Bayesian forecasting with highly correlated predictors

Dimitris Korobilis
University of Glasgow

July 2012

Abstract

This paper considers Bayesian variable selection in regressions with a large number of possibly highly correlated macroeconomic predictors. I show that by acknowledging the correlation structure in the predictors can improve forecasts over existing popular Bayesian variable selection algorithms.

Keywords: Bayesian semiparametric selection; Dirichlet process prior; correlated predictors; clustered coefficients

JEL Classification: C11, C14, C32, C52, C53

1 Introduction

Many empirical problems in economics involve regressions where many predictors (possibly more than the number of available observations) are available, of which only a limited set is relevant for forecasting and policy analysis. An integrated way to deal with such demanding statistical inference is to use Bayesian simulation algorithms to estimate posterior probabilities of importance of each economic predictor based on evidence in the data. These algorithms perform variable selection (i.e. selecting the predictors with probability higher than 0.5) as well as model averaging (i.e. using all available predictors scaled by their respective probability). A popular application of Bayesian variable selection and model averaging is in the problem of identifying determinants of economic growth (Fernandez, Ley and Steel, 2001). Other studies try to determine which macroeconomic fundamentals help predict exchange rates (Wright, 2008), inflation (Koop and Korobilis, 2012), or which stock market characteristics drive stock returns (Cremers, 2002).

The purpose of this paper is to evaluate variable selection and model averaging, in the presence of many highly correlated predictors in forecasting regression models. In particular, I consider 183 quarterly macroeconomic predictors for forecasting output and inflation, in a setting similar to the one used by authors such as Stock and Watson $(1999,2002)$. Such datasets have many variables which are disaggregates of major macroeconomic series, such as employment and industrial production in different production sectors, or the various components of GDP. There can be high correlation within a set of disaggregated series, but also between different sets of series ${ }^{1}$.

Given this particular structure of the data, in this note I examine the properties of the semiparametric variable selection prior proposed by Dunson et al. (2008) which allows for simultaneous selection of important predictors and soft clustering of predictors having similar impact on the variable of interest. This prior is a generalization of the typical "spike and slab" priors used for Bayesian variable selection and model averaging in the statistics literature; see George, Sun and Ni (2008) and Korobilis (2012) for recent applications in economics. In an exercise involving forecasting short-run (up to four quarters) inflation and output with more predictors than observations, I find that the semiparametric variable selection prior improves over the more traditional spike and slab prior, and is superior to principal components analysis for this particular problem.

The paper is structured as follows: Section 2 presents the model; Section 3 describes the dataset and forecasting results; Section 4 concludes.

[^0]
2 Methodology

2.1 Spike and slab priors for variable selection

The majority of empirical macroeconomic forecasting models involve estimating dynamic regressions of the form

$$
\begin{equation*}
y_{t+h}=\gamma+\sum_{i=1}^{p} \varphi_{i} y_{t-(i-1)}+x_{t} \beta+\varepsilon_{t+h} \tag{1}
\end{equation*}
$$

where y_{t+h} is the variable of interest which we want to forecast, y_{t-i+1} are the p own lags of y for $i=1, \ldots, p, x_{t}$ is a $(K \times 1)$ vector of exogenous predictors, and ε_{t+h} is a Gaussian forecast error with zero mean and variance σ^{2}. In the remainder of this paper I assume that the intercept and two lags are always included in the forecasting model. For that reason, the regression coefficients $\theta=\left(\gamma, \varphi_{1}, \varphi_{2}\right)$ as well as the variance σ^{2} admit noninformative priors of the form

$$
\begin{aligned}
\theta & \sim N\left(0_{3 \times 1}, 100 I_{3}\right) \\
\sigma^{2} & \sim \operatorname{iGamma}(0.01,0.01)
\end{aligned}
$$

When K becomes "large", Stock and Watson (2002) suggest to use shrinkage based on replacing x_{t} by its first few principal components, while other authors (Cremers, 2002; Koop and Potter, 2004) stress the benefit of selecting the best, according to some criterion, variables/predictors. Among several Bayesian algorithms developed, a popular method for variable selection is the spike and slab prior for the coefficients β, which was formalized by Mitchell and Beauchamp (1988) and is of the form

$$
\begin{equation*}
\beta_{j} \sim \pi \delta_{0}(\beta)+(1-\pi) N\left(0, \tau^{2}\right) \tag{2}
\end{equation*}
$$

where $\delta_{a}(v)$ is the Dirac delta function for random variable v which places all probability mass on the point a. Thus, the prior for $\beta_{j}, j=1, \ldots, K$, is a mixture of a point mass at zero (the spike) and a locally uninformative (depending on how large the value of τ^{2} is) Gaussian prior. The probabilities π are random variables updated by the data and they determine whether the prior of β_{j} is restricted to be zero, or whether it comes from the unrestricted Gaussian density with variance τ^{2}. As is the case with other popular model selection and averaging priors (for instance the g-prior; see Koop and Potter, 2004), this prior does not explicitly model the correlation structure in the data when determining which variables are restricted to enter the regression. In fact, in many cases authors orthogonalize their predictors x_{t} in order to speed-up convergence of the posterior sampling algorithm, thus ignoring completely correlations.

