
1

Dynamic Accumulation in Bargaining Games

Francesca Flamini‡

Department of Economics
University of Glasgow

May 2002

Abstract: In many bargaining situations the decisions that parties take at one point in
time affect their future bargaining opportunities. We consider an ultimatum bargaining
game in which parties can decide not only how to share a current surplus but also how
much to invest in order to generate future surpluses. We show that there is a unique
Markov perfect equilibrium (MPE) in which a proposer consumes the whole surplus not
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1 Introduction

In many bargaining situations, the decisions that parties take at one point in time affect

the size of future surpluses. For instance, members of a household decide not only how

to allocate current consumption among themselves but also how much to save for

tomorrow’s consumption. Partners in a business need to agree how to share current

profits among themselves, and also whether and how any remaining profit should be re-

invested. Political parties attempt to find agreement over an issue by taking into account

the fact that their current decisions can increase goodwill and facilitate agreement over

issues in the future. Colluding firms can negotiate on how to share current profits

between themselves, while also investing in order to generate profits in the future.

                                                                
‡ I would like to thank Robert Evans, Campbell Leith, Chol-Won Li, Marco Mariotti and the participants
of the Applied Microeconomics Research Group at the University of Glasgow for very useful
suggestions. All errors remain mine.
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The aim of this paper is to investigate bargaining games characterised by a dynamic

accumulation problem, that is, players attempt to agree not only on how to share a

surplus but also on the level of investment, which will then affect the capital stock and

the amount of future surpluses. The capital stock we have in mind does not need to be

physical, but can simply reflect the value of the ongoing relationship itself (e.g., it can

represent goodwill generated by the agreement between political parties on some

issues). This implies that our framework can be applied to several bargaining situations.

A dynamic accumulation problem combined with a bargaining process is almost

unexplored in economics. As far as we know, only Muthoo (1999, section 10.3) has

considered the problem of an alternating bargaining process combined with a dynamic

accumulation game. However, he only analyses it as a possible application of an

infinitely repeated game in which two parties share an infinite series of cakes of

constant size (Muthoo, 1995). In other words, players do not choose how much to

invest, as this is exogenously given. For this reason, the problem of how much players

will invest in a bargaining game remains open.

We attempt to address this question, by analysing on an ultimatum bargaining

framework in which players are able to invest part of the surplus. By introducing the

possibility of accumulation, the game is modified in a non-trivial way, in particular, it

can be non-stationary (by stationary game we mean a game characterised by the same

subgame at specific nodes). This implies that the computation of an equilibrium is not

as simple as in the case of a stationary game. Moreover, there can be multiple equilibria

(indeterminacy of equilibria due to non-stationarity has been shown by, for instance,

Binmore, 1987).

The equilibrium concept on which we focus is the Markov subgame perfect

equilibrium (MPE). Following Fudenberg and Tirole (1990), an MPE is a subgame

perfect equilibrium in which players' strategies are restricted to depend on the past

history of play through the state variable (i.e., Markov strategies). In our case, the state

variable is the capital stock, kt (plus the rules of the game that define the identity of the

proposer). As Maskin and Tirole (2001) point out, this means that only those aspects of

the past that are significant should have an appreciable influence on behaviour.

Moreover, Markov strategies represent the simplest form of behaviour that is consistent

with rationality (Maskin and Tirole, 2001).

The main result of our analysis is that a unique MPE exists. This is characterised by

demands in which the proposer obtains the entire surplus not invested and invests more
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than his opponent would have done if he is sufficiently patient. Within an ultimatum

framework a proposer can focus on his intertemporal optimisation by recognising that in

the future he can propose again (with a positive probability and his opponent can

propose with the complementary probability). Indeed, an acceptance is always obtained,

when a rejection implies the end of the game. However, such an equilibrium is not

specific to ultimatum bargaining, and it can also be sustained under alternative

bargaining procedures (even, a potentially infinite bargaining stage, although in this

case other MPE may exist).

Moreover, we show that bargaining can lead to overinvestment. The intuition is that

since a proposer does not fear a rejection he can, to a large extent, fund the current level

of investment by reducing the responder’s level of consumption below the social

optimum. Additionally, the proposer’s intertemporal optimisation will also take into

account the fact that in the future his opponent enjoys a positive probability of being a

proposer such that the growth path may be different. Within the context of the social

planner’s problem the incentives are different for two reasons. First, both players share

the cost of the investment, second, they equally share the benefits of this investment.

This is why the investment path is lower.

In the following section the model is presented and solved. We then consider the

optimum for the social planner (in section 3). We discuss alternative bargaining

procedures in section 4 and a different equilibrium concept, that is, the stationary

subgame perfect equilibrium in section 5. Section 6 concludes this paper.

2 The Game

Two players (for instance, firms, political parties, members of a household, etc.), named

1 and 2, engage in the production of a surplus and its division between themselves. In

particular, having produced a surplus from a given capital stock, the two players bargain

on how much to invest and how to share the consumption of the remaining surplus

between themselves. The level of investment affects the future capital stock and

consequently, the surplus available in the following bargaining stage.

The game then consists of two distinct phases: a production and a bargaining stage.

Each phase can only start when the other has finished. A time period is indicated by t
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with t = 0, 1, …∞. During production, a surplus is generated according to the production

function F(kt) = kt
ρ, with 0 < ρ ≤ 1, where kt is the capital stock at period t. Once the

output is generated, F(kt), the bargaining stage begins, in which players attempt to

divide F(kt). We assume that the bargaining stage is characterised by an ultimatum

procedure. In the first period, t = 0, a bargaining stage starts. The surplus available is

F(k0) = F(1) = 1, by assumption. In general, in period t player 1 (2, respectively) can

become a proposer with probability p (1-p, respectively), with 0 < p < 1. A proposal by

player i is a pair (ixt, iIt), where iIt is the investment level proposed by i at time t and ixt

is the share demanded by i over the remaining surplus at time t. The proposal ixt, iIt

depends on capital, denoted by kt. Our notation is simplified, in the sense that the

subscript t indicates the capital stock at t, kt.

