:

Treat each wki relating to neighbouring areas as binary
random quantities, so that if wki is estimated as one then
(φk, φi) are spatially smoothed, while if wki is estimated as
zero they are not. Examples include Lee and Mitchell
(2013) and Lee, Rushworth and Sahu (2014).

Augment the spatially smooth random effects with a
piecewise constant jump component with different mean
levels, so that if two areas close together have different
mean levels their residuals will not be similar. Examples
include Lawson and Clark (2002), Lee et al (2014).
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Results

The choice of residual spatial autocorrelation model can make a
large difference on the estimated pollution-health relationship.
The estimated relative risks and 95% uncertainty intervals for a
1µgm−3 increase in PM2.5 were:

Ignore correlation - 1.032 (1.005, 1.060).
CAR model - 1.065 (1.043, 1.091).
Orthogonal model - 1042 (1.040, 1.043).
Localised CAR model - 1.046 (1.033, 1.060).

Both the estimates and uncertainty intervals can differ
substantially.
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5. Conclusions

1 Developing a statistically valid approach for estimating the
health effects of air pollution using spatial ecological data
is a challenging task, and requires complex models for
both the pollution and health data.

2 Using an inappropriate statistical model results in
estimated health effects that are likely to be biased.

3 Future work will extend this model into the
spatio-temporal domain, and the replication of the spatial
data over time will enable more precise estimation of the
air pollution effects.

4 The effects of air pollution will be investigated across
Scotland, to see if the England results are replicated here.
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