2.2 Semiparametric spike and slab prior

Given the considerations above, and the structure of the datasets customarily used by macroeconomists, the simple spike and slab prior can be reformulated in order to account for correlations in the data. An interesting extension has been proposed by Dunson et al. (2008); see also MacLehose et al. (2007). In these papers, the coefficients β admit a prior of the form

$$
\begin{align*}
\beta_{j} & \sim \pi \delta_{0}(\beta)+(1-\pi) G \tag{3}\\
G & \sim D P\left(\alpha G_{0}\right) \tag{4}\\
G_{0} & \sim N\left(0, \tau^{2}\right) . \tag{5}
\end{align*}
$$

In this formulation G is a nonparametric density which follows a Dirichlet process with base measure G_{0} and concentration parameter α. Usually G_{0} is chosen to be a well-known density, for instance the Gaussian, making the prior an infinite mixture of the densities G_{0}. Hence, priors like this are "pseudo-nonparametric", since a parametric mixture of distributions is used to approximate the unknown density G. In this case the base measure G_{0} is Gaussian with zero mean and variance τ^{2}, which is the typical conjugate prior distribution used on linear regression coefficients. Hence, this prior implies that each coefficient β_{j} will either be restricted to 0 with probability π, or with probability $(1-\pi)$ will come from a mixture of Gaussian densities.

Thus, this prior allows for calculation of Bayesian posterior probabilities of the hypothesis $H_{0 j}: \beta_{j}=0$ against $H_{1 j}: \beta_{j} \neq 0$, while clustering the j 's for the nonnull predictors. The clustering effect comes as a property of the Dirichlet process: β_{j} 's coming from the same Gaussian mixture component, will share the same mean and variance. As an example, consider coefficients $\beta_{j}, j=1, \ldots, 6$ which are distributed according to $\left(\beta_{1}, \beta_{3}\right) \sim N\left(0,10^{6}\right),\left(\beta_{2}, \beta_{4}\right) \sim N(0,0.1)$ and $\left(\beta_{5}, \beta_{6}\right) \sim \delta_{0}$. In this specific example $\left(\beta_{1}, \beta_{3}\right)$ are clustered together and come from a Gaussian with variance 10^{6}, hence the posterior mean/median of these coefficients is close to the value of the LS estimator. The second cluster consists of coefficients $\left(\beta_{2}, \beta_{4}\right)$ which have prior variance 0.1, hence their posterior median will be equivalent to a ridge regression estimator. Finally, $\left(\beta_{5}, \beta_{6}\right)$ are restricted to be zero, so that $x_{5, t}$ and $x_{6, t}$ are completely irrelevant for forecasting y_{t+h}. Hence, this example shows that this prior is a hybrid of variable selection (coefficients restricted to be zero) and at the same time shrinkage (coefficients shrunk towards, but not equal to, zero).

For the prior hyperparameters α, π, τ which show up in the hierarchical prior in equations (3)-(5), I define further prior distributions in order to let the data determine their values. These hyperprior distributions are

$$
\begin{align*}
\tau^{2} & \sim i \operatorname{Gamma}(0.01,0.01) \tag{6}\\
\alpha & \sim \operatorname{Gamma}(1,2) \tag{7}\\
\pi & \sim \operatorname{Beta}(1,1) \tag{8}
\end{align*}
$$

and the chosen hyperparameters are fairly uninformative. Estimation of the regression coefficients using the prior in equations (3)-(8) is implemented using Markov Chain Monte Carlo methods which are described analytically in the Technical Appendix. After monitoring for convergence, the Gibbs sampler is run for 150,000 iterations after an initial burn-in period of 50,000 iterations.

3 Empirical Results

3.1 Forecast evaluation

I consider short-term forecasts, i.e. $h=1,2,3,4$ horizons ahead, of inflation (Consumer Price Index: All Items) and output (Real Gross Domestic Product) using 183 predictors ${ }^{2}$. All data used are quarterly, seasonally adjusted and are observed for the period 1959.Q1-2011.Q2. The Data Appendix contains a full description of all variables and the relevant stationarity transformations used. 50% of the available sample is used as the first estimation period, forecasts are calculated, then one observation is added at the end of the initial sample and estimation and forecasting is repeated. This recursive forecasting procedure is followed until the whole sample is exhausted.

Following standard practice, I use the model with no predictors (i.e. an autoregressive model with 2 lags and an intercept, estimated using diffuse priors) as a benchmark model. Additionally, the regression model (1) with the 183 predictors is estimated using the semiparametric variable selection prior (3)-(8), and the traditional spike and slab prior consisting of equations (2), (6) and (8). Lastly, I provide forecasts from the regression model (1) where the 183 variables in x_{t} are replaced by the first principal component ${ }^{3}$ and a diffuse prior is used on all regression coefficients (so that posterior and predictive means/medians are equivalent to the OLS point estimates).

I use a large set of alternative measures of out-of-sample predictive ability. Let N denote the number of observations in the out-of-sample evaluation period, and denote the forecast errors of the benchmark $\operatorname{AR}(2)$ model M_{0} as ϵ_{i}^{0}, and of model M_{j}

