
Nondictatorial Arrovian Social Welfare Functions:

An Integer Programming Approach∗

Francesca Busetto†, Giulio Codognato‡, Simone Tonin§

Abstract

In the line opened by Kalai and Muller (1977), we explore new con-
ditions on preference domains which make it possible to avoid Arrow’s
impossibility result. In our main theorem, we provide a complete char-
acterization of the domains admitting nondictatorial Arrovian social
welfare functions with ties (i.e. including indifference in the range) by
introducing a notion of strict decomposability. In the proof, we use
integer programming tools, following an approach first applied to so-
cial choice theory by Sethuraman, Teo and Vohra ((2003), (2006)). In
order to obtain a representation of Arrovian social welfare functions
whose range can include indifference, we generalize Sethuraman et al.’s
work and specify integer programs in which variables are allowed to
assume values in the set {0, 1

2 , 1}: indeed, we show that there exists a
one-to-one correspondence between the solutions of an integer program
defined on this set and the set of all Arrovian social welfare functions
- without restrictions on the range.
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Via Tomadini 30, 33100 Udine, Italy, and EconomiX, Université de Paris Ouest Nanterre
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1 Introduction

Arrow (1963) established his celebrated impossibility theorem for Arrovian
Social Welfare Functions (ASWFs) - that is social welfare functions satis-
fying the hypotheses of Pareto optimality and independence of irrelevant
alternatives - defining them on the unrestricted domain of preference order-
ings. As is well known, this result holds also for ASWFs defined on the
domain of all antisymmetric preference orderings. Kalai and Muller (1977)
dealt with the problem of introducing restrictions on this latter domain of
individual preferences in order to overcome Arrow’s impossibility result.1

They gave the first complete characterization of the domains of antisym-
metric preference orderings which admit nondictatorial ASWFs “without
ties” - that is ASWFs which do not admit indifference between distinct al-
ternatives in their range. They did this by means of two theorems: in their
Theorem 1, they showed that there exists a n-person nondictatorial ASWF
for a given domain of antisymmetric preference orderings if and only if there
exists a 2-person nondictatorial ASWF for the same domain; in their The-
orem 2, they gave the domain characterization, by introducing the concept
of decomposability.

In this paper, we proceed along the way opened by Kalai and Muller,
and explore new conditions on preference domains which allow for the ex-
istence of nondictatorial ASWFs. In fact, Kalai and Muller’s Theorem 2
provides a complete characterization of the domains of antisymmetric pref-
erence orderings admitting nondictatorial ASWFs without ties and of those
admitting dictatorial ASWFs without ties. The problem of characterizing
the domains of antisymmetric preference orderings admitting nondictato-
rial ASWFs “with ties” - that is ASWFs which admit indifference between
distinct alternatives in their range - has so far been left open. Here, we over-
come this problem: in our main theorem, we provide a complete characteri-
zation of these domains by introducing the notion of strict decomposability.

We develop our analysis on nondictatorial ASWFs by using the tools of
integer programming, first applied to the traditional field of social choice the-
ory by Sethuraman, Teo, and Vohra ((2003), (2006)). As remarked by these
authors, integer programming is a powerful analytical tool, which makes
it possible to derive, in a systematic and simple way, many of the already
known theorems on ASWFs, and to prove new results.

In particular, Sethuraman et al. developed Integer Programs (IPs) in

1Maskin (1979) independently investigated the same issue.
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which variables assume values only in the set {0, 1}. Binary IPs of this kind
are suitable to be used as an auxiliary tool to represent ASWFs without
ties: a fundamental theorem in Sethuraman et al. (2003) establishes a one-
to-one correspondence, on domains of antisymmetric preference orderings,
between the set of feasible solutions of their main binary IP and the set of
ASWFs without ties. In both papers mentioned above, Sethuraman et al.
used binary integer programming to analyze, among other issues, neutral
and anonymous ASWFs. Moreover, in the 2003 paper, they opened the way
to a reconsideration, in terms of integer programming, of the work by Kalai
and Muller (1977). In particular, they provided a simplified version of Kalai
and Muller’s Theorem 1 by using a binary IP.

In this paper, we extend Sethuraman et al’s approach in order to obtain
a general representation of ASWFs, without restrictions on the range. To
this end, we specify IPs in which variables are allowed to assume values in
the set {0, 1

2 , 1}. We call these programs “ternary IPs,” with some abuse
with respect to the current specialized literature.2 Indeed, we provide a
theorem establishing that there exists a one-to-one correspondence between
the set of feasible solutions of a ternary IP and the set of all ASWFs. Then,
we exploit these generalized integer programs as a basic tool to show our
characterization theorem on ASWFs with ties.

This new characterization result raises the question of which is the re-
lationship between decomposable and strictly decomposable domains. We
point out a redundant condition in the notion of decomposability proposed
by Kalai and Muller (1977) and conclude our analysis showing that all
strictly decomposable domains are decomposable whereas the converse re-
lation does not hold.

2 Notation and definitions

Let E be any initial finite subset of the natural numbers with at least
two elements and let |E| be the cardinality of E, denoted by n. Elements of
E are called agents.

Let E be the collection of all subsets of E. Given a set S ∈ E , let
Sc = E \ S.

2We have to stress that we still apply the basic tools of integer linear programming
and that the programs we introduce could be equivalently defined on the set {0, 1, 2}.
Nonetheless, here we prefer to follow Sethuraman et al. (2006), and keep using the value
1
2

in order to incorporate indifference between social alternatives into the analysis.
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Let A be a set such that |A| ≥ 3. Elements of A are called alternatives.
Let A2 denote the set of all ordered pairs of alternatives.
Let R be the set of all the complete and transitive binary relations on

A, called preference orderings.
Let Σ be the set of all antisymmetric preference orderings.
Let Ω denote a nonempty subset of Σ. An element of Ω is called admis-

sible preference ordering and is denoted by p. We write xpy if x is ranked
above y under p.

A pair (x, y) ∈ A2 is called trivial if there are not p,q ∈ Ω such that xpy
and yqx. Let TR denote the set of trivial pairs. We adopt the convention
that all pairs (x, x) ∈ A2 are trivial.

A pair (x, y) ∈ A2 is nontrivial if it is not trivial. Let NTR denote the
set of nontrivial pairs.

Let Ωn denote the n-fold Cartesian product of Ω. An element of Ωn is
called a preference profile and is denoted by P = (p1,p2, . . . ,pn), where pi

is the antisymmetric preference ordering of agent i ∈ E.
A Social Welfare Function (SWF) on Ω is a function f : Ωn → R.
f is said to be “without ties” if f(Ωn) ∩ (R \ Σ) = ∅.
f is said to be “with ties” if f(Ωn) ∩ (R \ Σ) 6= ∅.
Given P ∈ Ωn, let P (f(P)) and I(f(P)) be binary relations on A. We

write xP (f(P))y if, for x, y ∈ A, xf(P)y but not yf(P)x and xI(f(P))y if,
for x, y ∈ A, xf(P)y and yf(P)x.

A SWF on Ω, f , satisfies Pareto Optimality (PO) if, for all (x, y) ∈ A2

and for all P ∈ Ωn, xpiy, for all i ∈ E, implies xP (f(P))y.
A SWF on Ω, f , satisfies Independence of Irrelevant Alternatives (IIA)

if, for all (x, y) ∈ NTR and for all P,P′ ∈ Ωn, xpiy if and only if xp′iy, for
all i ∈ E, implies, xf(P)y if and only if xf(P′)y, and yf(P)x if and only if
yf(P′)x.

An Arrovian Social Welfare Function (ASWF) on Ω is a SWF on Ω, f ,
which satisfies PO and IIA.

An ASWF on Ω, f , is dictatorial if there exists j ∈ E such that, for all
(x, y) ∈ NTR and for all P ∈ Ωn, xpjy implies xP (f(P))y. f is nondicta-
torial if it is not dictatorial.

