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Abstract

This paper considers Bayesian variable selection in regressions with a large
number of possibly highly correlated macroeconomic predictors. I show that by
acknowledging the correlation structure in the predictors can improve forecasts
over existing popular Bayesian variable selection algorithms.
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1 Introduction

Many empirical problems in economics involve regressions where many predictors
(possibly more than the number of available observations) are available, of which
only a limited set is relevant for forecasting and policy analysis. An integrated way
to deal with such demanding statistical inference is to use Bayesian simulation algo-
rithms to estimate posterior probabilities of importance of each economic predictor
based on evidence in the data. These algorithms perform variable selection (i.e. se-
lecting the predictors with probability higher than 0.5) as well as model averaging
(i.e. using all available predictors scaled by their respective probability). A popular
application of Bayesian variable selection and model averaging is in the problem
of identifying determinants of economic growth (Fernandez, Ley and Steel, 2001).
Other studies try to determine which macroeconomic fundamentals help predict
exchange rates (Wright, 2008), inflation (Koop and Korobilis, 2012), or which stock
market characteristics drive stock returns (Cremers, 2002).

The purpose of this paper is to evaluate variable selection and model averaging,
in the presence of many highly correlated predictors in forecasting regression mod-
els. In particular, I consider 183 quarterly macroeconomic predictors for forecasting
output and inflation, in a setting similar to the one used by authors such as Stock
and Watson (1999, 2002). Such datasets have many variables which are disaggre-
gates of major macroeconomic series, such as employment and industrial produc-
tion in different production sectors, or the various components of GDP. There can
be high correlation within a set of disaggregated series, but also between different
sets of series1.

Given this particular structure of the data, in this note I examine the properties
of the semiparametric variable selection prior proposed by Dunson et al. (2008)
which allows for simultaneous selection of important predictors and soft clustering
of predictors having similar impact on the variable of interest. This prior is a gener-
alization of the typical “spike and slab” priors used for Bayesian variable selection
and model averaging in the statistics literature; see George, Sun and Ni (2008) and
Korobilis (2012) for recent applications in economics. In an exercise involving fore-
casting short-run (up to four quarters) inflation and output with more predictors
than observations, I find that the semiparametric variable selection prior improves
over the more traditional spike and slab prior, and is superior to principal compo-
nents analysis for this particular problem.

The paper is structured as follows: Section 2 presents the model; Section 3 de-
scribes the dataset and forecasting results; Section 4 concludes.

1In the dataset used in this paper, the correlation coefficient of employment in durable goods and
employment in nondurable goods manufacturing is 0.81, while employment in durable goods and
total industrial production have correlation of 0.84.
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2 Methodology

2.1 Spike and slab priors for variable selection

The majority of empirical macroeconomic forecasting models involve estimating dy-
namic regressions of the form

yt+h = γ+
p

∑
i=1

ϕiyt−(i−1) + xtβ+ εt+h, (1)

where yt+h is the variable of interest which we want to forecast, yt−i+1 are the p
own lags of y for i = 1, ..., p, xt is a (K× 1) vector of exogenous predictors, and
εt+h is a Gaussian forecast error with zero mean and variance σ2. In the remainder
of this paper I assume that the intercept and two lags are always included in the
forecasting model. For that reason, the regression coefficients θ = (γ, ϕ1, ϕ2) as well
as the variance σ2 admit noninformative priors of the form

θ ∼ N (03×1, 100I3)

σ2 ∼ iGamma (0.01, 0.01) .

When K becomes “large”, Stock and Watson (2002) suggest to use shrinkage
based on replacing xt by its first few principal components, while other authors
(Cremers, 2002; Koop and Potter, 2004) stress the benefit of selecting the best, accord-
ing to some criterion, variables/predictors. Among several Bayesian algorithms de-
veloped, a popular method for variable selection is the spike and slab prior for the
coefficients β, which was formalized by Mitchell and Beauchamp (1988) and is of
the form

βj ∼ πδ0 (β) + (1− π)N
(

0, τ2
)

, (2)

where δa (v) is the Dirac delta function for random variable v which places all prob-
ability mass on the point a. Thus, the prior for βj, j = 1, ..., K, is a mixture of a point
mass at zero (the spike) and a locally uninformative (depending on how large the
value of τ2 is) Gaussian prior. The probabilities π are random variables updated
by the data and they determine whether the prior of βj is restricted to be zero, or
whether it comes from the unrestricted Gaussian density with variance τ2. As is
the case with other popular model selection and averaging priors (for instance the
g-prior; see Koop and Potter, 2004), this prior does not explicitly model the correla-
tion structure in the data when determining which variables are restricted to enter
the regression. In fact, in many cases authors orthogonalize their predictors xt in
order to speed-up convergence of the posterior sampling algorithm, thus ignoring
completely correlations.
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2.2 Semiparametric spike and slab prior