[^1]as ϵ_{i}^{j}, for $i=1, \ldots, N$ and $j=1, \ldots, G$. Define $M S E^{j}=N^{-1} \sum_{i=1}^{N}\left(\epsilon_{i}^{j}\right)^{2}$ (similarly for $\left.M S E^{0}\right), d_{i}=\epsilon_{i}^{j}-\epsilon_{i}^{0}$, and $\bar{d}=N^{-1} \sum_{i=1}^{N} d_{i}$. Additionally denote by $\widetilde{p}\left(y_{t+h} \mid y_{t}, x_{t}\right)$ the predictive likelihood, i.e. the value of the predictive density $p\left(y_{t+h} \mid y_{t}, x_{t}\right)$ evaluated at the realized value of y_{t+h}. The out-of-sample statistics for model M_{j} are computed as
\[

$$
\begin{aligned}
R^{2} & =1-\frac{M S E^{j}}{M S E^{0}} \\
\triangle M A E & =\frac{1}{N} \sum_{i=1}^{N}\left(\left|\epsilon_{i}^{0}\right|-\left|\epsilon_{i}^{j}\right|\right), \\
\triangle R M S E & =\sqrt{M S E^{0}}-\sqrt{M S E^{j}}, \\
M S E-T & =\sqrt{(N-1) / N} \times\left[\frac{\bar{d}}{\hat{s e}(\bar{d})}\right], \\
A P L & =\frac{1}{N} \sum_{i=1}^{N} \widetilde{p}_{i}\left(y_{t+h} \mid y_{t}, x_{t}\right) .
\end{aligned}
$$
\]

For all of the statistics, but the $M S E-T$, higher values indicate better performance of model M_{j} relative to the benchmark AR(2) model. For the MSE-T statistic, the lower the values, the better the performance of model M_{j} relative to M_{0}.

The Bayesian semiparametric selection and the spike and slab priors provide probabilities of each variable being included in the "true" model. Comparison of these probabilities for each of the 183 variables would be interesting, however it is not implemented here for the sake of brevity. Table 1 shows the values of forecast metrics presented above, coming from the three shrinkage methods, namely the Bayesian semiparametric selection (BSS), the spike and slab (SnS) and the principal component analysis (PCA). The results suggest that semiparametric variable selection does outperform in most instances parametric variable selection in terms of forecast error ($R^{2}, D M A E, D R M S E, M S E-T$). When the whole predictive distribution is considered (predictive likelihood, $A P L$) the more parsimonious parametric variable selection is superior. Using the semiparametric prior to account for possible correlations in the data is beneficial when forecasting the mean, however this comes at the cost of having to sample more parameters and hence increasing the variance of the predictive density.

One way to reduce the larger variance of the predictive density is to use more informative priors to sample τ^{2}, α and π. Additionally, restrictions could be imposed on the number of mixture components sampled. When using the Dirichlet process an unknown number of mixtures is assumed, leading the algorithm to sample as many as 28 mixture components for the prior in equations (3)-(5), regardless that most of them contain no elements. A simple restriction which will make the
variable selection algorithm more efficient is to restrict the maximum number of components that can be sampled.

Although the parametric spike and slab prior does not perform better than the benchmark $\operatorname{AR}(2)$ model for CPI inflation, both variable selection algorithms are performing better than the principal component forecasts. It is quite surprising that principal component forecasts are performing so poorly. A potential explanation is that for most of the evaluation period the number of predictors (183) are more than the number of observations (102 initial observations up to 205 final observations), hence the principal component estimates are not consistent estimates of the true factors. Examining this issue is beyond the purpose of this short note.

	Results for CPI			Results for GDP		
	BSS	SnS	PCA	BSS	SnS	PCA
		$h=1$			$h=1$	
R^{2}	0.5712	-0.3000	-0.6657	0.2064	0.2164	0.0742
$D M A E$	0.0853	-0.0370	-0.1425	0.0174	0.0089	-0.0001
$D R M S E$	0.1928	-0.0783	-0.1624	0.0655	0.0683	0.0226
$M S E-T$	0.4993	0.8744	1.3946	0.5342	0.4921	0.4520
$A P L$	0.2904	0.3476	0.3397	0.3076	0.3665	0.2470
		$h=2$			$h=2$	
R^{2}	0.4554	-0.0683	-0.7520	0.1496	0.0536	0.0193
$D M A E$	0.0473	-0.1281	-0.1956	0.0102	-0.0113	0.0027
$D R M S E$	0.1640	-0.0210	-0.2028	0.0501	0.0175	0.0063
$M S E-T$	0.6591	0.7470	1.4938	0.3666	0.3040	0.1079
$A P L$	0.2926	0.3551	0.3339	0.3068	0.3652	0.2488
		$h=3$			$h=3$	
R^{2}	0.3996	-0.3675	-1.0306	0.1149	-0.0417	-0.0805
$D M A E$	0.0134	-0.1813	-0.2174	0.0008	-0.0234	-0.0193
$D R M S E$	0.1242	-0.0929	-0.2340	0.0442	-0.0154	-0.0295
$M S E-T$	0.9057	1.1140	1.5045	0.1849	0.4247	0.1159
$A P L$	0.2942	0.3453	0.3304	0.3014	0.3285	0.2436
		$h=4$			$h=4$	
R^{2}	0.3166	-0.6415	-1.2486	-0.0692	-0.3319	-0.1328
$D M A E$	-0.0101	-0.2278	-0.2399	-0.0609	-0.1014	-0.0367
$D R M S E$	0.0906	-0.1474	-0.2602	-0.0290	-0.1311	-0.0546
MSE-T	0.9318	1.4330	1.6545	-0.2625	0.2310	-0.2514
$A P L$	0.2926	0.3582	0.3361	0.2808	0.2895	0.2339

Table 1: Forecasting results

4 Conclusions

This paper presents a Bayesian prior which allows for shrinkage of coefficients in regressions with many highly correlated predictors, by selecting or restricting coefficients in groups. In a forecasting exercise involving short-term predictions of price inflation and output, this Bayesian algorithm gives considerably better results than a Bayesian prior which does not account for the correlation in exogenous predictors. Additionally, forecasts are superior to a benchmark AR(2) model, and principal component shrinkage.