Given (x, y) ∈ A2 and S ∈ E , let dS(x, y) denote a variable such that
dS(x, y) ∈ {0, 1

2 , 1}.
An Integer Program (IP) on Ω consists of a set of linear constraints,

related to the preference orderings in Ω, on variables dS(x, y), for all (x, y) ∈
NTR and for all S ∈ E , and of the further conventional constraints that
dE(x, y) = 1 and d∅(y, x) = 0, for all (x, y) ∈ TR.
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Let d denote a feasible solution (henceforth, for simplicity, only “solu-
tion”) to an IP on Ω. d is said to be a binary solution if variables dS(x, y)
reduce to assume values in the set {0, 1}, for all (x, y) ∈ NTR, and for all
S ∈ E . It is said to be a “ternary” solution, otherwise.

A solution d is dictatorial if there exists j ∈ E such that dS(x, y) = 1,
for all (x, y) ∈ NTR and for all S ∈ E , with j ∈ S. d is nondictatorial if it
is not dictatorial.

An ASWF on Ω, f , and a solution to an IP on the same Ω, d, are said
to correspond if, for each (x, y) ∈ NTR and for each S ∈ E , xP (f(P))y if
and only if dS(x, y) = 1, xI(f(P))y if and only if dS(x, y) = 1

2 , yP (f(P))x
if and only if dS(x, y) = 0, for all P ∈ Ωn such that xpiy, for all i ∈ S, and
ypix, for all i ∈ Sc.

3 Arrovian social welfare functions and ternary in-
teger programming: a correspondence theorem

The first formulation of an IP on Ω was proposed by Sethuraman et al.
(2003), for the case where dS(x, y) ∈ {0, 1}, for all (x, y) ∈ NTR and for all
S ∈ E . Moreover, in both their 2003 and 2006 papers, they used binary IPs
on Ω to provide a representation of ASWFs different form the axiomatic one
previously used in the Arrow’s tradition.

In this section, we extend Sethuraman et al.’s approach, specifying two
integer programs in which variables dS(x, y) are allowed to assume values
in the set {0, 1

2 , 1}. We will show that these ternary programs on Ω can be
used to provide a general representation of ASWFs, with and without ties
in the range. Our first IP on Ω - called IP1 - consists of the following set of
constraints:

dE(x, y) = 1, (1)

for all (x, y) ∈ NTR;
dS(x, y) + dSc(y, x) = 1, (2)

for all (x, y) ∈ NTR and for all S ∈ E ;

dA∪U∪V (x, y) + dB∪U∪W (y, z) + dC∪V ∪W (z, x) ≤ 2, (3)

if dA∪U∪V (x, y), dB∪U∪W (y, z), dC∪V ∪W (z, x) ∈ {0, 1};

dA∪U∪V (x, y) + dB∪U∪W (y, z) + dC∪V ∪W (z, x) =
3

2
, (4)
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if dA∪U∪V (x, y) = 1
2 or dB∪U∪W (y, z) = 1

2 or dC∪V ∪W (z, x) = 1
2 , for all

triples of alternatives x, y, z and for all disjoint and possibly empty sets
A,B,C,U, V,W ∈ E whose union includes all agents and which satisfy the
following conditions, drawn from Sethuraman et al. (2003), and hereafter
referred to as Conditions (∗):

A 6= ∅ only if there exists p ∈ Ω such that xpzpy,

B 6= ∅ only if there exists p ∈ Ω such that ypxpz,

C 6= ∅ only if there exists p ∈ Ω such that zpypx,

U 6= ∅ only if there exists p ∈ Ω such that xpypz,

V 6= ∅ only if there exists p ∈ Ω such that zpxpy,

W 6= ∅ only if there exists p ∈ Ω such that ypzpx.

In fact, we propose now a result which establishes a one-to-one corre-
spondence between the set of the solutions to IP1 on a given Ω and the set
of all ASWFs on the same Ω.

Theorem 1. Consider a domain Ω. Given an ASWF on Ω, f , there exists
a unique solution to IP1 on Ω, d, which corresponds to f . Given a solution
to IP1 on Ω, d, there exists a unique ASWF on Ω, f , which corresponds to
d.

Proof. Consider a domain Ω and an ASWF on Ω, f . Determine d as follows.
Given (x, y) ∈ NTR and S ∈ E , consider P ∈ Ωn such that xpiy, for all
i ∈ S, and ypix, for all i ∈ Sc. Let dS(x, y) = 1 if xP (f(P))y, dS(x, y) = 1

2
if xI(f(P))y, dS(x, y) = 0 if yP (f(P))x. Then, for each (x, y) ∈ NTR and
for each S ∈ E , we have xP (f(P))y if and only if dS(x, y) = 1, xI(f(P))y
if and only if dS(x, y) = 1

2 , yP (f(P))x if and only if dS(x, y) = 0, for
all P ∈ Ωn such that xpiy, for all i ∈ S, and ypix, for all i ∈ Sc, as
f satisfies IIA. d satisfies (1), as f(P) satisfies PO, and (2), as f(P) is a
complete binary relation on A, for all P ∈ Ωn. Consider a triple x, y, z, and
disjoint and possibly empty sets A,B,C,U, V,W ∈ E whose union includes
all agents and which satisfy Conditions (∗). Moreover, consider P ∈ Ωn.
Then, by Conditions (∗), we have: xpiy, for all i ∈ A ∪ U ∪ V ; ypix, for all
i ∈ (A∪U ∪V )c; ypiz, for all i ∈ B ∪U ∪W ; zpiy, for all i ∈ (B ∪U ∪W )c;
zpix, for all i ∈ C ∪ V ∪W ; xpiz, for all i ∈ (C ∪ V ∪W )c. Suppose that
dA∪U∪V (x, y), dB∪U∪W (y, z), dC∪V ∪W (z, x) ∈ {0, 1} and

dA∪U∪V (x, y) + dB∪U∪W (y, z) + dC∪V ∪W (z, x) > 2.
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Then, we have xP (f(P))yP (f(P))z and zP (f(P))x, a contradiction. Sup-
pose that dA∪U∪V (x, y) = 1

2 and

dA∪U∪V (x, y) + dB∪U∪W (y, z) + dC∪V ∪W (z, x) <
3

2
.

Consider the following three cases. First, dB∪U∪W (y, z) = 0 and
dC∪V ∪W (z, x) = 0. Then, we have zP (f(P))yI(f(P))x and xP (f(P))z, a
contradiction. Second, dB∪U∪W (y, z) = 1

2 and dC∪V ∪W (z, x) = 0. Then, we
have xI(f(P))yI(f(P))z and xP (f(P))z, a contradiction. Third,
dB∪U∪W (y, z) = 0 and dC∪V ∪W (z, x) = 1

2 . Then, we have
zI(f(P))xI(f(P))y and zP (f(P))y, a contradiction. Suppose now that
dA∪U∪V (x, y) = 1

2 and

dA∪U∪V (x, y) + dB∪U∪W (y, z) + dC∪V ∪W (z, x) >
3

2
.