Given the considerations above, and the structure of the datasets customarily used
by macroeconomists, the simple spike and slab prior can be reformulated in order
to account for correlations in the data. An interesting extension has been proposed
by Dunson et al. (2008); see also MacLehose et al. (2007). In these papers, the
coefficients β admit a prior of the form

βj ∼ πδ0 (β) + (1− π)G (3)

G ∼ DP (αG0) (4)

G0 ∼ N
(

0, τ2
)

. (5)

In this formulation G is a nonparametric density which follows a Dirichlet process
with base measure G0 and concentration parameter α. Usually G0 is chosen to be
a well-known density, for instance the Gaussian, making the prior an infinite mix-
ture of the densities G0. Hence, priors like this are “pseudo-nonparametric”, since
a parametric mixture of distributions is used to approximate the unknown density
G. In this case the base measure G0 is Gaussian with zero mean and variance τ2,
which is the typical conjugate prior distribution used on linear regression coeffi-
cients. Hence, this prior implies that each coefficient βj will either be restricted to 0
with probability π, or with probability (1− π)will come from a mixture of Gaussian
densities.

Thus, this prior allows for calculation of Bayesian posterior probabilities of the
hypothesis H0j : βj = 0 against H1j : βj 6= 0, while clustering the j’s for the non-
null predictors. The clustering effect comes as a property of the Dirichlet process:
βj’s coming from the same Gaussian mixture component, will share the same mean
and variance. As an example, consider coefficients βj, j = 1, ..., 6 which are distrib-
uted according to (β1, β3) ∼ N

(
0, 106), (β2, β4) ∼ N (0, 0.1) and (β5, β6) ∼ δ0. In

this specific example (β1, β3) are clustered together and come from a Gaussian with
variance 106, hence the posterior mean/median of these coefficients is close to the
value of the LS estimator. The second cluster consists of coefficients (β2, β4) which
have prior variance 0.1, hence their posterior median will be equivalent to a ridge
regression estimator. Finally, (β5, β6) are restricted to be zero, so that x5,t and x6,t
are completely irrelevant for forecasting yt+h. Hence, this example shows that this
prior is a hybrid of variable selection (coefficients restricted to be zero) and at the
same time shrinkage (coefficients shrunk towards, but not equal to, zero).

For the prior hyperparameters α, π, τ which show up in the hierarchical prior in
equations (3)-(5), I define further prior distributions in order to let the data deter-
mine their values. These hyperprior distributions are
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τ2 ∼ iGamma (0.01, 0.01) (6)
α ∼ Gamma (1, 2) (7)
π ∼ Beta (1, 1) , (8)

and the chosen hyperparameters are fairly uninformative. Estimation of the regres-
sion coefficients using the prior in equations (3)-(8) is implemented using Markov
Chain Monte Carlo methods which are described analytically in the Technical Ap-
pendix. After monitoring for convergence, the Gibbs sampler is run for 150,000
iterations after an initial burn-in period of 50,000 iterations.

3 Empirical Results

3.1 Forecast evaluation

I consider short-term forecasts, i.e. h = 1, 2, 3, 4 horizons ahead, of inflation (Con-
sumer Price Index: All Items) and output (Real Gross Domestic Product) using 183
predictors2. All data used are quarterly, seasonally adjusted and are observed for
the period 1959.Q1-2011.Q2. The Data Appendix contains a full description of all
variables and the relevant stationarity transformations used. 50% of the available
sample is used as the first estimation period, forecasts are calculated, then one ob-
servation is added at the end of the initial sample and estimation and forecasting is
repeated. This recursive forecasting procedure is followed until the whole sample
is exhausted.

Following standard practice, I use the model with no predictors (i.e. an autore-
gressive model with 2 lags and an intercept, estimated using diffuse priors) as a
benchmark model. Additionally, the regression model (1) with the 183 predictors
is estimated using the semiparametric variable selection prior (3)-(8), and the tradi-
tional spike and slab prior consisting of equations (2), (6) and (8). Lastly, I provide
forecasts from the regression model (1) where the 183 variables in xt are replaced
by the first principal component3 and a diffuse prior is used on all regression coef-
ficients (so that posterior and predictive means/medians are equivalent to the OLS
point estimates).