On the one hand, if the proposal is accepted, the bargaining stage ends and the

proposer’s current per-period utility is,

ui(ixt,iIt,kt) = [ixt(F(kt) - iIt)]1-η/(1-η), (1)

with 0 < η < 1. This is a general utility function: for η that goes to one, the per-period

utility function tends to the logarithmic case, while for η that tends to zero, the utility

becomes linear in consumption (the assumption of linear utility, η=0, common in

bargaining games, must be excluded for the existence of a solution of the intertemporal

optimisation problem, see Ljungqvist and Sargent, 2000). Production takes time, τ is the

interval of time required to generate surplus. Player i’s time preference is represented by

a between-cake discount factor αi = exp (-riτ), where ri is his discount rate. The output

available at the next bargaining stage (at t + 1) is F(kt+1), where kt+1 is the capital stock

in the next period and it is given by the agreed level of investment iIt and the capital

remaining after depreciation, kt+1 = iIt + (1-λ) kt, where λ is the depreciation rate (0 < λ

< 1).

On the other hand, if there is a rejection, the game finishes and the players get zero

payoffs. Therefore, in the case of rejection it is not only the surplus F(kt) that disappears

but also the capital stock kt. For instance, suppose that two colluding firms get zero

profits if they cease to collaborate. One reason could be that they compete à la Bertrand

and there is no second-hand market for kt. Then, if the firms do not have frequent

contacts, tacit collusion might be difficult to sustain. We can assume that as soon as one



5

of the colluding firms rejects a proposal, the collaborative relationship is compromised.

We can also think of the capital stock kt as not being physical but simply reflecting the

investment in the relationship itself. For instance, suppose in a country a dictatorial

regime has been just defeated. However, democracy is not well-established, and the new

political parties attempt to build it up. Then, if they do not reach an agreement quickly

on political issues, their political future can be completely compromised by a new

dictatorial regime.

The case in which, after a rejection, only the surplus at that stage disappears (F(kt)),

but not the capital (kt) is interesting but technically more demanding and we discuss it in

section 3. We now turn to discuss the MPE’s in the case in which a rejection implies the

end of the game.

2.1 The Equilibrium

First of all, if an MPE exists in this framework, it must be without delay (if an MPE

with delay is assumed to exist, then it can be shown that a profitable deviation exists, so

that the strategies which defined such a delay cannot sustain an MPE). Then, to define

an MPE, we need to solve the following problem. The proposer at time t, say i (with i

=1,2), must maximise his expected discounted utility, vi(kt), with respect to the share of

the surplus he demands for his consumption ixt and the amount of the surplus to be

invested iIt, with 0 ≤ ixt ≤ 1 and 0 ≤ iIt ≤ F(kt). Player i’s expected discounted utility at

time t is given by his current per-period utility, ui(ixt,iIt,kt), plus the future expected

utility, Es∑sαi
t+sui(zxt+s,zIt+s,kt+s), where the per-period utility ui(zxt+s,zIt+s,kt+s) is defined

in (1), with z proposing at t+s, z = 1,2 and s = 1,2,…. The expectation is taken with

respect to the probabilities of becoming a proposer at t+s. Since the identity of a

proposer at one point time affects the future investment strategies via the agreed level of

investment (and therefore the capital stock for next period), the explicit form of vi(kt) is

as follows,

1

2 1

1 2 \
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p

t t s t s

p t s t

h t s h h
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p s h h h
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∞ −
+

+ + + + + +
= = ∈

+ + −∑ ∑ ∏ (2)

where each element of a potential history ht, h, is equal to pi assuming player i proposes

and (1-pi) when player j is assumed to propose (except for the unique element of ht+1\ht,

that is 1 by assumption) for t =1, 2…∞. The potential history ht uniquely indicates the
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sequence of proposers to reach the node t from 1, where the nodes considered are only

the ones in which an offer is to be made. These are numbered sequentially from 1. At

each node there are two possibilities either i or j will propose next, in each period the

lowest number is given to the node where i will propose next. Accordingly, the product

of the elements of ht (∏h) gives the probability of reaching node t from node 1, while ht

as a superscript of kt indicates the actual history of proposals which defines the capital

stock at time t.

Similarly, the expected discounted utility of a responder who accepts player i’s

proposal (ixt, iIt), i.e., wi(kt), can be written in the following form,

1

2 1

1 2 \

( , , ) ( ) [ ( , , ) (1 ) ( , , )]
p

t t s t s

p t s t
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− +

∞ −
+

+ + + + + +
= = ∈

+ + −∑ ∑ ∏ (3)

Player i's proposal is accepted immediately if and only if the responder obtains at least

as much as he would get in the case of rejection, which is zero in this case (i.e., wj(kt) ≥

0). Then, a proposer maximisation problem is given by,

Since an MPE is characterised by a time invariant rule mapping the state variable kt into

the decision variables ixt and iIt, then the problem can be written in a recursive form (the

Bellman equation). A proposer's optimisation problem becomes,
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where Vi(kt) is the optimum vi(kt) or value function, and Wi(kt) is the optimal expected

utility when player i is a responder, wi(kt). Condition (5) guarantees that the proposal at

time t is accepted immediately. However, this is always satisfied since ixt belongs to

[0,1] and iIt to [0, kt]. The indifference conditions are important instruments in deriving

the solution of bargaining problems with a stationary structure. In our (non-stationary)

game, the indifference conditions, which are (5) as an equality, cannot hold (unless the

between cake discount factors αi are zero). When there is accumulation a responder is

able to obtain a positive surplus at some point in the future, and therefore his optimal

expected utility Wi(kt) can be strictly positive 1.

