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Importance of air-pollution monitoring

@ Outdoor pollution has long-term effects on human health in
terms of shorter life expectancy and greater medical expenses.
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Importance of air-pollution monitoring

@ Outdoor pollution has long-term effects on human health in
terms of shorter life expectancy and greater medical expenses.

i

Measures taken in UK

@ Pollution directives enacted according to UK, European and
WHO guidelines.

@ "The National Survey of Air Pollution” established in 1961 to
measure pollution.
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Difficulties in modelling air-pollution data

@ Collection of data is expensive and hence monitoring sites are
sparse.

@ High proportion of data absent in monitoring sites due to
discontinuation of existing sites and/or addition of new sites.

@ There is high variability in the data even within small
distances, especially in urban areas (Shaddick et al., 2014).

@ Modelling such data is a challenge.
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Recent Statistical modelling of UK data on air pollution

@ Large number of research articles. We mention two most
recent work on UK data.

@ Pirani, Gulliver, Fuller, Blangiardo (2014) did spatio-temporal
modelling on short-term affect of PMyp in London.

@ Used data on PMjyq for 728 days during 2002-2003. Covariates
are output of numerical model on a 1km grid, data on
emission, temperature etc.

@ Fitted and compared 5 different regression models.

@ Did not incorporate spatio-temporal interaction term.

© Shaddick et al. (2013) used data on annual average of NO;
concentration from parts of Europe including UK in 2001.
@ Spatial model includes various covariates affecting air pollution.
@ No temporal modelling, hence cannot be used for measuring
long term exposure.
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Recent Deterministic modelling on UK data

@ Computer simulation model named Air Quality Unified Model
(AQUM) (Savage et al., 2013).
@ Use atmospheric variables like teperature, humidity, wind
speed, wind direction etc.
@ Use data on emission from various sources.

Output of AQUM

Hourly concentration of air pollutants over corners of a square grid (1km
or 12km) for a specified period of time.

© The AQUM output (like those from other similar models, e.g.
CMAQ) is not very accurate.

@ Adjusted to correct bias using observed hourly data. We will
denote this by AAQUM.

@ AAQUM values are recommended for prediction at an
unobserved locations and also for forecasting.
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Aims and objectives of our work

@ To model daily levels of four major pollutants namely, P> s,
PMp, Ozone and NO, for the period 2007-2011.

© To build up a process based suitable spatio-temporal model
that
@ can handle highly variable air pollution data.
@ is more accurate than recently developed methods.
@ is based on a spatial process which allows us to interpolate at
any unobserved location.

@ To incorporate output of our model (along with their
uncertainties) into the model measuring the impact of
pollution on human health.
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Preliminaries

o We have
© Observed daily data from 166 AURN sites for five years (1826
daily values in each site).
@ Daily AQUM model output, generated on corners of 12km grid
cells of size 79x 80 over UK, supplied by the Met Office.

@ Square-root transformation is taken to stabilize variance of
the data (like many other authors, e.g., Berrocal et al., 2010).

@ We also have information on the types of the monitoring sites,
like Kerbside, Rural, Urban etc.

o AQUM output can be used as a covariate in the model since
it is generated using other important covariates like emission
and meteorological variables e.g., temperature, humidity, wind
speed and direction.
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Mean of different air pollutants categorised by type of sites

Type | Number | PM,5 | PMyg | Ozone | NO;
Urban Background (UB 75| 129 | 19.2 59.4 | 46.6

)
Roadside (RS) 49 | 142 | 211 50.3 | 74.6
Rural (RL) 23| 84| 146| 684 19.1
Urban Centre (UC) 24| 138| 20.1| 503 | 59.4
Urban Industrial (Ul) 10 11.3 | 19.9 549 | 50.3
Suburban (SB) 19| 151 | 228 57.4 | 45.6
Kerbside (KS) 6 20.0 | 30.1 28.3 | 134.1
Remote (RM) 5 NA | 138 71.7 | 11.2
Airport (AP) 1 13.3 | 19.0 53.1 | 63.0
Overall average pollution — | 1297 | 20.27 | 58.50 | 55.77

Note: All measurements are in 1g/m> unit.
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Spatio-temporal models

General form of spatio-temporal model (Cressie and Wikle,
2011; Banerjee, Carlin and Gelfand, 2004):

Z: = 0O:+e,
O = XB8+mn,, (1)

Z, is the square-root of observed data from n sites.

3 is the regression parameter, X; design matrix of covariates
at time t.

€; follows multivariate normal with parameters (0, o2l,,)
independent of n,.

7, is space-time interaction term, modeled by a suitable
Gaussian Process model.
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Anisotropic model

Map of London with 33 local authority boundaries

Not isotropic Correlation between sites not
only distance dependent.
Wayout Correlation function needs to
be anisotropic.
Option 1 Model based on Gaussian
Predictive Process (GPP)
(Banerjee et al., 2008)
provides one such option.

Option 2 Spatial deformation using
elliptical distance function
leads to anisotropy (Schmidt
and O'Hagan, 2003).
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Space-time GPP model

Same form as used by Sahu and Bakar (2012).