Consider the following three cases. First, dB∪U∪W (y, z) = 1 and
dC∪V ∪W (z, x) = 1. Then, we have xI(f(P))yP (f(P))z and zP (f(P))x, a
contradiction. Second, dB∪U∪W (y, z) = 1

2 and dC∪V ∪W (z, x) = 1. Then, we
have xI(f(P))yI(f(P))z and zP (f(P))x, a contradiction. Third,
dB∪U∪W (y, z) = 1 and dC∪V ∪W (z, x) = 1

2 . Then, we have
xI(f(P))yP (f(P))z and zI(f(P))x, a contradiction. Therefore, d satisfies
(3) and (4). Hence, d is a solution to IP1 on Ω which corresponds to f .
Suppose that d is not unique. Then, there exist a solution to IP1 on Ω, d′,
(x, y) ∈ NTR, and S ∈ E such that dS(x, y) 6= d′S(x, y). Consider P ∈ Ωn

such that xpiy, for all i ∈ S, and ypix, for all i ∈ Sc. Then, we have
xP (f(P))y and xI(f(P))y, or, yP (f(P))x and xI(f(P))y, or, xP (f(P))y
and yP (f(P))x, a contradiction. But then, d is unique. Now, consider
a solution to IP1 on Ω, d. Determine f as follows. Given (x, y) ∈ TR,
let xP (f(P))y, for all P ∈ Ωn. Given (x, y) ∈ NTR and P ∈ Ωn, let
S ∈ E be the set of agents such that xpiy, for all i ∈ S, and ypix, for
all i ∈ Sc. Let xP (f(P))y if dS(x, y) = 1, xI(f(P))y if dS(x, y) = 1

2 , and
yP (f(P))x if dS(x, y) = 0. f(P) is a complete binary relation on A, for
all P ∈ Ωn, by construction and by (2). Now, we show that f(P) is also
a transitive binary relation on A, for all P ∈ Ωn. Consider a triple x, y, z
and a preference profile P ∈ Ωn. Then, there exist three nonempty sets
H, I, J such that xpiy, for all i ∈ H, ypix, for all i ∈ Hc, ypiz, for all
i ∈ I, zpiy, for all i ∈ Ic, zpix, for all i ∈ J , xpiz, for all i ∈ Jc. Let
A = H \ (I ∪ J), B = I \ (H ∪ J), C = J \ (H ∪ I), U = H ∩ I, V = H ∩ J ,
W = I ∩ J . Then, A,B,C,U, V,W ∈ E are disjoint sets of agents whose
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union includes all agents and which satisfy Conditions (∗). Moreover, they
satisfy A ∪ U ∪ V = H, B ∪ U ∪W = I, C ∪ V ∪W = J . Consider the
following eight cases. First, xP (f(P))yP (f(P))z and zP (f(P))x. Then,
dA∪U∪V (x, y) = 1, dB∪U∪W (y, z) = 1, dC∪V ∪W (z, x) = 1, and

dA∪U∪V (x, y) + dB∪U∪W (y, z) + dC∪V ∪W (z, x) > 2,

contradicting (3). Second, xP (f(P))yP (f(P))z and xI(f(P))z. Then,
dC∪V ∪W (z, x) = 1

2 and

dA∪U∪V (x, y) + dB∪U∪W (y, z) + dC∪V ∪W (z, x) >
3

2
,

contradicting (4). Third, xI(f(P))yP (f(P))z and zP (f(P))x. Then,
dA∪U∪V (x, y) = 1

2 and

dA∪U∪V (x, y) + dB∪U∪W (y, z) + dC∪V ∪W (z, x) >
3

2
,

contradicting (4). Fourth, xI(f(P))yP (f(P))z and xI(f(P))z. Then,
dA∪U∪V (x, y) = 1

2 and

dA∪U∪V (x, y) + dB∪U∪W (y, z) + dC∪V ∪W (z, x) >
3

2
,

contradicting (4). Fifth, xP (f(P))yI(f(P))z and zP (f(P))x. Then,
dB∪U∪W (y, z) = 1

2 and

dA∪U∪V (x, y) + dB∪U∪W (y, z) + dC∪V ∪W (z, x) >
3

2
,

contradicting (4). Sixth, xP (f(P))yI(f(P))z and xI(f(P))z. Then,
dB∪U∪W (y, z) = 1

2 and

dA∪U∪V (x, y) + dB∪U∪W (y, z) + dC∪V ∪W (z, x) >
3

2
,

contradicting (4). Seventh, xI(f(P))yI(f(P))z and xP (f(P))z. Then,
dA∪U∪V (x, y) = 1

2 and

dA∪U∪V (x, y) + dB∪U∪W (y, z) + dC∪V ∪W (z, x) <
3

2
,

contradicting (4). Eighth, xI(f(P))yI(f(P))z and zP (f(P))x. Then,
dA∪U∪V (x, y) = 1

2 and

dA∪U∪V (x, y) + dB∪U∪W (y, z) + dC∪V ∪W (z, x) >
3

2
,
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contradicting (4). f satisfies PO as, for all (x, y) ∈ TR, we have xP (f(P))y,
for all P ∈ Ωn; moreover, for all (x, y) ∈ NTR and for all P ∈ Ωn, xpiy,
for all i ∈ E, implies xP (f(P))y, by (1). f satisfies IIA as, for each (x, y) ∈
NTR and for each S ∈ E , we have xP (f(P))y if and only if dS(x, y) =
1, xI(f(P))y if and only if dS(x, y) = 1

2 , and yP (f(P))x if and only if
dS(x, y) = 0, for all P ∈ Ωn such that xpiy, for all i ∈ S, and ypix, for all
i ∈ Sc. Hence, f is an ASWF on Ω, which corresponds to d. Suppose that
f is not unique. Then, there exists an ASWF on Ω, f ′, (x, y) ∈ NTR and
P ∈ Ωn such that we have xf(P)y but not xf ′(P)y. Let S ∈ E be the set
such that xpiy, for all i ∈ S, and ypix, for all i ∈ Sc. Then, dS(x, y) = 1
and dS(x, y) = 0, or, dS(x, y) = 1

2 and dS(x, y) = 0, a contradiction. But
then, f is unique.

We introduce now a second ternary IP on Ω, which we will call IP2. It
consists of constraints (1), (2), and the following four logically independent
constraints:3

dS(x, y) ≤ dS(x, z), (5)

if dS(x, y) ∈ {0, 1};
dS(x, y) < dS(x, z), (6)

if dS(x, y) = 1
2 , for all triples x, y, z such that there exist p,q ∈ Ω satisfying

xpypz and yqzqx, and for all S ∈ E ;

dS(x, y) + dS(y, z) ≤ 1 + dS(x, z), (7)

if dS(x, y), dS(y, z) ∈ {0, 1};

dS(x, y) + dS(y, z) =
1

2
+ dS(x, z), (8)

if dS(x, y) = 1
2 or dS(y, z) = 1

2 , for all triples x, y, z such that there exist
p,q ∈ Ω satisfying xpypz and zqyqx, and for all S ∈ E .

In the remainder of this section, we prove two propositions which estab-
lish the relationships between IP1 and IP2.

3In building IP2, we take inspiration from a binary IP on Ω, introduced by Sethura-
man et al. (2003), which incorporates a reformulation of Kalai and Muller’s condition of
decomposability. It can be shown that the set of constraints proposed by Sethuraman et
al. exhibits problems of logical dependence (see Busetto and Codognato (2010)), which
are eliminated in our IP2. These problems parallel some logical redundancies inherent in
Kalai and Muller’s notion of decomposability, which we will point out in Section 4.
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Proposition 1. If d is a solution to IP1 on Ω, then it is a solution to IP2
on the same Ω.