Since any investment decision made by a player at time t, affects the whole stream of

future profits (by the equation of motion), the bargaining stages are strongly

interconnected even within a simplified bargaining structure such as the ultimatum

framework. Given the ultimatum structure, the focus is on an MPE in which a proposer

is able to consume the whole portion of the surplus not invested, in other words a

proposer’s optimisation problem is as follows,

1

1 1
0

( ( ) )
( ) max ((1 ) ( ) ( )) with

1i t t

t i t
i t i i i t i i t

I k

F k I
V k p W k pV k

η

α
η

−

+ +
≤ ≤

−
= + − +

−
(6)

1 (1 )    in case of acceptance and 0 otherwiset t i tk Ik λ+ = − + (7)

To solve the problem we use the guess and verify method. This consists in ‘guessing’

the form of the value function but leaving the coefficients undetermined, and then

‘verifying the guess’ by showing that there are values of the coefficients that make the

guess correct. The guess and verify method relies on the uniqueness of the solution.

This is ensured by the assumption of concave utility functions, a linear production

function (F(kt) = kt) and a linear equation of motion (see Stokey, Lucas and Prescott,

1993 or Levhari and Srinivasant, 1969). Our ‘guess’ is that the value function is a

function of the capital stock of the same form as the utility function. Then the players'

optimisation problem can be written as follows,

φi kt
1-η /(1-η) = max ict

1-η/(1-η) + αi β i kt+1
1-η /(1-η) w.r.t. ict, (8)

                                                                
1 In our framework, the equilibrium shares ixt cannot be larger than one. In other words, we exclude the
case in which a proposer can extract all his opponent’s expected discounted utility in the case of
acceptance, Wj(kt). This case, even though interesting, complicates the analysis, because it requires
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where kt+1 = kt(2 - λ) – ict if there is an acceptance, 0 otherwise. (9)

β i = piφi + (1- pi) µi (10)

with ict equal to the consumption level proposed by player i (i.e., kt - iIt) and pj = 1 – pi,

pi in [0,1], with i = 1, 2. The coefficients φi and µi, and consequently β i with i =1,2, are

undefined at this point. The expected maximum discounted utility of a responder at time

t, µi kt
1-η /(1-η) is given by,

µi kt
1-η /(1-η) = 0 + αi [(1- pi) µi/(1-η) + piφi /(1 - η)] (ϕj

 kt) 1-η (11)

where ϕj kt is the capital stock at time t +1, after player j has been a proposer at time t.

The FOC for the problem (8) – (10) is the following,

ict
-η - αi β i (kt (2-λ) – ict)-η = 0, (12)

which implies,

ict  = (2-λ) kt /(1 + αi 1/ηβ i
1/η). (13)

Optimal consumption is a linear function of the capital stock. Moreover, if the expected

utility in the continuation game (αi β i) is higher for a given level of capital stock, a

proposer consumes less and invests more. Using (13), the equation of motion can be

written as,

kt+1  = ϕi
 kt, where ϕi = (2-λ) αi 1/ηβ i

1/η/(1 + αi 1/ηβ i
1/η). (14)

After the guess, it is necessary to verify that there is a solution for the coefficients, φi,

µi such that they are well defined. By using (13), (10) and (11) are two equations in the

two undefined coefficients, φi and µi. Then, if there is a solution to this system, the

guess was right and the verification phase ends. The solution of the system (10) and

(11) also gives the optimal investment path. Moreover, this solution is unique. We show

                                                                                                                                                                                             
another state variable apart from the capital stock to keep track of the responder’s expected payoff before
making an offer.
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the conditions under which the solution exists. This is sufficient to complete the

verification.

The solution to the problem is completed with another constraint, the so-called

transversality condition, which imposes that at the limit as t tends to zero the utility

value of the discounted capital stock (αi
t kt  dVi(kt)/dkt) goes to zero (the transversality

condition corresponds to a first-order condition ‘at infinity’). This is as follows,

lim (αi)tφi
 kt

1-η = 0 as t → ∞ for any i = 1,2. (15)

The solution to the problem (8) – (10) given the constraint (15) is characterised by

the following remark and proposition.

Remark 1: In this game, a unique MPE can be established under the conditions

identified in Appendix A.

Proposition 1: In the unique MPE, there is a player who invests more, for a given

capital stock k t. This player is characterised by possessing a sufficiently high between-

cake discount factor.

Proof: From Appendix A, in general in equilibrium there is a player, say i, such that

αi > αjψ j/ψ i. From (1.5) in Appendix A, this implies that φi > φj. Then, from the FOC,

player i has a smaller consumption level than j, for a given capital stock kt, if αiβ i > αjβ j.

But this inequality holds, since β i = ψ iφi and αiψ iφi > αjψ jφj. Then player i successfully

proposes to invest more for a given capital stock, when αi > αjψ j/ψi.

�

Given the ultimatum procedure, a proposer can optimise his expected utility without

fearing a rejection in equilibrium. Since in general there is a player who minds

relatively more about the future, such a player invests more than his opponent, given the

capital stock kt. As a result the growth path is higher and when at one point in the future

this player will propose again he will be able to extract a larger surplus.