References

[1] Cremers, M. (2002). Stock return predictability: A Bayesian model selection perspective. Review of Financial Studies 15, 1223-1249.
[2] Dunson, D. B., Herring, A. H. and Engel, S. M. (2008). Bayesian selection and clustering of polymorphisms in functionally related genes. Journal of the American Statistical Association, 103, 534-546.
[3] Fernandez, C., Ley, E. and Steel, M. F. J. (2001). Benchmark priors for Bayesian model averaging. Journal of Econometrics, 100, 381-427.
[4] George, E. I., Sun, D. and S. Ni. (2008). Bayesian stochastic search for VAR model restrictions. Journal of Econometrics, 142, 553-580.
[5] Koop, G. and Korobilis, D. (2012). Forecasting inflation using dynamic model averaging. International Economic Review, 53, 867-886.
[6] Korobilis, D. (2012). VAR forecasting using Bayesian variable selection. Journal of Applied Econometrics, forthcoming, doi: 10.1002/jae.1271.
[7] MacLehose, R. F., Dunson, D. B., Herring, A. H. and Hoppin, J. A. (2007). Bayesian Methods for Highly Correlated Exposure Data. Epidemiology 18, 199207.
[8] Mitchell, T. J. and Beauchamp, J. J. (1988). Bayesian variable selection in linear regression. Journal of the American Statistical Association, 83, 1023-1032.
[9] Stock, J. H. and Watson, M. W. (1999). Forecasting inflation. Journal of Monetary Economics 44, 293-335.
[10] Stock, J. H. and Watson, M. W. (2002). Macroeconomic forecasting using diffusion indexes. Journal of Business and Economic Statistics, 20, 147-162.
[11] Wright, J. H. (2008). Bayesian model averaging and exchange rate forecasts. Journal of Econometrics 146, 329-341.

A Technical Appendix

The model is of the form

$$
y_{t}=x_{t} \beta+\varepsilon_{t},
$$

with the usual assumptions of normality and heteroskedasticity ${ }^{4}$. Here β is of dimension $(K \times 1)$ and I make the assumption that all K elements are subject to the semiparametric selection prior. In the empirical section I have also an intercept γ and lag coefficients φ which are always unrestricted. These admit noninformative priors as in the main text but I ignore them here, because the posterior for β is quite messy (notationally), so adding also γ and φ would make the formulas below more awkward to read. In practice it is straightforward to augment the formulas presented below in order to draw altogether (γ, φ, β) from a multivariate normal.

I rewrite the priors used in the main passage compactly for convenience. For the regression coefficients β I use a nonparametric multiple shrinkage prior of the form

$$
\begin{align*}
\beta_{j} & \sim \pi \delta_{0}(\beta)+(1-\pi) G \tag{A.1}\\
G & \sim D P\left(\alpha G_{0}\right) \tag{A.2}\\
G_{0} & \sim N\left(\underline{\mu}, \tau^{2}\right) \tag{A.3}\\
\tau^{2} & \sim \operatorname{iGamma}\left(\underline{a}_{1}, \underline{a}_{2}\right) \tag{A.4}\\
\alpha & \sim \operatorname{Gamma}\left(\underline{\rho}_{1} \underline{\rho}_{2}\right) \tag{A.5}\\
\pi & \sim \operatorname{Beta}(\underline{c}, \underline{d}) \tag{A.6}
\end{align*}
$$

where in this paper $\mu=0$. For the error variance σ^{2} I use a noninformative inversegamma prior of the form

$$
\begin{equation*}
\sigma^{2} \sim i \operatorname{Gamma}\left(\underline{v}_{1}, \underline{v}_{2}\right), \tag{A.7}
\end{equation*}
$$

where the "noninformativeness" comes when $\underline{v}_{1}, \underline{v}_{2} \rightarrow 0$. When using Dirichlet process priors it is always helpful to derive the simple stick breaking representation of the coefficient β_{j} conditional on β_{-j} (and marginalized over the uncertain nonparametric density $G)^{5}$. This is of the form

$$
\begin{equation*}
\left(\beta_{j} \mid \beta_{-j}\right) \sim \frac{\alpha(1-\pi)}{\alpha+K-p_{\beta_{1}}-1} N\left(\underline{\mu}, \tau^{2}\right)+\pi \delta_{0}(\beta)+\sum_{l=2}^{k_{\beta}} \frac{p_{\beta_{l}}(1-\pi)}{\alpha+K-p_{\beta_{1}}-1} \delta_{\beta_{l}}(\beta) \tag{A.8}
\end{equation*}
$$

[^2]where k_{β} is the number of atoms in the above equation (number of mixture components plus the $\delta_{\beta}(0)$ component), and $p_{\beta_{n}}$ is the number of elements of the vector β which which are equal to $\delta_{\beta_{l}}(\beta), n=1,2, \ldots, k_{\beta}$, where it holds that $\delta_{\beta_{1}}(\beta)=\delta_{0}(\beta)$. Additionally, for notational convenience define the prior weights as
\[

$$
\begin{aligned}
w_{0} & =\frac{\alpha(1-\pi)}{\alpha+K-p_{\beta_{1}}-1} \\
w_{1} & =\pi \\
w_{l} & =\frac{p_{\beta_{l}}(1-\pi)}{\alpha+K-p_{\beta_{1}}-1}, l=2, \ldots, k_{\beta} .
\end{aligned}
$$
\]