Proof. Let d be a solution to IP1 on Ω. Consider a triple x, y, z and S ∈ E .
Suppose that there exist p,q ∈ Ω which satisfy xpypz and yqzqx. Let
U = S, W = Sc, and A = B = C = V = ∅. Then, A,B,C,U, V,W are sets
whose union includes all agents and which satisfy Conditions (∗). Suppose
that dS(x, y) ∈ {0, 1} and dS(x, y) > dS(x, z). Consider the following two
cases. First, dS(x, z) ∈ {0, 1}. Then,

dU (x, y) + dU∪W (y, z) + dW (z, x) > 2,

contradicting (3). Second, dS(x, z) = 1
2 . Then,

dU (x, y) + dU∪W (y, z) + dW (z, x) >
3

2
,

contradicting (4). Therefore, d satisfies (5). Suppose now that dS(x, y) = 1
2

and dS(x, y) ≥ dS(x, z). Then,

dU (x, y) + dU∪W (y, z) + dW (z, x) >
3

2
,

contradicting (4). Therefore, d satisfies (6). Consider a triple x, y, z and
S ∈ E . Suppose that there exist p,q ∈ Ω satisfying xpypz and zqyqx.
Let C = Sc, U = S, and A = B = V = W = ∅. Then, A,B,C,U, V,W
are sets whose union includes all agents and which satisfy Conditions (∗).
Suppose that dS(x, y), dS(y, z) ∈ {0, 1} and dS(x, y)+dS(y, z) > 1+dS(x, z).
Consider the following two cases. First, dS(x, z) ∈ {0, 1}. Then,

dU (x, y) + dU (y, z) + dC(z, x) > 2,

contradicting (3). Second, dS(x, z) = 1
2 . Then,

dU (x, y) + dU (y, z) + dC(z, x) >
3

2
,

contradicting (4). Therefore, d satisfies (7). Suppose now that dS(x, y) = 1
2

and dS(x, y) + dS(y, z) < 1
2 + dS(x, z). Then,

dU (x, y) + dU (y, z) + dC(z, x) <
3

2
,
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contradicting (4). Suppose that dS(x, y) = 1
2 and dS(x, y) + dS(y, z) >

1
2 + dS(x, z). Then,

dU (x, y) + dU (y, z) + dC(z, x) >
3

2
,

contradicting (4). Therefore, d satisfies (8). Hence, d is a solution to IP2 on
Ω.

The following result shows that the converse of Proposition 3 holds - and
IP1 and IP2 coincide - when n = 2.

Proposition 2. Let n = 2. If d is a solution to IP2 on Ω, then it is a
solution to IP1 on the same Ω.

Proof. Let n = 2. Let d be a solution to IP2 on Ω. Consider a triple
x, y, z and disjoint and possibly empty sets A,B,C,U, V,W ∈ E whose
union includes all agents and which satisfy Conditions (∗). Suppose that
dA∪U∪V (x, y), dB∪U∪W (y, z), dC∪V ∪W (z, x) ∈ {0, 1} and

dA∪U∪V (x, y) + dB∪U∪W (y, z) + dC∪V ∪W (z, x) > 2.

Consider the case where A 6= ∅ and W 6= ∅. Then, there exist p,q ∈ Ω
satisfying xpzpy and yqzqx. Suppose that A = {1} and W = {2}. Then,

d{2}(y, z) + d{2}(z, x) > 1 + d{2}(y, x),

contradicting (7). The cases where B 6= ∅, V 6= ∅, and C 6= ∅, U 6= ∅
lead, mutatis mutandis, to the same contradiction. Consider the case where
U 6= ∅ and V 6= ∅. Then, there exist p,q ∈ Ω satisfying xpypz and zqxqy.
Suppose that U = {1} and V = {2}. Then,

d{2}(z, x) > d{2}(z, y),

contradicting (5). The cases where V 6= ∅, W 6= ∅, and U 6= ∅, W 6= ∅,
lead, mutatis mutandis, to the same contradiction. Therefore, d satisfies
(3). Suppose that dA∪U∪V (x, y) = 1

2 and

dA∪U∪V (x, y) + dB∪U∪W (y, z) + dC∪V ∪W (z, x) <
3

2
.

Consider the case where A 6= ∅ and B 6= ∅. Then, there exist p,q ∈ Ω
satisfying xpzpy and yqxqz. Suppose that A = {1} and B = {2}. Then,
d{2}(y, x) = 1

2 and
d{2}(y, x) ≥ d{2}(y, z),
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contradicting (6). The case where A 6= ∅ and C 6= ∅ leads, mutatis mutandis,
to the same contradiction. Consider the case where A 6= ∅ and W 6= ∅. Then,
there exist p,q ∈ Ω satisfying xpzpy and yqzqx. Suppose that A = {1}
and W = {2}. Suppose that d{2}(y, z) = 0 and d{2}(z, x) = 0. Then,

d{1}(x, z) + d{1}(z, y) > 1 + d{1}(x, y),

contradicting (7). Suppose that d{2}(y, z) = 1
2 and d{2}(z, x) = 0. Then,

d{2}(y, z) + d{2}(z, x) <
1

2
+ d{2}(y, x),

contradicting (8). Consider the case where U 6= ∅ and C 6= ∅. Then, there
exist p,q ∈ Ω satisfying xpypz and zqyqx. Suppose that U = {1} and
C = {2}. Then, d{1}(x, y) = 1

2 and

d{1}(x, y) + d{1}(y, z) <
1

2
+ d{1}(x, z),

contradicting (8). The case where V 6= ∅ and B 6= ∅ leads, mutatis mutandis,
to the same contradiction. Suppose that dA∪U∪V (x, y) = 1

2 and

dA∪U∪V (x, y) + dB∪U∪W (y, z) + dC∪V ∪W (z, x) >
3

2
.

Consider the case where A 6= ∅ and W 6= ∅. Then, there exist p,q ∈ Ω
satisfying xpzpy and yqzqx. Suppose that A = {1} and W = {2}. Suppose
that d{2}(y, z) = 1 and d{2}(z, x) = 1. Then,

d{2}(y, z) + d{2}(z, x) > 1 + d{2}(y, x),

contradicting (7). Suppose that d{2}(y, z) = 1
2 and d{2}(z, x) = 1. Then,

d{2}(y, z) + d{2}(z, x) >
1

2
+ d{2}(y, x),

contradicting (8). Consider the case where U 6= ∅ and C 6= ∅. Then, there
exist p,q ∈ Ω satisfying xpypz and zqyqx. Suppose that U = {1} and
C = {2}. Then, d{1}(x, y) = 1

2 and

d{1}(x, y) + d{1}(y, z) >
1

2
+ d{1}(x, z),

contradicting (8). The case where V 6= ∅ and B 6= ∅ leads, mutatis mutandis,
to the same contradiction. Consider the case where U 6= ∅ and W 6= ∅. Then,
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there exist p,q ∈ Ω satisfying xpypz and yqzqx. Suppose that U = {1}
and W = {2}. Then, d{1}(x, y) = 1

2 and

d{1}(x, y) ≥ d{1}(x, z),

contradicting (6). The case where V 6= ∅ and W 6= ∅ leads, mutatis mu-
tandis, to the same contradiction. Therefore, d satisfies (4). Hence, d is a
solution to IP1 on Ω.

4 Nondictatorial Arrovian social welfare functions
with ties and integer programming: a new char-
acterization theorem

In this section, we use the integer programs developed above to deal with the
issues concerning the dictatorship property of ASWFs. As already reminded,
Arrow’s impossibility theorem is established for ASWFs admitting ties in
their range and defined on the unrestricted domain of preference orderings.

Kalai and Muller (1977) were the first who overcome Arrow’s impos-
sibility theorem by providing a complete characterization of the domains
of antisymmetric preference orderings which admit nondictatorial ASWFs
without ties. They did this by means of two theorems. In their Theorem 1,
they showed that, for a given domain Ω, there exists a nondictatorial ASWF
without ties for n > 2 if and only if, for the same Ω, there exists a nondic-
tatorial ASWF without ties for n = 2. In their Theorem 2, they gave the
domain characterization, based on the following notion of decomposability,
henceforth called KM-decomposability.

Ω is said to be KM-decomposable if there exists a set R, with TR $ R $
A2, satisfying the following conditions.

Condition I. For every two pairs (x, y), (x, z) ∈ NTR, if there exist p,q ∈ Ω
for which xpypz and yqzqx, then (x, y) ∈ R implies that (x, z) ∈ R.

Condition II. For every two pairs (x, y), (x, z) ∈ NTR, if there exist p,q ∈ Ω
for which xpypz and yqzqx, then (z, x) ∈ R implies that (y, x) ∈ R.

Condition III. For every two pairs (x, y), (x, z) ∈ NTR, if there exists p ∈ Ω
for which xpypz, then (x, y) ∈ R and (y, z) ∈ R imply that (x, z) ∈ R.
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Condition IV. For every two pairs (x, y), (x, z) ∈ NTR, if there exists p ∈ Ω
for which xpypz, then (z, x) ∈ R implies that (y, x) ∈ R or (z, y) ∈ R.