In spite of the simplicity of the bargaining structure, an explicit solution of the

accumulation problem is not straightforward. However, the existence, uniqueness and

characterisation of the MPE can be established. Moreover, for the special case of η = ½
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a more detailed analysis can be done. We conclude this section with the results of the

model when players still have concave utility function but in a specific form, η = ½.

Lemma 1: In the case of symmetry, that is αi = α, δi = δ and pi = ½ for any i, with η

= ½, for α(2-λ)1/2  < 1, there is a unique MPE. This is characterised by the investment

plan (13) with coefficients defined as follows,

φi = [(2 - λ)/(1 – (2-λ)ψ i
2α2)]1/2, (16)

β i = ψ iφi and µi = α2 φi (2-λ)ψ2
i, (17)

where ψ1 = ψ2 = [1 - (1- α2(2-λ))1/2]/α2(2-λ) < 1.

Proof: Appendix B.

In the case of symmetry, the unique MPE is symmetric. Moreover, when the production

becomes quicker (α increases) a proposer consumes less and invests more (by using

(13), (16) and (17), since the solution (ψ1, ψ2) is an increasing function of the between-

cake discount factor α). Indeed, in this case the future becomes more important to

players and therefore the investment path is higher so that in the future a proposer can

extract larger surpluses.

When the symmetry assumption is relaxed the computation of the equilibrium (in

particular ψ*j for j=1,2) is less straightforward (in particular, if a component of the pair

(ψ*1, ψ*2) belongs to Ti, the other component may not belong to Tj, then the

equilibrium is undefined for i, j = 1,2 and i ≠ j). However, despite the existence of an

extreme asymmetry between players a simple example in which there is still a solution,

is when at the limit, one of the players, say 1, has a very high probability to propose, pi

tends to 1. In this case, the unique real solution is defined by ψ1 = 1 and ψ2 = 0, with λ

sufficiently high ((2-λ)1/2αi < 1, for i = 1,2 where the relevant interval for ψ*i is Ti equal

to [pi, min{((2- λ)1/2αi)-1,((2-λ)αjαi)-1})). Indeed, the overall payoff to player 1 as a

proposer is as the payoff in the continuation game, for a given capital stock (i.e., β i =

φi). If player 2 becomes a responder (even though with a probability that tends to zero)

his expected payoff is zero (µ2 = 0).
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2.2 A Note on the Linear-Quadratic Form

The most studied recursive optimisation problems are linear quadratic, (i.e., the

constraint is a linear function of the state variable and the per-period objective function

is quadratic), since such problems are characterised by a simple solution (the ‘guess’ is

not required, as the solution is known to be linear, see Ljugqvist and Sargent, 2000).

Our bargaining problem with dynamic accumulation can also be transformed into the

linear quadratic form. Indeed, the model can be expressed in term of differences

between the actual and an unreachable target and players minimise a quadratic loss

function with respect to the difference between the actual level of consumption and a

target level. It can be shown that this transformation does not change the qualitative

results established in Remark 1 and Proposition 1 (see Flamini, 2002). The only

simplification is in the analytical derivation of the conditions for the existence of a

solution. However, since in classic bargaining theory players have concave/linear utility

functions rather than quadratic loss functions, we prefer to maintain the standard

framework.

3 The Social Planner’s Accumulation Plan

In this section, we show that if there was a social planner, able to choose the

consumption and investment level for the two players, he would invest more than the

non-cooperative players, if their between-cake discount factors are sufficiently small.

Moreover, instead of leaving the whole consumable surplus to a player, the social

planner would divide it equally between players (given the symmetry of players’ per-

period utility).

To prove this we first solve the social planner’s optimisation problem. We then

compare the social optimum with the MPE investment level. To simplify the problem

players are symmetric. The social planner’s optimisation problem is a classic growth

problem, where the optimal consumption plan is to divide the surplus equally among

players (since players are symmetric). The optimum investment plan is given by the

solution of the following recursive problem,
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S

1 1 1
1

s

( )
max

1 1 1t

t t t t

I

k k I kη η η

φφ α
η η η

− − −
+−= +

− − −
(18)

where, φS is the undefined coefficient of the value function related to the social

planner’s problem. This is a standard recursive accumulation problem. It can be shown

(e.g., in Ljungqvist and Sargent, 2000) that the optimal investment plan for social

planner, It, is given by,

It = kt  [α(2- λ)1-η]1/η,   with α(2- λ) < 1. (19)

Therefore, the social planner invests more if the depreciation rate decreases and/or the

production becomes quicker (α increases).

To facilitate the comparison between the growth path with and without bargaining,

we assume that η = ½. Then, the social optimum in (19) is as follows,

It = kt  [α2(2- λ)], with α(2- λ) < 1 (20)

While using (13), the optimum non-cooperative investment level in the case of

symmetry with η = ½ is given by,

iIt = kt (2-λ)α2β2/(1 + α2β2),  with α = αi and β i = β  for any i. (21)

The social planner’s level of investment is at least as large as the non-cooperative level

if the following inequality holds,

[α2(2- λ)] ≥ (2-λ)α2β2/(1 + α2β2). (22)

Then, it is sufficient to show that β2(1-α2) is not larger than 1. Given Lemma 1, β2 =

ψ2φ2 = (2-λ)ψ2/(1-(2-λ)ψ2α2) with ψ = (1-(1-(2-λ)α2)1/2)/(2-λ)α2 < 1 and (2-λ)α2 < 1.