Gibbs sampling algorithm for Bayesian clustering and selection:

- Given k_{β} number of mixture components, sample $\theta=\left(\theta_{1}, \ldots, \theta_{k_{\beta}}\right)$ from

$$
(\theta \mid-) \sim N\left(E_{\theta}, V_{\theta}\right),
$$

with $E_{\theta}=V_{\theta}\left(T^{-1} M+\sigma^{-2} X_{\pi}^{\prime} \widehat{Y}\right)$ and $V_{\beta}=\left(T^{-1}+\sigma^{-2} X_{\pi}^{\prime} X_{\pi}\right)^{-1}$, where $T=$ $\tau^{2} I_{k_{\beta}}$ and $M=\mu \mathbf{1}_{k_{\beta}}$. Here X_{π}^{\prime} denotes the matrix X with the columns corresponding to coefficients belonging to θ_{1} being replaced with zeros (or equivalently, with these columns removed). Hence the remaining columns correspond to unrestricted coefficients which belong to one of the remaining $k_{\beta}-1$ mixture components.

- Sample β_{j} conditional on β_{-j}, data, and other model parameters for $j=1, \ldots, K$ from

$$
\left(\beta_{j} \mid \beta_{-j},-\right) \sim \bar{w}_{0} N\left(E_{\beta}, V_{\beta}\right)+\sum_{l=1}^{k_{\beta}} \bar{w}_{l} \theta_{l},
$$

so that with probability \bar{w}_{l} we assign β_{j} equal to the atom of mixture component l (i.e. $\beta_{j}=\theta_{l}$), while with probability \bar{w}_{0} we assign β_{j} to a new $N\left(E_{\beta}, V_{\beta}\right)$ component. In the expression above it holds that

$$
\begin{aligned}
& E_{\beta}=V_{\beta}\left(\tau^{-2} \underline{\mu}+\sigma^{-2} X^{\prime} \widetilde{Y}\right) \\
& V_{\beta}=\left(\tau^{-2}+\sigma^{-2} X^{\prime} X\right)^{-1}
\end{aligned}
$$

and that

$$
\begin{aligned}
\bar{w}_{0} & \propto \frac{w_{0} N\left(0 ; \underline{\mu}, \tau^{2}\right) \prod_{i=1}^{T} N\left(\widetilde{y}_{t} ; 0, \sigma^{2}\right)}{N\left(0 ; E_{\beta}, V_{\beta}\right)} \\
\bar{w}_{l} & \propto w_{l} N\left(0 ; \underline{\mu}, \tau^{2}\right) \prod_{i=1}^{T} N\left(\widetilde{y}_{t} ; x_{t, l} \theta_{l}, \sigma^{2}\right), l=1, \ldots, k_{\beta}
\end{aligned}
$$

where $\widetilde{y}_{t}=y_{t}-\sum_{j^{\prime} \neq j} x_{t, j^{\prime}} \beta_{j^{\prime}}=y_{t}-\left(x_{\pi}\right)_{t} \theta+x_{j^{\prime}, t} \beta_{j^{\prime}}$ for $j, j \prime=1, \ldots, K,\left(x_{\pi}\right)_{t}$ is the t-th observation of the matrix X_{π} constructed in step 1 , and $N(a ; b, c)$ denotes the normal density with mean b and variance c, evaluated at point a.

- Introduce an indicator variable $S_{\beta}=l$ if the coefficient β_{j} belongs to cluster l, where $j=1, \ldots, K$ and $l=1, \ldots, k_{\beta}$, in which case it holds that $\beta_{j}=\theta_{l}$. In addition, set $S_{\beta}=0$ if $\beta_{j} \neq \theta_{l}$, that is when β_{j} does not belong to a preassigned cluster and a new cluster is introduced for this coefficient. Then the conditional posterior of S_{β} is

$$
\left(S_{\beta} \mid-\right) \sim \text { Multinomial }\left(0,1, \ldots, k_{\beta} ; \bar{w}_{0}, \bar{w}_{1}, \ldots, \bar{w}_{k_{\beta}}\right) .
$$

- Sample the restriction probability π from the coniditional distribution

$$
(\pi \mid-) \sim \operatorname{Beta}\left(\underline{c}+\sum_{j=1}^{K} I\left(S_{\beta}=1\right), d+\sum_{j=1}^{K} I\left(S_{\beta} \neq 1\right)\right)
$$

- Sample the latent variable η from the posterior conditional

$$
(\eta \mid-) \sim \operatorname{Beta}\left(a+1, K-\sum_{j=1}^{K} I\left(S_{\beta}=1\right)\right) .
$$

- Sample the Dirichlet process precision coefficient α from the conditional posterior

$$
\begin{aligned}
(\alpha \mid-) \sim & \pi_{\eta} \operatorname{Gamma}\left(\underline{\rho}_{1}+k_{\beta}-n_{S_{\beta}=1}, \underline{\rho}_{2}-\log \eta\right)+ \\
& \left(1-\pi_{\eta}\right) \operatorname{Gamma}\left(\underline{\rho}_{1}+k_{\beta}-n_{S_{\beta}=1}-1, \underline{\rho}_{2}-\log \eta\right)
\end{aligned}
$$

where the weight π_{η} is given by

$$
\frac{\pi_{\eta}}{1-\pi_{\eta}}=\frac{\underline{\rho}_{1}+k_{\beta}-n_{S_{\beta}=1}-1}{\left(K-\sum_{j=1}^{K} I\left(S_{\beta}=1\right)\right)\left(\underline{\rho}_{2}-\log \eta\right)},
$$

and $n_{S_{\beta}=1}=1$ if $\sum_{j=1}^{K} I\left(S_{\beta}=1\right)>0$, and it is 0 otherwise (i.e. when no coefficient β_{j} is restricted).