@ The model is:

Zt = Xtﬂ—i—Awt +€t

A = CS,!, C denoting the n x m cross-correlation matrix
between the random effects at n observation locations and m
knots, s;,...,sn, Sw is the m x m correlation matrix of
random affects wy = {w(s}, t),..., w(sp, t)}.

w; is specified as :

Wi = pW¢_1 + 1) (2)

1 ~ N(0, X)) independently, ¥, = 07275,7.

Y, has dimension m X m, can be chosen to be of much lower
dimension than the same for two previous models GP and AR.
Wwq ~ /V(0,0'gsn).
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sp Timer model contd.

What we gain by using spTimer

© A suitable space-time model for sparse data.

@ Easily implemented in the R package spTimer (Bakar and
Sahu, 2014).

© Properties of the model and forms of the posterior
distributions developed in Sahu and Bakar (2012).

What we suffer from

e Knot locations (s7,...,sp,) are fixed throughout.

@ Cannot have point process models for knot locations.
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Random knots
Previous attempts of modelling the knots

e Guhaniyogi et al. (2011) worked with fixed number of knots.
But knot locations were assumed random according to an
intensity function f(s) = exp(A(s)), where A(s) is taken as a
suitable mixture model.

o Katzfuss (2012) used RIMCMC assuming the number of
knots and their locations as random.

@ Both the articles are based on spatial data only — not
spatio-temporal.

Our extension

@ We assume number of knots is fixed and domain of the knot
locations lies on the set of grid locations for which AQUM
output have been generated.

@ Probability of a particular grid location being selected as knot
is proportional to the population size of the local authority in
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Why such a choice?

* AQUM values are
available on the corners
of the grid cells. Using
them as knots adds
more information to
the model.

Densely populated
places should get more
knots, since our main
interest is to measure
impact of pollution on
human health.
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Hierarchical space-time model

@ Denoting © as set of hyperparameters, model Z; is written as,
[Z:]|5",0] = X8+ Aw;+€;

e ¢; follows multivariate normal with parameters (0, o21,)
independently of n,.

@ Exponential correlation function with decay ¢ is used to

calculate 2.

At S* we define wy = pw;_1 + 1.

1 ~ N(0, X)) independently, ¥, = 07275,7.

wo ~ N(0,02Sy).

Denoting D as sample space of all the grid cells on which

AQUM is generated, N being total number of such grid cells,

p(3) as the population density of the local authority in which

5 lies, p = (p(51), - .., p(3n)),

[S*IP]—Hpo
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o We allow sitewise regression lines. If
there are r many type of sites then
X:3 can be modeled as

XeB = dk(si)(vok + X(sir t)716),
k=0

where dg(s;) =1 for all s;, dk(s;) =1,
if 5; is of k-th type of site,
k=1,...,r, dx(s;) = 0, otherwise.
X(si, t) is AQUM value.

o Different regression lines can be
obtained from this general form.

@ When r=1, 61(s;) =1, for all s;, it
leads to the same simple linear
regression model for all site types.

@ Thus the model is allowed
to be different for
different site types, i.e.
one model for Urban sites,
another for Kerbside etc.
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Posterior distributions and simulation

@ The joint posterior distribution is

log ([S*,©,w, Z]) x

T
1 /
— ﬁ (Zt — 01_- — AWt) (Zt — Ot' — AWt)
€ t=1
T
1 1
- 22 — pwi1) L, (we — pwe 1)
t=1 U
1

2o w0 — (T4 1)log([%) + Iog(r(5") + log(x(©))

@ Number of knots m is taken to be fixed. Chosen using
validation mean square error.

@ Posterior distributions of ©, w given S* are same as those in
the spTimer model. Can be updated using spTimer.

e Updated S* using Metropolis-Hastings algorithm.
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Incorporating anisotropy through deformation

We have taken distance function like
d(si,s;) = (si — s;) B(si — s;), where B is Positive Definite.
B can be written as TT .

10

p 1

© is assumed follow uniform distribution in (0, 1).

Form of T taken as

Posterior of ¢ is of the same form as S* with 7(S*) replaced
by m(¢). Can be updated in the same way as S*.
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Catalogue of fitted models

Model Linear Part Time series | Spatial Pro-
cess
Model-1 AQUM | not required | Independent | GP
Model-2 AQUM | not required | AR process | AR
Model-3 AQUM fixed | AR process | GPP
Model-4 | Sitewise Linear fixed | AR process | GPP
Model-5 AQUM random AR process | GPP
Model-6 | Sitewise Linear random | AR process | GPP
Model-7 AQUM fixed | AR process | GPP
(anisotropic)
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Choice of prior of hyperparameters

@ The parameter representing mean, e.g, 3, p, assumed to
follow normal distribution with mean (ug, 1,) and variance

(52,55).
@ We choose ug = pu, = 0; variance equal to 10%.

o Variance parameters like o2 are assumed to follow Inverse
Gamma distribution with shape parameter as 1 and scale
parameter as 2 to have proper prior specification.