That is to say, ψ2(2-λ) ≤ 1ó (2-λ)α2 ≤ 2(2-λ)1/2 - (2-λ) < 1. Then, for α2 ≤ 2/(2-λ)1/2 –1,

the social planner invests more than the non-cooperative players, while for 2/(2-λ)1/2 – 1

< α2 < 1/(2-λ)1/2 , the non-cooperative players invest more. Since for the existence of an

1 (1 )         with i  j and i, j = 1,2 t t tk k Iλ+ = − + ≠
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MPE the depreciation rate λ has to be sufficiently large (see lemma 1), then we focus on

the case of λ which tends to 1. In this case, the social planner always invests less than

the non-cooperative players. The intuition is that since a proposer does not fear a

rejection, he can to a large extent fund the current level of investment by reducing the

responder’s level of consumption below the social optimum. Additionally, the

proposer’s intertemporal optimisation will also take into account the fact that in the

future his opponent can propose with a positive probability and therefore his

consumption will be very different (moreover, the growth path will differ when players

are not symmetric). In the context of the social planner’s problem the incentives are

different for two reasons. First, both players share the cost of the investment; second,

they equally share the benefits of this investment.

These results are related the conventional hold up problem, in which there is

underinvestment since a player incurs all the costs of investment but cannot appropriate

all the benefits from the bargaining process. In our framework, the asymmetry is

different, within an ultimatum procedure, there is a player who is able not only to

extract all the surplus, but also to impose part of the investment costs on his opponent.

Then, if the proposer is sufficiently patient he will overinvest to extract subsequent

surpluses in the future2. Clearly, another relevant difference between the conventional

hold-up problem and our game is that in the latter the accumulation problem is dynamic

(repeated more than once).

4 The Bargaining Procedure

The bargaining procedure in our model is relatively simple. The assumption that the

game ends in the case of rejection allowed us to tackle the accumulation problem that

the players face. Consider the two following alternatives. In the first one, we assume

that only the surplus disappears after a rejection, but a new production stage can take

place. Then, capital depreciates and the new capital stock is kt+1 = (1-λ)kt. In the second

alternative, players play the bargaining stage (potentially forever) until an agreement is

reached - either as in Rubinstein (1982) with an alternating-offer structure or with

random proposers. In this case there is no production (and therefore no depreciation)
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after a rejection. As a result the capital stock in the next bargaining round is simply kt.

As a result, the two cases are very similar in terms of the continuation game, since there

is still a positive capital stock after a rejection. This feature makes the problem

technically very demanding, since the optimisation for a proposer who attempts to make

an acceptable offer is now constrained by the acceptance condition. In other words, a

proposer’s problem has a recursive structure which includes a constraint, the acceptance

condition, which in turn embodies another recursive problem (i.e., the responder

optimisation problem in the case of rejection). The solution of a recursive problem

constrained by another recursive problem is unsolved as far as we know. It is possible to

show that there is an MPE like the one defined for the ultimatum structure if the

constraint is not binding (at all points in time and for each player). However, many

MPE (with and without delay) can also be sustained, given the non-stationary structure

of the game. In an ultimatum bargaining framework this feature does not hold (a

proposer can focus on his intertemporal optimisation without fearing a rejection).

In conclusion, a dynamic accumulation problem within a bargaining game is often

intractable. The problem becomes tractable, when either the bargaining stage is simple

(as the one considered in section 2) or the accumulation problem is simplified (as shown

in the following section).

5 The Stationary Subgame Perfect Equilibrium

In this section, the focus is on a stationary subgame perfect equilibrium (SSPE). In other

words, we solve the game for the case in which the state variable is constant (i.e., iIt =

ktλ for any t). We consider a classic bargaining stage in which after a rejection, a player

can make another proposal with a positive probability3. For this game we show that

there is a unique stationary subgame perfect equilibrium (SSPE). The proposer’s share

of consumable surplus in the SSPE is larger than the share defined by the social planner.

Let δ i be the within-cake discount factor of player i. In other words, if at period t

there is a rejection, a time interval ∆ passes and a new period (t+1) starts. Since the time

                                                                                                                                                                                             
2 In the hold-up problem overinvestment can take place when players have a matching problem (see, Cole
at al, 2001) or the investment cost is not sunk (Muthoo, 1996).
3 Within an ultimatum framework the problem is banal, since a proposer can extract all the surplus not
invested and the level of investment is exogenously given (iIt = kt λ).



15

periods now have different lengths, defined either by the production time interval τ or

by a bargaining delay ∆, with ∆ < τ, these are accounted for by different discount

factors. Player i’s time preferences are represented not only by a between-cake discount

factor αi = exp (-riτ) - which applies after an acceptance - but also by a within-cake

discount factor δ i = exp (-ri∆) - which applies after a rejection. As in section 2, we

assume that capital does not depreciate during the bargaining process, but only during

production.

An SSPE is characterised by a level of investment such that the capital stock is

unchanged over time, i.e., iIt = ktλ for any t. Since investment is exogenously given the

model resembles Muthoo's game (1999, 1995), with the difference that we consider a

random proposer and a more general utility function. First, the SSPE is characterised in

the symmetric case (in which players have identical time preferences and probabilities

to propose) and then for players with linear utility functions.

Proposition 2: In the symmetric case, the unique SSPE demands are given by xi = x

=  (2-α-δ)1-η/[(δ-α)1-η + (2-α-δ)1-η], if δ >α, otherwise xi = 1, where δ and α are the

common discount factors.