- Sample the variance τ^{2} coefficient from the conditional density

$$
\left(\tau^{2} \mid-\right) \sim i \operatorname{Gamma}\left(\underline{a}_{1}+\frac{1}{2}\left(k_{\beta}-1\right), \underline{a}_{2}^{-1}+\frac{1}{2} \sum_{l=2}^{k_{\beta}}\left(\theta_{l}-\underline{\mu} \mathbf{1}\right)^{2}\right) .
$$

B Data Appendix

The dataset is from Robert G. King and Mark W. Watson (2012), "Inflation and Unit Labor Cost", unpublished manuscript, and can be found on the link (as of May 2012): http:/ /www.princeton.edu/ ~mwatson/ ddisk/ gerz_25_jan_2012.zip. The data series have been downloaded by these authors from St. Louis FRED, and all series span the period 1959.Q1-2011.Q2.

All variables are transformed to be approximate stationary. In particular, if $z_{i, t}$ is the original untransformed series, the transformation codes are (column Tcode below): 1 - no transformation (levels), $x_{i, t}=z_{i, t} ; 2$ - first difference, $x_{i, t}=z_{i, t}-z_{i, t-1}$; 4-logarithm, $x_{i, t}=\ln z_{i, t} ; 5$ - first difference of logarithm, $x_{i, t}=\ln \left(z_{i, t} / z_{i, t-1}\right) ; 6$ second difference of logarithm, $x_{i, t}=\ln \left(z_{i, t} / z_{i, t-1}\right)-\ln \left(z_{i, t-1} / z_{i, t-2}\right)$.

No	Mnemonic	Long Desc.	Tcode
1	INDPRO	Industrial Production: Total index	5
2	IPFINAL	Industrial Production: Final Products (Market Group)	5
3	IPCONGD	Industrial Production: Consumer goods	5
4	IPMAT	Industrial Production: Materials	5
5	IPDMAT	Industrial Production: Durable Materials	5
6	IPNMAT	Industrial Production: nondurable Materials	5
7	MCUMFN	Capacity Utilization: Manufacturing	1
8	IPDCONGD	Industrial Production: Durable Consumer Goods	5
9	IP.B51110.S	Industrial Production: Automotive products	5
10	IPNCONGD	Industrial Production: Nondurable Consumer Goods	5
11	IPBUSEQ	Industrial Production: Business Equipment	5
12	IP.B51220.S	Industrial Production: Consumer Energy Products	5
13	MANEMP	All Employees: Manufacturing	5
14	PAYEMS	Total Nonfarm Payrolls: All Employees	5
15	SRVPRD	All Employees: Service-Providing Industries	5
16	USGOOD	All Employees: Goods-Producing Industries	5
17	USGOVT	All Employees: Government	5
18	USPRIV	All Employees: Total Private Industries	5
19	CES9091000001	All Employees: Federal	5
20	CES9092000001	All Employees: State government	5
21	CES9093000001	All Employees: Local government	5
22	DMANEMP	All Employees: Durable Goods Manufacturing	5
23	NDMANEMP	All Employees: Nondurable Goods Manufacturing	5
24	USCONS	All Employees: Construction	5
25	USEHS	All Employees: Education \& Health Services	5
26	USFIRE	All Employees: Financial Activities	5
27	USINFO	All Employees: Information Services	5
28	USLAH	All Employees: Leisure \& Hospitality	5
29	USMINE	All Employees: Natural Resources \& Mining	5
30	USPBS	All Employees: Professional \& Business Services	5
31	USSERV	All Employees: Other Services	5
32	USTPU	All Employees: Trade, Transportation \& Utilities	5
33	USTRADE	All Employees: Retail Trade	5
34	USWTRADE	All Employees: Wholesale Trade	5
			5

