The Aims of My Research.
My research at the archives focused on cataloguing applied wax seals in a database, compiling full object descriptions, assessing the causes of damage done to those seals and most critically, proposing solutions for their storage and preservation in future.

Results of Research.
By comparing the damage done to the facsimile seal (fig.1) when opening the letter and damage done to the archive seals as recorded on the database (fig.2), I could reasonably conclude that much of the archive seal’s damage was caused due to brittleness over time, and excessive handling of documents.

Methods of Research.
I accumulated one hundred examples of documented applied wax seals on my database and compared the damage to these seals with the damage to a facsimile sealed document I manufactured. Additionally, I researched optimum environmental storage conditions for these seals through journals and discussion with conservationists at National Museums Scotland.

Analysis of Results.
The new short-term storage proposal consisted of custom construction of individual four-flap, acid-free paper folders to house each of the groups of documents (fig. 3). These were measured to also fit into existing archival boxes for cost and space reasons.

Although according to my research it would be preferable to store each letter on an individual flat surface to prevent weight on the seals, it was necessary to take into account cost, storage space and time constraints in creating this new storage.

This new method allowed for the removal of damaging cotton tape around document bundles, provided structure to prevent movement of documents and damage to seals, and allowed each group of documents to be easily identified and moved to prevent excessive unnecessary handling of documents and seals.

Conclusions.
Although modern wax seals contain less shellac than seals of the 19th century, it was a reasonable conclusion that the damage to seals in the archive was largely due to handling and brittleness due to aging. This meant it was important to focus on a storage solution that minimised unnecessary handling. The proposed storage method prevented further damage from movement, handling and cotton tape binding, thus fulfilling the aims of my research.