Proof: The proof follows standard arguments (see Muthoo, 1995). Let Vi (Wi,

respectively) be the equilibrium payoff in any subgame beginning with player i's

demand (offer), then, Vi = (π  xi) 
1-η/(1-η) + αi (piVi + (1-pi) Wi) and Wi = (π(1-xi))1-η /

(1-η) + αi (piVi + (1-pi) Wi), where π  indicates the share of the surplus available for

consumption (π  = k0(1-λ)), with i = 1, 2. This implies that for such an equilibrium it

must be true that,

Vi = π1-η [xi 1-η(1- αi (1-pi)) + αi (1-pi)(1- xi)1-η ]/ (1-η)(1-αi), (23)

Wi = π1-η [(1-xi)1-η(1- αi pi) + αipi xi
1-η ]/(1-η)(1-αi), (24)

Moreover, it must be the case that a player accepts an offer if and only if his payoff in

the case of acceptance is not smaller than his payoff in the case of rejection. That is to

say,

(π  (1-xi))1-η/(1 -η) ≥ (δj -αj) (pjVj + (1- pj) Wj), for any i, j = 1, 2 with i ≠ j. (25)
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Since, by assumption, the within-cake discount factor δ i is larger than the between-cake

discount factor αi, the inequality above holds as an equality, as, in equilibrium, player i

demands for the largest acceptable share (when δ j ≤ αj, xi = 1). By using (23) and (24),

the indifference conditions become,

(1-xi)1-η = (δ j -αj) ((1-pj) (1-xj)1-η + pjxj
1-η)/(1-αj),  for any i, j = 1,2 with i ≠ j. (26)

This is a system of two equations in two unknowns, xi and xj. Its solution is not

straightforward, unless we focus on a symmetric solution or η assumes a specific value

(the simplest case can be obtained for linear utility, η = 0). In a symmetric case (αi = α,

δ i = δ, pi = p, for any i), the system has a solution defined by x = (2-α-δ)1-η/[(δ-α)1-η+

(2-α-δ)1-η]. In appendix C, the uniqueness of the SSPE demands is proven for the case

where η = 0. Since when η > 0 the arguments are very similar, the proof is omitted.

�

Lemma 2: When players have linear utility functions (η = 0). The unique SSPE

strategies are as follows, player i asks for a share equal to xi, and accepts any demand

not larger than x j with i, j=1,2 and i≠ j where,

x1 = [1-α1-δ2(1-δ1)-α2(δ1-α1)-p(δ2 -α2) (1-δ1 + 2(δ1- α1)(1-p))] /D,

x2 = [(1-α1)(1- α2) + p (δ1 -α1)((2p - 1)(δ2 - α2) –(1- α2))]/D, (27)

where D = (1-α1)(1- α2) + (δ1 -α1)(δ2 - α2)(1- 4p(1-p)).

Proof: This case is similar to Muthoo's model where the investment level is exogenous.

The only difference is that the proposer is randomly chosen. The proof is in appendix C.

�

In the symmetric case (Proposition 2), a player can obtain more within a random-

proposer framework than he could within an alternating structure (such as that in

Muthoo, 1995, 1999). The random proposer mechanism makes a proposer stronger (this

characteristic does not always hold when players differ). Moreover, the SSPE demands

x and xi are not smaller than ½. This implies that in the non-cooperative structure

proposers are able to obtain a share larger than the one defined by the social planner.
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6 Conclusion

As far as we know our model is the first attempt to solve an accumulation problem

within a bargaining model. This is characterised by parties who need to agree not only

on how divide a surplus for their consumption, but also on how much to invest, which

affects the size of surpluses available in the future. When a rejection of a proposal

induces the end of the game, we showed that there is a unique Markov perfect

equilibrium (MPE) in which a proposer consumes the whole surplus not invested. This

equilibrium can also be sustained under more complicated bargaining procedures (for

instance in a potentially infinite bargaining game, or when a production stage follows

the rejection of a proposal). However, in these cases the analytical solution of the

recursive optimisation problem is technically very demanding, since the maximisation

problem of a proposer embodies another recursive problem (via a constraint). Only

when the bargaining stage is simple or the investment level is exogenously given, as in

the SSPE, can a full characterisation of the solution be derived.

We showed that when the proposer has a sufficiently high discount factor, his MPE

investment level is higher than his opponent’s, for a given capital stock. Moreover, it is

larger than the optimal level of investment chosen by a social planner. In other words,

bargaining leads to overinvestment, in contrast to the common view of the hold-up

problem. This is due to the fact that within the ultimatum framework a proposer is able

to focus on his (intertemporal) optimisation problem without fearing a rejection in

equilibrium. Since the cost of investing are to a large extent incurred by the responder,

then a proposer who minds about the future will invest more, so as to extract large

surpluses in the future. In the social planner’s problem this incentive does not exist,

since all the asymmetries between players are eliminated.

In general, the capital stock in our framework does not need to be physical, but can

simply derive from the ongoing relationship itself. Therefore, this framework can

represent an important first step for further investigation of the dynamic accumulation

problem in many bargaining situations.
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Appendix A

Proof of Remark 1. This proof extends results contained in Lockwood et al. (1996) in

several respects. Lockwood et al. do not deal with a bargaining problem. Moreover,

their players possess the same rate of time preference and face a linear-quadratic

problem which is the simplest form that the optimisation problem can assume.