35	CE160V	Emp Total (Household Survey)	5
36	CLF16OV	Civilian Labor Force	5
37	LNS11300000	LaborForce Participation Rate (16 Over) SA	2
38	UNRATE	Unemployment Rate	2
39	URATE_ST	Unrate Short Term (<27 weeks)	2
40	URATE_LT	Unrate Long Term ($>=27$ weeks)	2
41	LNS14000012	Unemployment Rate - 16-19 yrs	2
42	LNS14000025	Unemployment Rate - 20 yrs. \& over, Men	2
43	LNS14000026	Unemployment Rate - 20 yrs. \& over, Women	2
44	UEMPLT5	Number Unemployed for Less than 5 Weeks	5
45	UEMP5TO14	Number Unemployed for 5-14 Weeks	5
46	UEMP15T26	Civilians Unemployed for 15-26 Weeks	5
47	UEMP27OV	Number Unemployed for 27 Weeks \& over	5
48	LNS12032194	Employment Level - Part-Time for Economic Reasons, All Industries	5
49	AWHMAN	Average Weekly Hours: Manufacturing	1
50	AWOTMAN	Average Weekly Hours: Overtime: Manufacturing	2
51	A0M046	Index of Help-Wanted Advertising in Newspapers	1
52	HOUST	Housing Starts: Total: New Privately Owned Housing Units Started	5
53	HOUST5F	Privately Owned Housing Starts: 5-Unit Structures or More	5
54	HOUSTMW	Housing Starts in Midwest Census Region	5
55	HOUSTNE	Housing Starts in Northeast Census Region	5
56	HOUSTS	Housing Starts in South Census Region	5
57	HOUSTW	Housing Starts in West Census Region	5
58	PERMIT	New Private Housing Units Authorized by Building Permit	5
59	A0M007	Mfrs' new orders durable goods industries (bil. chain 2000 \$)	5
60	A0M008	Mfrs' new orders, consumer goods and materials (mil. 1982 \$)	5
61	A1M092	Mfrs' unfilled orders durable goods indus. (bil. chain 2000 \$)	5
62	A0M032	Index of supplier deliveries - vendor performance (pct.)	1
63	A0M027	Mfrs' new orders, nondefense capital goods (mil. 1982 \$)	5
64	A0M070	Manufacturing and trade inventories (bil. Chain 2005 \$)	5
65	A0M057	Manufacturing and trade sales (mil. Chain 2005 \$)	5
66	A0M059	Sales of retail stores (mil. Chain 2000 \$)	5
67	PPIACO	Producer Price Index: All Commodities	6
68	WPU0561	Producer Price Index: Crude Petroleum	5
69	PPIFGS	Producer Price Index: Finished Goods	6
70	PPIFCF	Producer Price Index: Finished Consumer Foods	6
71	PPIFCG	Producer Price Index: Finished Consumer Goods	6
72	PPIIDC	Producer Price Index: Industrial Commodities	6
73	PPIITM	Producer Price Index: Intermediate Materials: Supplies \& Components	6
74	PSCCOM	Spot Market Price Index: BLS \& CRB: All Commodities (1967=100)	5
75	PMCP	NAPM Commodity Prices Index (\%)	1
76	CPIAUCSL	Consumer Price Index: All Items	6
77	CPILFESL	Consumer Price Index: All Items Less Food \& Energy	6
78	CES2000000008	Average Hourly Earnings: Construction	5
79	CES3000000008	Average Hourly Earnings: Manufacturing	5
80	AHETPI	Average Hourly Earnings: Total Private Industries	5
81	AAA	Moody's Seasoned Aaa Corporate Bond Yield	2
82	BAA	Moody's Seasoned Baa Corporate Bond Yield	2
83	FEDFUNDS	Effective Federal Funds Rate	2
84	CPF3M	3-Month AA Financial Commercial Paper Rate	2
85	CP90_Tbill	CP3FM-TB3MS	1

86	GS1	1-Year Treasury Constant Maturity Rate	2
87	GS10	10-Year Treasury Constant Maturity Rate	2
88	MORTG	30-Year Conventional Mortgage Rate	2
89	TB3MS	3-Month Treasury Bill: Secondary Market Rate	2
90	TB6MS	6-Month Treasury Bill: Secondary Market Rate	2
91	MED3	3-Month Eurodollar Deposit Rate (London)	2
92	MED3_TB3M	MED3-TB3MS (Version of TED Spread)	1
93	AAA_GS10	AAA-GS10 Spread	1
94	BAA_GS10	BAA-GS10 Spread	1
95	MRTG_GS10	MORTG-GS10 Spread	1
96	TB6M_TB3M	TB6M-TB3M Spread	1
97	GS1_TB3M	GS1-TB3M Spread	1
98	GS10_TB3M	GS10-TB3M Spread	1
99	BOGAMBSL	Board of Governors Monetary Base	5
100	BOGNONBR	Non-Borrowed Reserves of Depository Institutions	5
101	BUSLOANS	Commercial and Industrial Loans at All Commercial Banks	5
102	CONSUMER	Consumer (Individual) Loans at All Commercial Banks	5
103	IMFSL	Institutional Money Funds	5
104	M1SL	M1 Money Stock	5
105	M2SL	M2 Money Stock	5
106	MZMSL	MZM Money Stock	5
107	NONBORTAF	Non-Borrowed Reserves of Dep. Institutions + Term Auction Credit	5
108	NONREVSL	Total Nonrevolving Credit Outstanding	5
109	REALLN	Real Estate Loans at All Commercial Banks	5
110	TRARR	Board of Governors Total Reserves	5
111	TOTALSL	Total Consumer Credit Outstanding	5
112	FSPCOM	S\&P'S Common Stock Price Index: Composite (1941-43=10)	5
113	FSDJ	Common Stock Prices: Dow Jones Industrial Average	5
114	MVOL	VXO/VIX Index	1
115	TWEXMMTH	FRB Nominal Major Currencies Dollar Index	5
116	EXSZUS	Foreign Exchange Rate: Switzerland (Swiss Franc per U.S. \$)	5
117	EXJPUS	Foreign Exchange Rate: Japan ($¥$ per U.S. \$)	5
118	EXUSUK	Foreign Exchange Rate: United Kingdom (cents per $£$)	5
119	EXCAUS	Foreign Exchange Rate: Canada (Canadian \$ per U.S.\$)	5
120	U0M083	Consumer expectations (Copyright, University of Michigan)	1
121	DPIC96	Real Disposable Personal Income	5
122	FPIC96	Real Private Fixed Investment	5
123	GCEC96	Real Government Consumption Expenditures \& Gross Investment	5
124	GDPC96	Real Gross Domestic Product	5
125	GPDIC96	Real Gross Private Domestic Investment,	5
126	PCECC96	Real Personal Consumption Expenditures	5
127	NRIPDC96	Real Nonresidential Investment: Equipment \& Software	5
128	EXPGSC96	Real Exports of Goods \& Services	5
129	GRECPT	Government Current Receipts (Nominal)	5
130	FGCEC96	Real Federal Consumption Expenditures \& Gross Investment	5
131	IMPGSC96	Real Imports of Goods \& Services	5
132	PCDGCC96	Real Personal Consumption Expenditures: Durable Goods	5
133	PCESVC96	Real Personal Consumption Expenditures: Services	5
134	PCNDGC96	Real Personal Consumption Expenditures: Nondurable Goods	5
135	PNFIC96	Real Private Nonresidential Fixed Investment, 3 Decimal	5