I use a large set of alternative measures of out-of-sample predictive ability. Let
N denote the number of observations in the out-of-sample evaluation period, and
denote the forecast errors of the benchmark AR(2) model M0 as ε0

i , and of model Mj

2When forecasting inflation, output becomes a predictor and vice-versa.
3The final conclusions of this paper are not affected if a larger number of principal components

is considered. The first principal component gives the lowest mean absolute error in most instances,
although models with a larger number of principal components also achieve a larger value of the
predictive likelihood.
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as ε
j
i, for i = 1, ..., N and j = 1, ..., G. Define MSEj = N−1 ∑N

i=1

(
ε

j
i

)2
(similarly for

MSE0), di = ε
j
i − ε0

i , and d = N−1 ∑N
i=1 di. Additionally denote by p̃ (yt+h|yt, xt) the

predictive likelihood, i.e. the value of the predictive density p (yt+h|yt, xt) evaluated
at the realized value of yt+h. The out-of-sample statistics for model Mj are computed
as

R2 = 1− MSEj

MSE0 ,

∆MAE =
1
N

N

∑
i=1

(∣∣ε0
i

∣∣− ∣∣∣εj
i

∣∣∣) ,

∆RMSE =
√

MSE0 −
√

MSEj,

MSE− T =
√
(N − 1) /N ×

 d

ŝe
(

d
)
 ,

APL =
1
N

N

∑
i=1

p̃i (yt+h|yt, xt) .

For all of the statistics, but the MSE− T, higher values indicate better performance
of model Mj relative to the benchmark AR(2) model. For the MSE-T statistic, the
lower the values, the better the performance of model Mj relative to M0.

The Bayesian semiparametric selection and the spike and slab priors provide
probabilities of each variable being included in the “true” model. Comparison of
these probabilities for each of the 183 variables would be interesting, however it is
not implemented here for the sake of brevity. Table 1 shows the values of forecast
metrics presented above, coming from the three shrinkage methods, namely the
Bayesian semiparametric selection (BSS), the spike and slab (SnS) and the principal
component analysis (PCA). The results suggest that semiparametric variable selec-
tion does outperform in most instances parametric variable selection in terms of
forecast error (R2, DMAE, DRMSE, MSE− T). When the whole predictive distrib-
ution is considered (predictive likelihood, APL) the more parsimonious parametric
variable selection is superior. Using the semiparametric prior to account for possible
correlations in the data is beneficial when forecasting the mean, however this comes
at the cost of having to sample more parameters and hence increasing the variance
of the predictive density.

One way to reduce the larger variance of the predictive density is to use more
informative priors to sample τ2, α and π. Additionally, restrictions could be im-
posed on the number of mixture components sampled. When using the Dirichlet
process an unknown number of mixtures is assumed, leading the algorithm to sam-
ple as many as 28 mixture components for the prior in equations (3)-(5), regardless
that most of them contain no elements. A simple restriction which will make the
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variable selection algorithm more efficient is to restrict the maximum number of
components that can be sampled.

Although the parametric spike and slab prior does not perform better than the
benchmark AR(2) model for CPI inflation, both variable selection algorithms are
performing better than the principal component forecasts. It is quite surprising that
principal component forecasts are performing so poorly. A potential explanation is
that for most of the evaluation period the number of predictors (183) are more than
the number of observations (102 initial observations up to 205 final observations),
hence the principal component estimates are not consistent estimates of the true
factors. Examining this issue is beyond the purpose of this short note.

Results for CPI Results for GDP
BSS SnS PCA BSS SnS PCA

h = 1 h = 1
R2 0.5712 -0.3000 -0.6657 0.2064 0.2164 0.0742
DMAE 0.0853 -0.0370 -0.1425 0.0174 0.0089 -0.0001
DRMSE 0.1928 -0.0783 -0.1624 0.0655 0.0683 0.0226
MSE− T 0.4993 0.8744 1.3946 0.5342 0.4921 0.4520
APL 0.2904 0.3476 0.3397 0.3076 0.3665 0.2470

h = 2 h = 2
R2 0.4554 -0.0683 -0.7520 0.1496 0.0536 0.0193
DMAE 0.0473 -0.1281 -0.1956 0.0102 -0.0113 0.0027
DRMSE 0.1640 -0.0210 -0.2028 0.0501 0.0175 0.0063
MSE− T 0.6591 0.7470 1.4938 0.3666 0.3040 0.1079
APL 0.2926 0.3551 0.3339 0.3068 0.3652 0.2488