Using (13) and the equation of motion, after some manipulations, problem (8) can be

written as,

φi = (2 - λ)1-η (1 + αi
1/ηβi

1/η)η.   (A.1)

Moreover, (11) can be written explicitly for µi for any i = 1,2,

µi = αi piφiϕj
 1-η/ (1 - αi(1-pi) ϕj

 1-η). (A.2)

By using (A.2), (10) can be solved for β i,

β i = ψ iφi, where ψ i = pi/(1-αi(1-pi)(ϕj)1-η). (A.3)

By using (A.3), (A.1) becomes an equation in φi,

φi = (2 - λ)1-η (1 + αi
1/ηψ i 1/ηφi

1/η)η. (A.4)

The solution to (A.4) is the following,

φi = (2 - λ)1-η /(1 – (2-λ)(1-η) / ηψ i 1/ηαi
1/η)η. (A.5)

Using (A.5) and β i = ψ iφi, ϕi as defined in (14), can be written as follows,

ϕi  = (2 - λ)1/η ψi 1/ηαi
1/η. (A.6)

This implies that ψ i in (A.3) can be written as a function of ψ j,
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ψ i = pi / (1-αi
1/η(1-pi)(2 - λ)(1-η) / η ψ j (1-η)/ η). (A.7)

System (A.7) consists of two equations in two unknowns ψ i and ψ j. If there is a solution

(ψ*1, ψ*2) to (A.7), then this implies a solution to (A.5) and (A.3). Consequently, µi is

also well defined. Since by definition, β i = piφi + (1-pi)µi, by using (A.3),

µi = (ψ i – pi)φi /(1-pi). (A.8)

The equilibrium is then characterised by (A.3), (A.5), (A.7), (A.8), the transversality

condition. Moreover, we impose that φi ≥ 0, β i ≥ 0 and µi ≥ 0. If there is a solution to

(A.7), which respects all these constraints, we call it the ‘non-negative equilibrium’.

ii) Uniqueness of the non-negative solution (ψ*1, ψ*2).

System (A.7) can be written as a pair of equations where ψ i is the explicit variable. That

is to say,

ψ i = fi(ψ j) = pi / (1- ai
 ψ j (1-η)/ η)

ψ i = fj(ψ j) = (ψ j – pj)η/(1-η) / (ajψ j η/(1-η)),

with ai = αi
1/η(1-pi)(2 - λ)(1-η) / η and aj = αj

1/(1-η)(1-pj)η/(1-η)(2 - λ), with i ≠ j and i, j = 1,2.

We now investigate the properties of the two functions f and define under which

conditions there is a unique non-negative equilibrium. First of all, note that the function

fi is increasing in ψ j, with a discontinuity at dψ j = 1/ai. Moreover, the function fi is

negative for ψ j larger than dψ j. However, for the non-negative constraints and the

requirement of a finite value function, it must be that the upper bound for ψ j is dψ j. On

the other hand, a lower bound for ψ i is pi, since fi(0) = pi. Regarding function fj, this is

increasing in ψ j, with an upper bound in dψ i = 1/aj. Moreover, fj(pj) = 0. This implies

that the function fi must be convex (its second derivative is positive), while fj must be

concave (its second derivative is negative) between pj and dψ j. Given the properties of

the functions fi, with i =1,2, these intersect at most twice in the space [pi, dψ i) x [pj, dψ j).

An intersection point is indicated by ψ* = (ψ1*, ψ*2).
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We now refine the space of interest for the solution (ψ1*, ψ*2) to take into account

the constraints that a non-negative equilibrium must satisfy. Namely, condition (15),

and the non negative-constraints. Note that the condition of immediate acceptance is

equal to the non-negative constraints µi ≥ 0 for any i. The lower bound for ψ j is simply

LBψ j = pj. A necessary condition for the existence of an equilibrium is that LBψ i < UBψi,

where the upper bound UBψ j is defined below.

By using (A.5) and the non-negative condition for β j, ψ j must be smaller than uψ j =

1/[(2-λ)1-ηαj], with j=1,2. Moreover, the transversality condition is satisfied if αiϕj
(1-η) <

1, with4 ϕj = max {ϕ1, ϕ2}, for any i, j = 1, 2. This implies ψ j < T Cψ j = 1/[αj(2-λ)αi
η/(1-η)]

with i, j = 1,2. In conclusion the upper bound for ψ j is UBψ j = min {dψ j, uψ j, T Cψ j}. A

solution to the system ψ i = fi(ψ j), ψ i = fj(ψ j), say, (ψ*1, ψ*2), implies a non-negative

equilibrium, if it lies in the space T = T1xT2, with Ti = [LBψ i, UBψ i). A solution must

satisfy the following equation,

piajψ j η/(1-η) = (ψ j – pj)η/(1-η) (1 - ai
 ψ j (1-η)/ η). (A.9)

This is an equation of degree (η/(1-η))2 + 1 if η > ½ and ((1-η)/η)2 + 1 otherwise.

However, even though this implies that (A.9) is an equation of degree higher than 2, in

the space of interest for a non-negative equilibrium, T, there are at most two

intersections, given the properties of the function fi's, with i =1,2. A necessary condition

to obtain at least two solutions is that pi is smaller than dψ i. That is to say piai < 1, for i

=1,2. Additionally, we require that the two functions, fi for any i, are sufficiently curved

so that they cross at least once. An explicit solution for a general η is not

straightforward. We investigate the existence of a non-negative equilibrium in more

detail when η assumes a specific value, η = ½ (see Appendix B). For the general case,

we can conclude that if the two functions, fi for any i, cross once, at ψ*, then there is a

unique solution if ψ* is in T. If the functions fi, for any i, cross twice, at -ψ* = (-ψ*1,
-ψ*2) and +ψ* = (+ψ*1, +ψ*2), then there is a unique solution if either -ψ* or +ψ* is in T.

The solution to (A.9) are characterised by +ψ*i ≥ -ψ*i and i = 1,2 (see figure 1 below).

Since from (A.5), φi is an increasing function of ψ i, given (A.3) and (A.8), this implies

that β i and µi are increasing with respect to ψ i, for any i. Then, a solution defined by

                                                                
4 This is a stronger condition, it is sufficient αi(pjϕj

 + pi ϕi)
(1-η)  < 1.
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+ψ* is superior to a solution defined by -ψ*. However, if these are in T, the guess and

verify method has failed to yield the solution, since this is based on the uniqueness of

the solution.

 fj fi

     dψ i

        pi

           0 pj                         dψ j

Figure 1: Representation of system (A.9).