It is useful to reproduce here Kalai and Muller’s characterization theorem
for ASWFs without ties. It can be stated as follows.

Theorem 2. There exists a nondictatorial ASWF without ties on Ω, f , for
n ≥ 2, if and only if Ω is KM-decomposable.

The fundamental aim of this section is taking a step forward along the
way opened by Kalai and Muller: our main theorem establishes a charac-
terization of the domains of antisymmetric preference orderings admitting
nondictatorial ASWFs with ties.

In order to prove it, we need to establish some preliminary results. To
begin with, let us reconsider Kalai and Muller’s Theorem 1: Sethuraman
et al. (2003) provided a reformulation of this theorem in terms of integer
programming. More precisely, they established a be-univocal relation be-
tween the nondictatorial solutions of a binary IP on Ω, for n = 2, and its
nondictatorial solutions for n > 2. Here, we extend this result to the case
of ternary solutions to IP1.

Theorem 3. There exists a nondictatorial ternary solution to IP1 on Ω, d,
for n = 2, if and only if there exists a nondictatorial ternary solution to IP1
on Ω, d∗, for n > 2.

Proof. Let d be a nondictatorial ternary solution to IP1 on Ω for n = 2.
Determine d∗ as follows. Given (x, y) ∈ NTR and S ∈ E , let d∗S(x, y) = 1
if 1, 2 ∈ S; dS(x, y) = 0 if 1, 2 ∈ Sc; d∗S(x, y) = d{1}(x, y) and d∗Sc(y, x) =
d{2}(y, x) if 1 ∈ S and 2 ∈ Sc. Then, it is straightforward to verify that
d∗ satisfies (1)-(4) and that is nondictatorial. Hence, d∗ is a nondictatorial
ternary solution to IP1 on Ω, for n > 2. Conversely, let d∗ be a nondictatorial
ternary solution to IP1 on Ω for n > 2. Determine d as follows. Consider
(u, v) ∈ NTR and S̄ ∈ E such that d∗

S̄
(u, v) = 1

2 . Given (x, y) ∈ NTR, let
d{1,2}(x, y) = 1, d∅(x, y) = 0, d{1}(x, y) = d∗

S̄
(x, y), d{2}(y, x) = d∗

S̄c(y, x).
Then, it is straightforward to verify that d satisfies (1) and (2). Moreover,
by Proposition 1, d satisfies (5)-(8) as d∗ is a solution to IP1 on Ω. But then,
d is a solution to IP2 on Ω and this, in turn, implies that it is a solution to
IP1 on Ω, by Proposition 2. Finally, d is nondictatorial as d{1}(u, v) = 1

2 .
Hence, d is a nondictatorial ternary solution to IP1 on Ω, for n = 2.

From Theorem 3, we obtain the following corollary, which extends Kalai
and Muller’s Theorem 1 to the case of ASWFs with ties. It is an immediate
consequence of our Theorem 1 in Section 3.
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Corollary. There exists a nondictatorial ASWF with ties on Ω, f , for n =
2, if and only if there exists a nondictatorial ASWF with ties on Ω, f∗, for
n > 2.

At this point, we need to introduce a reformulation of the concept of
KM-decomposability suitable to be applied within the analytical context of
a ternary IP on Ω. We will show below that this reformulation is equivalent
to the original version proposed by Kalai and Muller. Our concept is based
on the existence of two sets, R1, R2 ∈ A2 - instead of only one - satisfying
the restrictions introduced here.

Given a set R ⊂ A2, consider the following conditions on R.

Condition 1. For all triples x, y, z, if there exist p,q ∈ Ω satisfying xpypz
and yqzqx, then (x, y) ∈ R implies that (x, z) ∈ R.

Condition 2. For all triples x, y, z, if there exist p,q ∈ Ω satisfying xpypz
and zqyqx, then (x, y) ∈ R and (y, z) ∈ R imply that (x, z) ∈ R.

A domain Ω is said to be decomposable if there exist two sets R1 and
R2, with ∅ $ Ri $ NTR, i = 1, 2, such that, for all (x, y) ∈ NTR, we
have (x, y) ∈ R1 if and only if (y, x) /∈ R2; moreover, Ri, i = 1, 2, satisfies
Conditions 1 and 2.

With regard to this definition of a decomposable domain, let us notice the
main differences with Kalai and Muller’s original notion, introduced to make
it compatible with the integer programming analytical setting: Conditions
1 and 2 differ from the corresponding Conditions I and III as the former
refer to triples, rather than pairs, of alternatives. Moreover, Condition 2
is reformulated in terms of a pair of preference orderings, instead of only
one. This is consistent with the formulation of our constraints (7) and
(8), which are in fact a reinterpretation of Condition 2 in terms of integer
programming. Also, our notion of decomposability does not require that R1

and R2 contain TR, whereas Kalai and Muller’s one requires that R contains
TR. In particular, let us stress that our definition requires that R1 and R2

satisfy only two conditions - instead of four, as in Kalai and Muller’s version.
As the next proposition makes it clear, this implies a redundancy of Kalai
and Muller’s Conditions II and IV. Nevertheless, as anticipated above, the
following proposition establishes that the two concepts are equivalent.

Proposition 3. Ω is KM-decomposable if and only if it is decomposable.

Proof. Let Ω be KM-decomposable. Then, there exists a set R, with TR $
R $ A2, which satisfies Conditions I-IV. By Lemma 4 in Kalai and Muller,
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there exists a set R̄, with TR $ R̄ $ A2, such that, for all (x, y) ∈ NTR,
we have (x, y) ∈ R if and only if (y, x) /∈ R̄, and which satisfies Conditions
I-IV. Let R1 = R \ TR and R2 = R̄ \ TR. Then, ∅ $ Ri $ NTR, i = 1, 2,
and, for all (x, y) ∈ NTR, we have (x, y) ∈ R1 if and only if (y, x) /∈ R2.
Consider a triple x, y, z and suppose there exist p,q ∈ Ω satisfying xpypz
and yqzqx. Moreover, suppose that (x, y) ∈ R1 and (x, z) /∈ R1. Then,
(x, y) ∈ R and (x, z) /∈ R as (x, z) ∈ NTR, contradicting Condition I.
Hence, Ri, i = 1, 2, satisfies Condition 1. Consider a triple x, y, z and
suppose that there exist p,q ∈ Ω satisfying xpypz and zqyqx. Moreover,
suppose that (x, y), (y, z) ∈ R1 and (x, z) /∈ R1. Then, (x, y), (y, z) ∈ R, and
(x, z) /∈ R as (x, z) ∈ NTR, contradicting Condition III. Hence, Ri, i = 1, 2,
satisfies Condition 2. We have proved that Ω is decomposable. Conversely,
suppose that Ω is decomposable. Then, there exist two sets R1 and R2, with
∅ $ Ri $ NTR, i = 1, 2, such that, for all (x, y) ∈ NTR, we have (x, y) ∈
R1 if and only if (y, x) /∈ R2; moreover, Ri, i = 1, 2, satisfies Conditions
1 and 2. Let R = R1 ∪ TR. Consider two pairs (x, y), (x, z) ∈ NTR
and suppose there exist p,q ∈ Ω satisfying xpypz and yqzqx. Moreover,
suppose that (x, y) ∈ R and (x, z) /∈ R. Then, (x, y) ∈ R1 and (x, z) /∈
R1 as (x, y), (x, z) ∈ NTR, contradicting Condition 1. Hence, R satisfies
Condition I. Now, suppose that (z, x) ∈ R and (y, x) /∈ R. Then, (x, y) ∈ R2