h = 3 h = 3
R2 0.3996 -0.3675 -1.0306 0.1149 -0.0417 -0.0805
DMAE 0.0134 -0.1813 -0.2174 0.0008 -0.0234 -0.0193
DRMSE 0.1242 -0.0929 -0.2340 0.0442 -0.0154 -0.0295
MSE− T 0.9057 1.1140 1.5045 0.1849 0.4247 0.1159
APL 0.2942 0.3453 0.3304 0.3014 0.3285 0.2436

h = 4 h = 4
R2 0.3166 -0.6415 -1.2486 -0.0692 -0.3319 -0.1328
DMAE -0.0101 -0.2278 -0.2399 -0.0609 -0.1014 -0.0367
DRMSE 0.0906 -0.1474 -0.2602 -0.0290 -0.1311 -0.0546
MSE− T 0.9318 1.4330 1.6545 -0.2625 0.2310 -0.2514
APL 0.2926 0.3582 0.3361 0.2808 0.2895 0.2339

Table 1: Forecasting results
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4 Conclusions

This paper presents a Bayesian prior which allows for shrinkage of coefficients in
regressions with many highly correlated predictors, by selecting or restricting coef-
ficients in groups. In a forecasting exercise involving short-term predictions of price
inflation and output, this Bayesian algorithm gives considerably better results than
a Bayesian prior which does not account for the correlation in exogenous predic-
tors. Additionally, forecasts are superior to a benchmark AR(2) model, and principal
component shrinkage.
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A Technical Appendix

The model is of the form
yt = xtβ+ εt,

with the usual assumptions of normality and heteroskedasticity4. Here β is of di-
mension (K× 1) and I make the assumption that all K elements are subject to the
semiparametric selection prior. In the empirical section I have also an intercept γ
and lag coefficients ϕ which are always unrestricted. These admit noninformative
priors as in the main text but I ignore them here, because the posterior for β is quite
messy (notationally), so adding also γ and ϕ would make the formulas below more
awkward to read. In practice it is straightforward to augment the formulas pre-
sented below in order to draw altogether (γ, ϕ, β) from a multivariate normal.

I rewrite the priors used in the main passage compactly for convenience. For the
regression coefficients β I use a nonparametric multiple shrinkage prior of the form

βj ∼ πδ0 (β) + (1− π)G (A.1)

G ∼ DP (αG0) (A.2)

G0 ∼ N
(

µ, τ2
)

(A.3)

τ2 ∼ iGamma (a1, a2) (A.4)

α ∼ Gamma
(

ρ
1
, ρ

2

)
(A.5)

π ∼ Beta (c, d) , (A.6)

where in this paper µ = 0. For the error variance σ2 I use a noninformative inverse-
gamma prior of the form

σ2 ∼ iGamma (ν1, ν2) , (A.7)

where the “noninformativeness” comes when ν1, ν2 → 0. When using Dirichlet
process priors it is always helpful to derive the simple stick breaking representa-
tion of the coefficient βj conditional on β−j (and marginalized over the uncertain
nonparametric density G)5. This is of the form

(
βj|β−j

)
∼ α (1− π)

α+ K− pβ1
− 1

N
(

µ, τ2
)
+πδ0 (β) +

kβ

∑
l=2

pβl
(1− π)

α+ K− pβ1
− 1

δβl
(β) (A.8)

4These assumptions need not hold. For the experienced Bayesian it is straightforward to derive
the conditional posteriors with, say, Markov Switching dynamics, stochastic volatility, and Student-t
errors.

5To establish some notation, β−j denotes the vector β with its j-th element removed. In the fol-
lowing, δx (y) denotes the Dirac-delta function for random variable x which gives a point mass at
y. Lastly, for a vector zt define Z to be the matrix of all stacked zt, for example for xt we have
X = (x1, ..., xT).
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where kβ is the number of atoms in the above equation (number of mixture compo-
nents plus the δβ (0) component), and pβn

is the number of elements of the vector β
which which are equal to δβl

(β), n = 1, 2, ..., kβ, where it holds that δβ1
(β) = δ0 (β).

Additionally, for notational convenience define the prior weights as

w0 =
α (1− π)

α+ K− pβ1
− 1

w1 = π

wl =
pβl
(1− π)

α+ K− pβ1
− 1

, l = 2, ..., kβ.