@ The prior distribution for ¢ is taken as Gamma(a, b) where a
and b estimated by empirical Bayes (EB).
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Validation of the models

@ Among the n many monitoring sites we
choose at least 10% at random. Denote
those as validation sites.

@ Pretend that data at validation sites have
not been observed and need to be predicted.

© Use rest of the data for fitting a model.
© Predict the pollution values at the validation

sites and calculate the RMSE by comparing
with the observed data of those sites.

@ The model with the least RMSE is the most
suitable one.

@ All measurements are in

pgm per m=3.
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Results for validating data from whole of UK

Table: Root Mean Square Error (18 validation sites and 148 fitting sites)

PM2.5 PMlO Ozone N02
SD 9.55 | 12.0 | 21.82 | 38.06
AQUM (raw) | 8.03 | 14.27 | 19.49 | 36.55
kriging 536 | 9.18 | 18.98 | 38.28
Model-1 521 | 877 | 1627 | 345
Model-2 526 | 9.10 16.9 | 453
AAQUM (raw) 5.0 | 8.02 | 13.63 | 32.36
Model-3 478 | 7.67 | 1256 | 24.99
Model-4 7.59 25.3
Model-5 7.59 253
Model-6 477 | 7.55 | 12.65
Model-7 4.81 12.49 | 27.15
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Results for validating data from London

Table: Root Mean Square Error (8 validation sites and 21 fitting sites)

PM2.5 PMlo Ozone N02
SD 9.82 | 13.40 | 23.97 | 46.84

kriging 9.69 | 16.75 | 18.74 | 39.07

AQUM (raw) 8.46 | 13.65 | 18.53 | 33.37
Model-1 571 | 6.90 | 14.77 | 35.18
Model-2 490 | 14.11 | 32.37
AAQUM (raw) 416 | 529 | 13.51 | 27.45
Model-3 347 | 3.80 | 12.75 | 24.99
Model-4 3.62 | 3.73
Model-5 3.47 10.05 | 21.22
Model-6 3.62 | 3.73| 10.63 | 21.92
Model-7 3.47 | 3.78 | 12.78 | 24.21
Pirani et al. 475 — — —
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Further validation results.

@ We also compare the best statistical Model-6 with the
AAQUM outputs using:
e one site at a time leave-out cross-validation RMSE.

o But we only validate the sites with at least 30% observations
to have stable RMSE.

Table: 115 RMSEs for NO5 in the UK

Models | Minimum | Mean SD | Maximum

RMSE AQUM 8.07 134.59
RMSE AAQUM 6.19 | 28.23 | 21.09 131.13
RMSE model-6 10.28 | 22.69 | 12.55 87.43
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Summary of Cross-validation RMSEs for London data

17 RMSEs for NO»

Models | Minimum | Mean SD | Maximum

RMSE AQUM 20.22 134.59

RMSE AAQUM 14.81 | 37.36 | 33.21 131.02

RMSE Model-6 15.60 | 33.44 | 25.32 97.53
12 RMSEs for Ozone

RMSE AQUM 15.71 39.02

RMSE AAQUM 9.17 | 1253 | 7.39 32.05

RMSE model-6 6.36 | 11.02 | 7.69 31.60
8 RMSEs for PMyg

RMSE AQUM 11.36 28.05

RMSE AAQUM 403 | 818 | 5.383 19.35

RMSE model-6 3.70 | 6.98 | 4.97 16.87
7 RMSEs for PM> 5

RMSE AQUM 7.56 9.94

RMSE AAQUM 3.17 | 391 | 0.58 4.53

RMSE model-6 3.07 | 359 | 0.36 4.97
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Improvement achieved

Improvement over the

Pollutant | London | UK
NO, | 10.5% | 21%
PM10 | 14.7% -
Ozone | 12.05% -
PM, 5 8% -

A\

Comparison with Pirani et al. (2014)

Improvement is about 27%, although for different data sets of
PMy.

A\
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Conclusions

@ AQUM outputs are accurate but clearly need to be adjusted
on the basis of observed data.

@ AQUM outputs are improved by site-wise and pollutant-wise
adjustments as detailed in the previous talk.

© These adjustments also use 1 kilometer background pollution
map and further information, which implies that actual AURN
observations may have been used many times over which in
turn makes it harder to assess uncertainty in the predictions.

@ Our process based statistical models further improve the
AAQUM outputs (by about 8-21% reduction in RMSE) as
shown by the leave one out crossvalidation study.

© Statistical models have the added advantage of producing the
correct prediction uncertainty in air pollution estimates, which
are required for the health outcome model.
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Discussion

@ We have proposed a number of nonstationary, anisotropic
models which worked well for all four important pollutants.

@ Introduced distribution for knot locations using population
density surface.

© Parsimonious model enabled by AQUM.

@ We are able to measure long term exposure since we have
modelled daily data for 5 year period.

@ Our prediction uncertaintites are exactly correct as those have
been asessed by a statistical model where all our assumptions
regarding the data and the computer model output are
explicitly stated.
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THANK YOU
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