and (x, z) /∈ R2 as (x, y), (x, z) ∈ NTR, contradicting Condition 1. Hence, R
satisfies Condition II. Consider two pairs (x, y), (x, z) ∈ NTR and suppose
there exists p ∈ Ω satisfying xpypz. Moreover, suppose that (x, y), (y, z) ∈
R, and (x, z) /∈ R. There exists q ∈ Ω such that zqx as (x, z) ∈ NTR.
Consider the case where yqzqx. Then, there exist p,q ∈ Ω satisfying xpypz
and yqzqx, (x, y) ∈ R, and (x, z) /∈ R, contradicting Condition I. Consider
the case where zqxqy. Then, there exist p,q ∈ Ω satisfying xpypz and
zqxqy, (y, z) ∈ R, and (x, z) /∈ R, contradicting Condition II. Consider
the case where zqyqx. Then, there exist p,q ∈ Ω satisfying xpypz and
zqyqx, (x, y), (y, z) ∈ R1, and (x, z) /∈ R1 as (x, y), (y, z), (x, z) ∈ NTR,
contradicting Condition 2. Hence, R satisfies Condition III. Consider two
pairs (x, y), (x, z) ∈ NTR and suppose there exists p ∈ Ω satisfying xpypz.
Moreover, suppose that (z, x) ∈ R and (y, x), (z, y) /∈ R. There exists q ∈ Ω
such that zqx as (x, z) ∈ NTR. Consider the case where zqxqy. Then,
there exist p,q ∈ Ω satisfying xpypz and zqxqy, (z, x) ∈ R, and (z, y) /∈ R,
contradicting Condition I. Consider the case where yqzqx. Then, there
exist p,q ∈ Ω satisfying xpypz and yqzqx, (z, x) ∈ R, and (y, x) /∈ R,
contradicting Condition II. Consider the case where zqxqy. Then, there
exist p,q ∈ Ω satisfying xpypz and zqyqx, (x, y), (y, z) ∈ R2, and (x, z) /∈
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R2 as (x, y), (y, z), (x, z) ∈ NTR, contradicting Condition 2. Hence, R
satisfies Condition IV. We have proved that Ω is KM-decomposable.

In order to obtain our characterization theorem for ASWFs with ties, we
need to restrict further the condition of decomposability introduced above.
Then, we introduce a new notion, which we define as “strict decomposabil-
ity.” The next section will be devoted to establish the exact relationship
between the two notions of decomposability and strict decomposability.

Then, given a set R ⊂ A2, consider the following conditions on R.

Condition 3. There exists a set R∗ ⊂ A2, with R ∩ R∗ = ∅, such that, for
all triples x, y, z, if there exist p,q ∈ Ω satisfying xpypz and yqzqx, then
(x, y) ∈ R∗ implies that (x, z) ∈ R.

Condition 4. There exists a set R∗ ⊂ A2, with R ∩ R∗ = ∅, such that, for
all triples of alternatives x, y, z, if there exist p,q ∈ Ω satisfying xpypz
and zqyqx, then (x, y) ∈ R and (y, z) ∈ R∗ imply that (x, z) ∈ R, and
(x, y) ∈ R∗ and (y, z) ∈ R imply that (x, z) ∈ R.

A domain Ω is said to be strictly decomposable if and only if there exist
four sets R1, R2, R∗1, and R∗2, with Ri $ NTR, ∅ $ R∗i ⊂ NTR, i = 1, 2,
such that, for all (x, y) ∈ NTR, we have (x, y) ∈ R1 if and only if (x, y) /∈ R∗1
and (y, x) /∈ R2; (x, y) ∈ R∗1 if and only if (y, x) ∈ R∗2; moreover, Ri, i = 1, 2,
satisfies Condition 1; Ri and R∗i , i = 1, 2, satisfy Condition 2; each pair
(Ri,R

∗
i ), i = 1, 2, satisfies Conditions 3 and 4.

On the basis of the notion of strict decomposability, we provide now the
characterization of domains admitting nondictatorial ternary solutions to
IP1.

Theorem 4. There exists a nondictatorial ternary solution to IP2 on Ω, d,
for n = 2, if and only if Ω is strictly decomposable.

Proof. Let d be a nondictatorial ternary solution to IP2 on Ω, for n = 2.
Let R1 = {(x, y) ∈ NTR : d{1}(x, y) = 1}, R2 = {(x, y) ∈ NTR :

d{2}(x, y) = 1}, R∗1 = {(x, y) ∈ NTR : d{1}(x, y) = 1
2}, R∗2 = {(x, y) ∈

NTR : d{2}(x, y) = 1
2}. Consider (x, y) ∈ NTR. Suppose that (x, y) ∈ R1

and (x, y) ∈ R∗1. Then, d{1}(x, y) = 1 and d{1}(x, y) = 1
2 , a contradic-

tion. Suppose that (x, y) ∈ R1 and (y, x) ∈ R2. Then, d{1}(x, y) = 1 and
d{2}(y, x) = 1, contradicting (2). Suppose that (x, y) /∈ R∗1, (y, x) /∈ R2, and

(x, y) /∈ R1. Then, d{1}(x, y) 6= 1
2 , d{1}(x, y) 6= 0, and d{1}(x, y) 6= 1, a con-

tradiction. Suppose that (x, y) ∈ R∗1 and (y, x) /∈ R∗2. Then, d{1}(x, y) = 1
2
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and d{2}(y, x) 6= 1
2 , contradicting (2). Hence, for all (x, y) ∈ NTR, (x, y) ∈

R1 if and only if (x, y) /∈ R∗1 and (y, x) /∈ R2; (x, y) ∈ R∗1 if and only if
(y, x) ∈ R∗2. Suppose that R1 = NTR. Then, d is dictatorial, a contradic-
tion. Hence, Ri $ NTR, i = 1, 2. Suppose that R∗i = ∅, i = 1, 2. Then, d is
a binary solution, a contradiction. Hence, ∅ $ R∗i ⊂ NTR. Consider a triple
x, y, z and suppose that there exist p,q ∈ Ω satisfying xpypz and yqzqx.
Moreover, suppose that (x, y) ∈ R1 and (x, z) /∈ R1 Then, d{1}(x, y) = 1
and

d{1}(x, y) > d{1}(x, z),

contradicting (5). Hence, Ri, i = 1, 2, satisfies Condition 1. Consider a
triple x, y, z and suppose that there exist p,q ∈ Ω satisfying xpypz and
zqyqx. Moreover, suppose that (x, y), (y, z) ∈ R1, and (x, z) /∈ R1. Then,
d{1}(x, y) = 1, d{1}(y, z) = 1, and

d{1}(x, y) + d{1}(y, z) > 1 + d{1}(x, z),

contradicting (7). Hence, Ri, i = 1, 2, satisfies Condition 2. Consider a
triple x, y, z and suppose that there exist p,q ∈ Ω satisfying xpypz and
zqyqx. Moreover, suppose that (x, y) ∈ R∗1, (y, z) ∈ R∗1, and (x, z) /∈ R∗1.
Then, d{1}(x, y) = 1

2 , d{1}(y, z) = 1
2 , and

d{1}(x, y) + d{1}(y, z) 6= 1

2
+ d{1}(x, z),

contradicting (8). Hence, R∗i satisfies Condition 2, i = 1, 2. Consider a triple
x, y, z and suppose that there exist p,q ∈ Ω satisfying xpypz and yqzqx.
Moreover, suppose that (x, y) ∈ R∗1 and (x, z) /∈ R1. Then, d{1}(x, y) = 1

2
and

d{1}(x, y) ≥ d{1}(x, z),

contradicting (6). Hence, each pair (Ri, R
∗
i ), i = 1, 2, satisfies Condition

3. Consider a triple x, y, z and suppose that there exist p,q ∈ Ω satisfying
xpypz and zqyqx. Moreover, suppose that (x, y) ∈ R1, (y, z) ∈ R∗1, and
(x, z) /∈ R1. Then, d{1}(y, z) = 1