Gibbs sampling algorithm for Bayesian clustering and selection:

• Given kβ number of mixture components, sample θ =
(

θ1, ..., θkβ

)
from

(θ|−) ∼ N (Eθ, Vθ) ,

with Eθ = Vθ

(
T−1M+ σ−2X′πŶ

)
and Vβ =

(
T−1 + σ−2X′πXπ

)−1, where T =

τ2 Ikβ
and M = µ1kβ

. Here X′π denotes the matrix X with the columns corre-
sponding to coefficients belonging to θ1 being replaced with zeros (or equiv-
alently, with these columns removed). Hence the remaining columns corre-
spond to unrestricted coefficients which belong to one of the remaining kβ − 1
mixture components.

• Sample βj conditional on β−j, data, and other model parameters for j = 1, ..., K
from (

βj|β−j,−
)
∼ w0N

(
Eβ, Vβ

)
+

kβ

∑
l=1

wlθl,

so that with probability wl we assign βj equal to the atom of mixture compo-
nent l (i.e. βj = θl), while with probability w0 we assign βj to a new N

(
Eβ, Vβ

)
component. In the expression above it holds that

Eβ = Vβ

(
τ−2µ+ σ−2X′Ỹ

)
Vβ =

(
τ−2 + σ−2X′X

)−1
,

and that

w0 ∝
w0N

(
0; µ, τ2

)
∏T

i=1 N
(
ỹt; 0, σ2)

N
(
0; Eβ, Vβ

)
wl ∝ wl N

(
0; µ, τ2

)
∏T

i=1 N
(

ỹt; xt,lθl, σ2
)

, l = 1, ..., kβ,
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where ỹt = yt − ∑j′ 6=j xt,j′βj′ = yt − (xπ)t θ + xj′,tβj′ for j, j′ = 1, ..., K, (xπ)t
is the t-th observation of the matrix Xπ constructed in step 1, and N (a; b, c)
denotes the normal density with mean b and variance c, evaluated at point a.

• Introduce an indicator variable Sβ = l if the coefficient βj belongs to cluster
l, where j = 1, ..., K and l = 1, ..., kβ, in which case it holds that βj = θl. In
addition, set Sβ = 0 if βj 6= θl, that is when βj does not belong to a preassigned
cluster and a new cluster is introduced for this coefficient. Then the conditional
posterior of Sβ is(

Sβ|−
)
∼ Multinomial

(
0, 1, ..., kβ; w0, w1, ..., wkβ

)
.

• Sample the restriction probability π from the coniditional distribution

(π|−) ∼ Beta
(

c+∑K
j=1 I

(
Sβ = 1

)
, d+∑K

j=1 I
(
Sβ 6= 1

))
• Sample the latent variable η from the posterior conditional

(η|−) ∼ Beta
(

a+ 1, K−∑K
j=1 I

(
Sβ = 1

))
.

• Sample the Dirichlet process precision coefficient α from the conditional pos-
terior

(α|−) ∼ πηGamma
(

ρ
1
+ kβ − nSβ=1, ρ

2
− log η

)
+(

1− πη

)
Gamma

(
ρ

1
+ kβ − nSβ=1 − 1, ρ

2
− log η

)
where the weight πη is given by

πη

1− πη
=

ρ
1
+ kβ − nSβ=1 − 1(

K−∑K
j=1 I

(
Sβ = 1

)) (
ρ

2
− log η

) ,

and nSβ=1 = 1 if ∑K
j=1 I

(
Sβ = 1

)
> 0, and it is 0 otherwise (i.e. when no

coefficient βj is restricted).

• Sample the variance τ2 coefficient from the conditional density

(
τ2|−

)
∼ iGamma

a1 +
1
2
(
kβ − 1

)
, a−1

2 +
1
2

kβ

∑
l=2

(
θl − µ1

)2

 .
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B Data Appendix

The dataset is from Robert G. King and Mark W. Watson (2012), “Inflation and Unit
Labor Cost”, unpublished manuscript, and can be found on the link (as of May
2012): http://www.princeton.edu/ ~mwatson/ ddisk/ gerz_25_jan_2012.zip. The
data series have been downloaded by these authors from St. Louis FRED, and all
series span the period 1959.Q1-2011.Q2.