136	PRFIC96	Real Private Residential Fixed Investment, 3 Decimal	5
137	SLCEC96	Real State \& Local Consumption Expenditures \& Gross Investment	5
138	CBIC96	Real Change in Private Inventories, 3 Decimal	5
139	CBIC96_GDP	Ch. Inv/GDP	1
140	OUTBS	Business Sector: Output	5
141	OUTNFB	Nonfarm Business Sector: Output	5
142	HOABS	Business Sector: Hours of All Persons	5
143	HOANBS	Nonfarm Business Sector: Hours of All Persons	5
144	PRS85006013	Nonfarm Business Sector: Employment	5
145	PCEPILFE	PCE: Chain-type Price Index Less Food \& Energy	6
146	PCEPI	PCE: Chain-type Price Index	6
147	PCED_G	PCE: Goods	6
148	PCED_DG	PCE: Durable Goods	6
149	PCED_NDG	PCE: Nondurable Goods	6
150	PCED_S	PCE: Services	6
151	PCED_SC	PCE: Household Consumption Expenditures (for Services)	6
152	PCED_MV	PCE: Motor Vehicles and Parts	6
153	PCED_DHE	PCE: Furnishings and Durable Household Equipment	6
154	PCED_REC	PCE: Recreational Goods and Vehicles	6
155	PCED_ODG	PCE: Other Durable Goods	6
156	PCED_FB	PCE: Food and Beverages Purchased for Off-Premises Cons.	6
157	PCED_APP	PCE: Clothing and Footwear	6
158	PCED_GAS	PCE: Gasoline and Other Energy Goods	6
159	PCED_ONG	PCE: Other Nondurable Goods	6
160	PCED_HU	PCE: Housing and Utilities	6
161	PCED_HC	PCE: Health Care	6
162	PCED_TRA	PCE: Transportation Services	6
163	PCED_RECS	PCE: Recreation Services	6
164	PCED_FS	PCE: Food Services and Sccommodations	6
165	PCED_INS	PCE: Financial Services and Insurance	6
166	PCED_OS	PCE: Other Services	6
167	GDPCTPI	Gross Domestic Product: Chain-type Price Index	6
168	GPDICTPI	Gross Private Domestic Investment: Chain-type Price Index	6
169	IPDBS	Business Sector: Implicit Price Deflator	6
170	COMPRNFB	Nonfarm Business Sector: Real Compensation Per Hour	5
171	RCPHBS	Business Sector: Real Compensation Per Hour	5
172	OPHNFB	Nonfarm Business Sector: Output Per Hour of All Persons	5
173	OPHPBS	Business Sector: Output Per Hour of All Persons	5
174	ULCBS	Business Sector: Unit Labor Cost	5
175	ULCNFB	Nonfarm Business Sector: Unit Labor Cost	5
176	UNLPNBS	Nonfarm Business Sector: Unit Nonlabor Payments	5
177	TTABSHNO	Total Tangible Assets - Balance Sheet of Households \& Nonprofits	5
178	TNWBSHNO	Total Net Worth - Balance Sheet of Households \& Nonprofits	5
179	NWORTH_PDI	Networth Relative to Personal Disp Income	1
180	TTABSHNO_ XEANSHNO	TTABSHNO-REANSHNO	5
181	REABSHNO	Real Estate - Assets - Balance Sheet of Households \& Nonprofits	5
182	TFAABSHNO	Total Financial Assets - Balance Sheet of Households \& Nonprofits	5
183	TLBSHNO	Total Liabilities - Balance Sheet of Households and Nonprofits	5
184	Liab_PDI	Liabilities Relative to Person Disp Income	5

[^0]: ${ }^{1}$ In the dataset used in this paper, the correlation coefficient of employment in durable goods and employment in nondurable goods manufacturing is 0.81 , while employment in durable goods and total industrial production have correlation of 0.84 .

[^1]: ${ }^{2}$ When forecasting inflation, output becomes a predictor and vice-versa.
 ${ }^{3}$ The final conclusions of this paper are not affected if a larger number of principal components is considered. The first principal component gives the lowest mean absolute error in most instances, although models with a larger number of principal components also achieve a larger value of the predictive likelihood.

[^2]: ${ }^{4}$ These assumptions need not hold. For the experienced Bayesian it is straightforward to derive the conditional posteriors with, say, Markov Switching dynamics, stochastic volatility, and Student-t errors.
 ${ }^{5}$ To establish some notation, β_{-j} denotes the vector β with its j-th element removed. In the following, $\delta_{x}(y)$ denotes the Dirac-delta function for random variable x which gives a point mass at y. Lastly, for a vector z_{t} define Z to be the matrix of all stacked z_{t}, for example for x_{t} we have $X=\left(x_{1}, \ldots, x_{T}\right)$.