2 and

d{1}(x, y) + d{1}(y, z) 6= 1

2
+ d{1}(x, z),

contradicting (8). Now, suppose that (x, y) ∈ R∗1, (y, z) ∈ R1, and (x, z) /∈
R1. Then, d{1}(x, y) = 1

2 and

d{1}(x, y) + d{1}(y, z) 6= 1

2
+ d{1}(x, z),
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contradicting (8). Hence, each pair (Ri, R
∗
i ), i = 1, 2, satisfies Condition

4. We have proved that Ω is strictly decomposable. Conversely, suppose
that Ω is strictly decomposable. Then, there exist four sets R1, R2, R∗1,
and R∗2, with Ri $ NTR, ∅ $ R∗i ⊂ NTR, i = 1, 2, such that, for all
(x, y) ∈ NTR, we have (x, y) ∈ R1 if and only if (x, y) /∈ R∗1 and (y, x) /∈ R2;
(x, y) ∈ R∗1 if and only if (y, x) ∈ R∗2; moreover, Ri, i = 1, 2, satisfies
Condition 1; Ri and R∗i , i = 1, 2, satisfy Condition 2; each pair (Ri,R

∗
i ),

i = 1, 2, satisfies Conditions 3 and 4. Determine d as follows. For each
(x, y) ∈ NTR, let d∅(x, y) = 0, dE(x, y) = 1; d{i}(x, y) = 1 if and only if

(x, y) ∈ Ri; d{i}(x, y) = 1
2 if and only if (x, y) ∈ R∗i ; d{i}(x, y) = 0 if and only

if, (x, y) /∈ Ri and (x, y) /∈ R∗i , for i = 1, 2. Then, d satisfies (1) and (2) as,
for all (x, y) ∈ NTR, (x, y) ∈ R1 if and only if (x, y) /∈ R∗1 and (y, x) /∈ R2,
(x, y) ∈ R∗1 if and only if (y, x) ∈ R∗2. Consider a triple x, y, z and suppose
that there exist p,q ∈ Ω satisfying xpypz and yqzqx. Moreover, suppose
that

d{1}(x, y) > d{1}(x, z).

Then, we have (x, y) ∈ R1 and (x, z) /∈ R1, contradicting Condition 1.
Therefore, d satisfies (5). Consider a triple x, y, z and suppose that there
exist p,q ∈ Ω satisfying xpypz and zqyqx. Moreover, suppose that

d{1}(x, y) + d{1}(y, z) > 1 + d{1}(x, z).

Then, we have (x, y), (y, z) ∈ R1 and (x, z) /∈ R1, contradicting Condition 2.
Therefore, d satisfies (7). Consider a triple x, y, z and suppose there exist
p,q ∈ Ω satisfying xpypz and yqzqx. Moreover, suppose that d{1}(x, y) =
1
2 and

d{1}(x, y) ≥ d{1}(x, z).

Then, (x, y) ∈ R∗1 and (x, z) /∈ R1, contradicting Condition 3. Therefore,
d satisfies (6). Consider a triple x, y, z and suppose there exist p,q ∈ Ω
satisfying xpypz and zqyqx. Moreover, suppose that d{1}(x, y) = 1

2 and

d{1}(x, y) + d{1}(y, z) >
1

2
+ d{1}(x, z).

Consider the following two cases. First, d{1}(y, z) = 1. Then, (x, y) ∈ R∗1,
(y, z) ∈ R1, and (x, z) /∈ R1, contradicting Condition 4. Second, d{1}(y, z) =
1
2 . Then, (x, y) ∈ R∗1, (y, z) ∈ R∗1, and (x, z) /∈ R∗1, contradicting Condition
2. Finally, suppose that d{1}(x, y) = 1

2 and

d{1}(x, y) + d{1}(y, z) <
1

2
+ d{1}(x, z).

19



Consider the following two cases. First, d{1}(y, z) = 0. Then, (z, y) ∈ R2,
(y, x) ∈ R∗2, and (z, x) /∈ R2, contradicting Condition 4. Second, d{1}(y, z) =
1
2 . Then, (x, y) ∈ R∗1, (y, z) ∈ R∗1, and (x, z) /∈ R∗1, contradicting Condition
2. Therefore, d satisfies (8). d is nondictatorial as ∅ $ R∗i ⊂ NTR, i = 1, 2.
Hence, d is a nondictatorial ternary solution to IP2 on Ω.

Our characterization theorem for ASWFs with ties immediately follows
from Theorems 1 and 3. This result is a generalization of Kalai and Muller’s
Theorem 2 for ASWFs without ties.

Theorem 5. There exists a nondictatorial ASWF with ties on Ω, f , for
n ≥ 2, if and only if Ω is strictly decomposable.

Proof. It is a straightforward consequence of Propositions 1 and 2, Theo-
rems 1, 3, and 4.

5 The relationship between decomposable and
strictly decomposable domains

In this section, we analyze the relationship between the notions of decompos-
able and strictly decomposable domain. The following example illustrates
the two notions.

Example 1. Let A = {a, b, c, d} and Ω = {p ∈ Σ : apbpcpd, cpdpapb,
dpcpbpa}. Then, Ω is decomposable and strictly decomposable.

Proof. The triples x, y, z for which there exist p,q ∈ Ω such that xpypz and
yqzqx are c,a,b; d,a,b; a,c,d; b,c,d. The triples x, y, z for which there exist
p,q ∈ Ω such that xpypz and zqyqx are a,b,c; a,b,d; a,c,d; b,c,d. Let R1 =
{(a, b), (b, a), (c, d), (d, c)} and R2 = {(a, c), (c, a), (a, d), (d, a), (b, c), (c, b),
(b, d), (d, b)}. Then, we have ∅ $ Ri $ NTR, i = 1, 2. Moreover, for all
(x, y) ∈ NTR, we have (x, y) ∈ R1 if and only if (y, x) /∈ R2. R1 vac-
uously satisfies Conditions 1 and 2. R2 satisfies Condition 1 as we have:
(a, c) ∈ R2 and (a, d) ∈ R2; (c, a) ∈ R2 and (c, b) ∈ R2; (d, a) ∈ R2 and
(d, b) ∈ R2; (b, c) ∈ R2 and (b, d) ∈ R2. R2 vacuously satisfies Condition 2.
We have shown that Ω is decomposable. Now, let V1 = {(a, b), (c, d)}, V2 =
{(a, c), (c, a), (a, d), (d, a), (b, c), (c, b), (b, d), (d, b)}, V ∗1 = {(b, a), (d, c)}, V ∗2 =
{(a, b), (c, d)}. Then, we have Vi $ NTR, i = 1, 2, and ∅ $ V ∗i ⊂ NTR,
i = 1, 2. Moreover, for all (x, y) ∈ NTR, we have: (x, y) ∈ V1 if and only
if (x, y) /∈ V ∗1 and (y, x) /∈ V2; (x, y) ∈ V ∗1 if and only if (y, x) ∈ V ∗2 . V1
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vacuously satisfies Conditions 1 and 2. V ∗1 vacuously satisfies Condition
2. Moreover, the pair (V1, V

∗
1 ) vacuously satisfies Conditions 3 and 4. V2

satisfies Conditions 1 and 2 as V2 = R2. V ∗2 vacuously satisfies Condition
2. The pair (V2, V

∗
2 ) vacuously satisfies Condition 3. Moreover, it satisfies

Condition 4 as we have: (a, c) ∈ V2, (c, d) ∈ V ∗2 , and (a, d) ∈ V2; (b, c) ∈ V2,
(c, d) ∈ V ∗2 , and (b, d) ∈ V2; (a, b) ∈ V ∗2 , (b, c) ∈ V2, and (a, c) ∈ V2;
(a, b) ∈ V ∗2 , (b, d) ∈ V2, and (a, d) ∈ V2. We have shown that Ω is strictly
decomposable.

The example above specifies a domain which is both decomposable and
strictly decomposable. Nonetheless, this is not the general case. In the
following, we will show, with a theorem and a further example, that a strictly
decomposable domain is always decomposable, but the converse is not true.