All variables are transformed to be approximate stationary. In particular, if zi,t
is the original untransformed series, the transformation codes are (column Tcode
below): 1 - no transformation (levels), xi,t = zi,t; 2 - first difference, xi,t = zi,t − zi,t−1
; 4 - logarithm, xi,t = ln zi,t; 5 - first difference of logarithm, xi,t = ln (zi,t/zi,t−1); 6 -
second difference of logarithm, xi,t = ln (zi,t/zi,t−1)− ln (zi,t−1/zi,t−2).

No Mnemonic Long Desc. Tcode
1 INDPRO Industrial Production: Total index 5
2 IPFINAL Industrial Production: Final Products (Market Group) 5
3 IPCONGD Industrial Production: Consumer goods 5
4 IPMAT Industrial Production: Materials 5
5 IPDMAT Industrial Production: Durable Materials 5
6 IPNMAT Industrial Production: nondurable Materials 5
7 MCUMFN Capacity Utilization: Manufacturing 1
8 IPDCONGD Industrial Production: Durable Consumer Goods 5
9 IP.B51110.S Industrial Production: Automotive products 5
10 IPNCONGD Industrial Production: Nondurable Consumer Goods 5
11 IPBUSEQ Industrial Production: Business Equipment 5
12 IP.B51220.S Industrial Production: Consumer Energy Products 5
13 MANEMP All Employees: Manufacturing 5
14 PAYEMS Total Nonfarm Payrolls: All Employees 5
15 SRVPRD All Employees: Service-Providing Industries 5
16 USGOOD All Employees: Goods-Producing Industries 5
17 USGOVT All Employees: Government 5
18 USPRIV All Employees: Total Private Industries 5
19 CES9091000001 All Employees: Federal 5
20 CES9092000001 All Employees: State government 5
21 CES9093000001 All Employees: Local government 5
22 DMANEMP All Employees: Durable Goods Manufacturing 5
23 NDMANEMP All Employees: Nondurable Goods Manufacturing 5
24 USCONS All Employees: Construction 5
25 USEHS All Employees: Education & Health Services 5
26 USFIRE All Employees: Financial Activities 5
27 USINFO All Employees: Information Services 5
28 USLAH All Employees: Leisure & Hospitality 5
29 USMINE All Employees: Natural Resources & Mining 5
30 USPBS All Employees: Professional & Business Services 5
31 USSERV All Employees: Other Services 5
32 USTPU All Employees: Trade, Transportation & Utilities 5
33 USTRADE All Employees: Retail Trade 5
34 USWTRADE All Employees: Wholesale Trade 5
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35 CE160V Emp Total (Household Survey) 5
36 CLF16OV Civilian Labor Force 5
37 LNS11300000 LaborForce Participation Rate (16 Over) SA 2
38 UNRATE Unemployment Rate 2
39 URATE_ST Unrate Short Term (< 27 weeks) 2
40 URATE_LT Unrate Long Term (>= 27 weeks) 2
41 LNS14000012 Unemployment Rate - 16-19 yrs 2
42 LNS14000025 Unemployment Rate - 20 yrs. & over, Men 2
43 LNS14000026 Unemployment Rate - 20 yrs. & over, Women 2
44 UEMPLT5 Number Unemployed for Less than 5 Weeks 5
45 UEMP5TO14 Number Unemployed for 5-14 Weeks 5
46 UEMP15T26 Civilians Unemployed for 15-26 Weeks 5
47 UEMP27OV Number Unemployed for 27 Weeks & over 5
48 LNS12032194 Employment Level - Part-Time for Economic Reasons, All Industries 5
49 AWHMAN Average Weekly Hours: Manufacturing 1
50 AWOTMAN Average Weekly Hours: Overtime: Manufacturing 2
51 A0M046 Index of Help-Wanted Advertising in Newspapers 1
52 HOUST Housing Starts: Total: New Privately Owned Housing Units Started 5
53 HOUST5F Privately Owned Housing Starts: 5-Unit Structures or More 5
54 HOUSTMW Housing Starts in Midwest Census Region 5
55 HOUSTNE Housing Starts in Northeast Census Region 5
56 HOUSTS Housing Starts in South Census Region 5
57 HOUSTW Housing Starts in West Census Region 5