In order to obtain these results, we preliminarily show the following
theorem on the nondictatorial solutions to IP2.

Theorem 6. If there exists a nondictatorial ternary solution to IP2 on Ω,
d, for n = 2, then there exists a nondictatorial binary solution to IP2 on Ω,
d̂, for n = 2.

Proof. Let d be a ternary solution to IP2 on Ω, for n = 2. Determine
d′ as follows. Consider q ∈ Σ. For each (x, y) ∈ NTR, let: d′∅(x, y) = 0,
d′E(x, y)=1; d′{i}(x, y) = d{i}(x, y), if d{i}(x, y) ∈ {0, 1}, i = 1, 2; d′{1}(x, y) =

1 and d′{2}(y, x) = 0, if d{1}(x, y) = d{2}(y, x) = 1
2 and xqy. Then, it is

immediate to verify that d′ is a solution to IP2 on Ω, for n = 2. Suppose
that d′ is nondictatorial. Then, d̂ = d′ is a nondictatorial binary solution
to IP2 on Ω, for n = 2. Suppose that d′ is dictatorial: say, for example,
that, for all (x, y) ∈ NTR, dS(x, y) = 1, for all S containing agent 1. In
this case, we can say that agent 1 is the dictator for d′. Determine d′′ as
follows. Let q−1 ∈ Σ be an antisymmetric preference ordering such that,
for each (x, y) ∈ A2, xqy if and only if yq−1x. For each (x, y) ∈ NTR,
let: d′′∅(x, y) = 0, d′′E(x, y)=1; d′′{i}(x, y) = d{i}(x, y), if d{i}(x, y) ∈ {0, 1},
i = 1, 2; d′′{1}(x, y) = 1 and d′′{2}(y, x) = 0, if d{1}(x, y) = d{2}(y, x) = 1

2 and

xq−1y. Then, it is immediate to verify that d̂ = d′′ is a binary solution to
IP2 on Ω, for n = 2, and that agent 1 is not a dictator for d′′. Suppose that
agent 2 is a dictator for d′′. Consider (x, y) ∈ NTR such that d{1}(x, y) =

d{2}(y, x) = 1
2 . Suppose that yqx. This implies that d′{1}(x, y) = 0 and agent

1 is not a dictator for d′, a contradiction. But then, we must have that xqy.
Consider variables d{1}(y, x) and d{2}(x, y). Suppose that d{1}(y, x) = 1
and d{2}(x, y) = 0. Then, agent 2 is not a dictator for d′′, a contradiction.
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Suppose that d{1}(y, x) = 0 and d{2}(x, y) = 1. Then, agent 1 is not a

dictator for d′. This implies that d{1}(y, x) = d{2}(x, y) = 1
2 and this, in

turn, implies that d′′{2}(x, y) = 0 and agent 2 is not a dictator of d′′, a

contradiction. Then, d̂ = d′′ is a nondictatorial binary solution to IP2 on Ω,
for n = 2.

Then, the following theorem can be immediately proved.

Theorem 7. If a domain Ω is strictly decomposable, then it is decompos-
able.

Proof. Let Ω be a strictly decomposable domain. Then, by Theorem 4,
there exists a nondictatorial ternary solution to IP2 on Ω, d, for n = 2. But
then, by Theorem 6, there exists a nondictatorial binary solution to IP2
on Ω, d̂, for n = 2. Hence, by Theorems 1 and 2, and Proposition 3, Ω is
decomposable.

The following example shows that the converse of Theorem 7 does not hold.

Example 2. Let A = {a, b, c, d} and Ω = {p ∈ Σ : apbpcpd, cpapdpb,
dpcpbpa, bpdpapc}. Then, Ω is decomposable but it is not strictly decom-
posable.

Proof. The triples x, y, z for which there exist p,q ∈ Ω such that xpypz and
yqzqx are: c,a,b; c,b,a; a,b,d; a,d,b,; d,a,c; d,c,a; b,c,d; b,d,c. The triples
x, y, z for which there exist p,q ∈ Ω such that xpypz and zqyqx are: a,b,c;
c,a,b; a,b,d; a,d,b; a,c,d; c,a,d; b,c,d; c,d,b. Let Ri = {(a, b), (a, c), (a, d),
(b, c), (b, d), (c, d)}, i = 1, 2. Then, we have ∅ $ Ri $ NTR, i = 1, 2.
Moreover, for all (x, y) ∈ NTR, we have (x, y) ∈ R1 if and only if (y, x) /∈ R2.
Ri, i = 1, 2, satisfies Condition 1 as we have: (a, b) ∈ Ri and (a, d) ∈ Ri;
(a, d) ∈ Ri and (a, b) ∈ Ri; (b, c) ∈ Ri and (b, d) ∈ Ri; (b, d) ∈ Ri and
(b, c) ∈ Ri, i = 1, 2. Ri, i = 1, 2, satisfies Condition 2 as we have: (a, b) ∈ Ri,
(b, c) ∈ Ri, and (a, c) ∈ Ri; (a, b) ∈ Ri, (b, d) ∈ Ri, and (a, d) ∈ Ri; (a, c) ∈
Ri, (c, d) ∈ Ri, and (a, d) ∈ Ri; (b, c) ∈ Ri, (c, d) ∈ Ri, and (b, d) ∈ Ri,
i = 1, 2. We have shown that Ω is decomposable. Now suppose that Ω is
strictly decomposable. Then, there exist four sets V1, V2, V ∗1 , and V ∗2 , with
Vi $ NTR, ∅ $ V ∗i ⊂ NTR, i = 1, 2, such that, for all (x, y) ∈ NTR, we
have: (x, y) ∈ V1 if and only if (x, y) /∈ V ∗1 and (y, x) /∈ V2; (x, y) ∈ V ∗1
if and only if (y, x) ∈ V ∗2 . Moreover, Vi, i = 1, 2, satisfies Condition 1; Vi

and V ∗i , i = 1, 2, satisfy Condition 2; each pair (Vi, V
∗
i ), i = 1, 2, satisfies

Conditions 3 and 4. Suppose that (a, b) ∈ V ∗1 and (b, a) ∈ V ∗2 . Then,
(a, d) ∈ V1 as the pair (V1, V

∗
1 ) satisfies Condition 3. But then, (a, b) ∈ V1
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as V1 satisfies Condition 1, a contradiction. Suppose that (a, c) ∈ V ∗1 and
(c, a) ∈ V ∗2 . Then, (c, b) ∈ V2 as the pair (V2, V

∗
2 ) satisfies Condition 3.

But then, (c, a) ∈ V2 as V2 satisfies Condition 1, a contradiction. Suppose
that (a, d) ∈ V ∗1 and (d, a) ∈ V ∗2 . Then, (a, b) ∈ V1 as the pair (V1, V

∗
1 )

satisfies Condition 3. But then, (a, d) ∈ V1 as V1 satisfies Condition 1, a
contradiction. Suppose that (b, c) ∈ V ∗1 and (c, b) ∈ V ∗2 . Then, (b, d) ∈ V1 as
the pair (V1, V

∗
1 ) satisfies Condition 3. But then, (b, c) ∈ V1 as V1 satisfies

Condition 1, a contradiction. Suppose that (b, d) ∈ V ∗1 and (d, b) ∈ V ∗2 .
Then, (b, c) ∈ V1 as the pair (V1, V

∗
1 ) satisfies Condition 3. But then, (b, d) ∈

V1 as V1 satisfies Condition 1, a contradiction. Suppose that (c, d) ∈ V ∗1 and
(d, c) ∈ V ∗2 . Then, (d, a) ∈ V2 as the pair (V2, V

∗
2 ) satisfies Condition 3.

But then, (d, c) ∈ V2 as V2 satisfies Condition 1, a contradiction. Hence,
V ∗i = ∅, i = 1, 2, a contradiction. We have shown that Ω is not strictly
decomposable.
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