58 PERMIT New Private Housing Units Authorized by Building Permit 5
59 A0M007 Mfrs’ new orders durable goods industries (bil. chain 2000 $) 5
60 A0M008 Mfrs’ new orders, consumer goods and materials (mil. 1982 $) 5
61 A1M092 Mfrs’ unfilled orders durable goods indus. (bil. chain 2000 $) 5
62 A0M032 Index of supplier deliveries - vendor performance (pct.) 1
63 A0M027 Mfrs’ new orders, nondefense capital goods (mil. 1982 $) 5
64 A0M070 Manufacturing and trade inventories (bil. Chain 2005 $) 5
65 A0M057 Manufacturing and trade sales (mil. Chain 2005 $) 5
66 A0M059 Sales of retail stores (mil. Chain 2000 $) 5
67 PPIACO Producer Price Index: All Commodities 6
68 WPU0561 Producer Price Index: Crude Petroleum 5
69 PPIFGS Producer Price Index: Finished Goods 6
70 PPIFCF Producer Price Index: Finished Consumer Foods 6
71 PPIFCG Producer Price Index: Finished Consumer Goods 6
72 PPIIDC Producer Price Index: Industrial Commodities 6
73 PPIITM Producer Price Index: Intermediate Materials: Supplies & Components 6
74 PSCCOM Spot Market Price Index: BLS & CRB: All Commodities (1967=100) 5
75 PMCP NAPM Commodity Prices Index (%) 1
76 CPIAUCSL Consumer Price Index: All Items 6
77 CPILFESL Consumer Price Index: All Items Less Food & Energy 6
78 CES2000000008 Average Hourly Earnings: Construction 5
79 CES3000000008 Average Hourly Earnings: Manufacturing 5
80 AHETPI Average Hourly Earnings: Total Private Industries 5
81 AAA Moody’s Seasoned Aaa Corporate Bond Yield 2
82 BAA Moody’s Seasoned Baa Corporate Bond Yield 2
83 FEDFUNDS Effective Federal Funds Rate 2
84 CPF3M 3-Month AA Financial Commercial Paper Rate 2
85 CP90_Tbill CP3FM-TB3MS 1
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86 GS1 1-Year Treasury Constant Maturity Rate 2
87 GS10 10-Year Treasury Constant Maturity Rate 2
88 MORTG 30-Year Conventional Mortgage Rate 2
89 TB3MS 3-Month Treasury Bill: Secondary Market Rate 2
90 TB6MS 6-Month Treasury Bill: Secondary Market Rate 2
91 MED3 3-Month Eurodollar Deposit Rate (London) 2
92 MED3_TB3M MED3-TB3MS (Version of TED Spread) 1
93 AAA_GS10 AAA-GS10 Spread 1
94 BAA_GS10 BAA-GS10 Spread 1
95 MRTG_GS10 MORTG-GS10 Spread 1
96 TB6M_TB3M TB6M-TB3M Spread 1
97 GS1_TB3M GS1-TB3M Spread 1
98 GS10_TB3M GS10-TB3M Spread 1
99 BOGAMBSL Board of Governors Monetary Base 5
100 BOGNONBR Non-Borrowed Reserves of Depository Institutions 5
101 BUSLOANS Commercial and Industrial Loans at All Commercial Banks 5
102 CONSUMER Consumer (Individual) Loans at All Commercial Banks 5
103 IMFSL Institutional Money Funds 5
104 M1SL M1 Money Stock 5
105 M2SL M2 Money Stock 5
106 MZMSL MZM Money Stock 5
107 NONBORTAF Non-Borrowed Reserves of Dep. Institutions + Term Auction Credit 5
108 NONREVSL Total Nonrevolving Credit Outstanding 5
109 REALLN Real Estate Loans at All Commercial Banks 5
110 TRARR Board of Governors Total Reserves 5
111 TOTALSL Total Consumer Credit Outstanding 5
112 FSPCOM S&P’S Common Stock Price Index: Composite (1941-43=10) 5
113 FSDJ Common Stock Prices: Dow Jones Industrial Average 5
114 MVOL VXO/VIX Index 1
115 TWEXMMTH FRB Nominal Major Currencies Dollar Index 5
116 EXSZUS Foreign Exchange Rate: Switzerland (Swiss Franc per U.S. $) 5
117 EXJPUS Foreign Exchange Rate: Japan (=Y per U.S. $) 5
118 EXUSUK Foreign Exchange Rate: United Kingdom (cents per £) 5
119 EXCAUS Foreign Exchange Rate: Canada (Canadian $ per U.S.$) 5
120 U0M083 Consumer expectations (Copyright, University of Michigan) 1
121 DPIC96 Real Disposable Personal Income 5
122 FPIC96 Real Private Fixed Investment 5
123 GCEC96 Real Government Consumption Expenditures & Gross Investment 5
124 GDPC96 Real Gross Domestic Product 5
125 GPDIC96 Real Gross Private Domestic Investment, 5
126 PCECC96 Real Personal Consumption Expenditures 5
127 NRIPDC96 Real Nonresidential Investment: Equipment & Software 5
128 EXPGSC96 Real Exports of Goods & Services 5
129 GRECPT Government Current Receipts (Nominal) 5
130 FGCEC96 Real Federal Consumption Expenditures & Gross Investment 5
131 IMPGSC96 Real Imports of Goods & Services 5
132 PCDGCC96 Real Personal Consumption Expenditures: Durable Goods 5
133 PCESVC96 Real Personal Consumption Expenditures: Services 5
134 PCNDGC96 Real Personal Consumption Expenditures: Nondurable Goods 5
135 PNFIC96 Real Private Nonresidential Fixed Investment, 3 Decimal 5
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136 PRFIC96 Real Private Residential Fixed Investment, 3 Decimal 5
137 SLCEC96 Real State & Local Consumption Expenditures & Gross Investment 5
138 CBIC96 Real Change in Private Inventories, 3 Decimal 5
139 CBIC96_GDP Ch. Inv/GDP 1
140 OUTBS Business Sector: Output 5
141 OUTNFB Nonfarm Business Sector: Output 5
142 HOABS Business Sector: Hours of All Persons 5
143 HOANBS Nonfarm Business Sector: Hours of All Persons 5
144 PRS85006013 Nonfarm Business Sector: Employment 5
145 PCEPILFE PCE: Chain-type Price Index Less Food & Energy 6
146 PCEPI PCE: Chain-type Price Index 6
147 PCED_G PCE: Goods 6
148 PCED_DG PCE: Durable Goods 6
149 PCED_NDG PCE: Nondurable Goods 6
150 PCED_S PCE: Services 6
151 PCED_SC PCE: Household Consumption Expenditures (for Services) 6
152 PCED_MV PCE: Motor Vehicles and Parts 6
153 PCED_DHE PCE: Furnishings and Durable Household Equipment 6
154 PCED_REC PCE: Recreational Goods and Vehicles 6
155 PCED_ODG PCE: Other Durable Goods 6
156 PCED_FB PCE: Food and Beverages Purchased for Off-Premises Cons. 6
157 PCED_APP PCE: Clothing and Footwear 6
158 PCED_GAS PCE: Gasoline and Other Energy Goods 6
159 PCED_ONG PCE: Other Nondurable Goods 6
160 PCED_HU PCE: Housing and Utilities 6
161 PCED_HC PCE: Health Care 6
162 PCED_TRA PCE: Transportation Services 6
163 PCED_RECS PCE: Recreation Services 6
164 PCED_FS PCE: Food Services and Sccommodations 6
165 PCED_INS PCE: Financial Services and Insurance 6
166 PCED_OS PCE: Other Services 6
167 GDPCTPI Gross Domestic Product: Chain-type Price Index 6
168 GPDICTPI Gross Private Domestic Investment: Chain-type Price Index 6
169 IPDBS Business Sector: Implicit Price Deflator 6
170 COMPRNFB Nonfarm Business Sector: Real Compensation Per Hour 5
171 RCPHBS Business Sector: Real Compensation Per Hour 5
172 OPHNFB Nonfarm Business Sector: Output Per Hour of All Persons 5
173 OPHPBS Business Sector: Output Per Hour of All Persons 5
174 ULCBS Business Sector: Unit Labor Cost 5
175 ULCNFB Nonfarm Business Sector: Unit Labor Cost 5
176 UNLPNBS Nonfarm Business Sector: Unit Nonlabor Payments 5
177 TTABSHNO Total Tangible Assets - Balance Sheet of Households & Nonprofits 5
178 TNWBSHNO Total Net Worth - Balance Sheet of Households & Nonprofits 5
179 NWORTH_PDI Networth Relative to Personal Disp Income 1

180 TTABSHNO_
XEANSHNO TTABSHNO-REANSHNO 5

181 REABSHNO Real Estate - Assets - Balance Sheet of Households & Nonprofits 5
182 TFAABSHNO Total Financial Assets - Balance Sheet of Households & Nonprofits 5
183 TLBSHNO Total Liabilities - Balance Sheet of Households and Nonprofits 5
184 Liab_PDI Liabilities Relative to Person Disp Income 5
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