Appendix B

Proof of Lemma 1. When η = ½, the equation (A.9) can be written as follows,

aiψ j 2 - (1- ajpi + aipj) ψ j + pj = 0. (B.1)

There are at most two positive solutions to (B.1) if (i) (1- ajpi + aipj) > 0 (following the

Descartes' rules of signs) and (ii) the discriminant of (2.1), ∆, is non-negative. Condition

(i) can also be written as b > 0, where

b = 1 + (2-λ)[(1 - 2pi )αi
2 + (αi

2 -αj
2) pi

2 >0

Then (i) is guaranteed by pi ≤ ½ and αi ≥ αj. Regarding (ii), after some manipulation the

discriminant can be written as

∆ = (2-λ)(αi
2- αj

2 ) pi
2 – 2αi (2-λ)1/2 (αi(2-λ)1/2 – 1)pi + (αi(2-λ)1/2  – 1)2.
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In addition to the condition for (i), ∆ is positive for any p, if αi ≤ (2-λ)-1/2. Since if αi >

(2-λ)-1/2  then (ii) requires that p must be sufficiently small5, to simplify let αi be smaller

than (2-λ)-1/2. To sum up, a necessary solution for a positive solution to (B.1), is pi ≤ 1/2

and αj≤ αi ≤ (2-λ)-1/2.

The solutions to (B.1) are as follows,

ψ*j = [b ± √∆]/2ai with i, j =1, 2 and i ≠ j. (B.2)

If there are two positive solutions, they are named -ψ*j and +ψ*j, (with -ψ*j < +ψ*j).

Under symmetry (i.e., αi = αj = α and pi = ½), the solutions are as follows,

ψ*j = [1 ± √(1- α2(2-λ))]/α2(2-λ). (B.3)

These are real if αi
2(2-λ) < 1. Then, the non-negative equilibrium is given by -ψ*j since

this belongs to Tj while +ψ*j does not, where Tj =  Ti = (½, 1/(α(2-λ)1/2)). Moreover,

since the equilibrium is defined by -ψ* < 1, the payoff to a proposer is higher than the

payoff to a responder for a given level of capital (i.e., φi > β i, then φi > µi for any i).

Appendix C

Proof of Corollary 1: To prove the uniqueness of the SSPE demand defined by (27), it

is necessary to prove that any SSPE is characterised by immediate agreement. Since

after an acceptance or a rejection the capital stock is unchanged, we need to check that a

one-shot deviation is not profitable. We now show that if there was a SSPE with delay,

then there is at least one profitable deviation.

Let x*i be the equilibrium demand by player i, in a SSPE with delay, then this is such

that player j always rejects such a demand. If a rejection is profitable for player j then

the following must hold,

π(1-x*i) + αj(pjVj +(1-pj)Wj) < δ j(pjVj +(1-pj)Wj), (C.1)

                                                                
5 It must be p < (2-λ)1/2 (αi(2-λ)1/2 – 1)(αi -αj)/(2-λ)(αi

2- αj
2 ) < 1/2.
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where π  indicates the consumable share of the cake (i.e., (1-λ)k0). If (δ j < αj, there is a

contradiction) δ j ≥ αj, there will be a contradiction if there is a one-shot deviation by

player i, in which player i asks for x'i, this is immediately accepted by player j and the

deviation is profitable to player i. That is to say, x'i is characterised by the following

inequalities.

π(1-x'i) + αj(pjVj +(1-pj)Wj) ≥ δ j(pjVj +(1-pj)Wj), (C.2)

πx'i + αi(piVi +(1-pi)Wi) ≥ δ i(piVi +(1-pi)Wi). (C.3)

These inequalities define an interval, say X', in which x'i varies. Then it is always

possible to define the deviation x'i if the interval X'i exists. That is to say,

π  ≥  (δ i - αi)(piVi +(1-pi)Wi) +(δ j+ αj)(pjVj +(1-pj)Wj). (C.4)

It is possible to distinguish two cases: either player j's offer is always rejected or not. In

the former, Vi = Wi = Vj = Wj = 0. Then the interval X'i exists. In the latter, since player

i's is always rejected, while player j's offer is always accepted, the following holds.

Vj = xjπ  + αj(pjVj +(1-pj)Wj), (C.5)

Wi = π(1-xj ) + αi(piVi +(1-pi)Wi), (C.6)

Wj = δ j (pjVj +(1-pj)Wj), (C.7)

Vi = δ i (piVi +(1-pi)Wi), (C.8)

which implies,

Vi = (1- xj)π  δ i (1-pi) /(1- piδ i -αipj), (C.9)

Wi = (1- xj)π  (1-δ i pi) /(1- piδ i -αipj), (C.10)

Wj = xj π  δ j pj /(1- αjpj - δ jpi), (C.11)

Vj = xj π  (1-δ j(1- pj)/(1- αjpj - δ jpi). (C.12)

By using these equations, the condition for the existence of X'i can then be written as

follows,



24

π  ≥  (δ i - αi)Vi /δ i + (δ j - αj)Vj / δ j. (C.13)

That is to say,

1 ≥ pj xj (Aj - Ai) + Ai ó   1 - Ai ≥ pj xj (Aj - Ai),  (C.14)

where Aj = (δ j - αj)/(1- αjpj - δ jpi) and similarly for Ai. Since Ai and Aj are always

smaller than 1, then the above inequality holds. In other words, X'i is not empty and

therefore a SSPE characterised by delay cannot exist. If the SSPE is without delay, then

it is characterised by (27) and it is unique.

References

Binmore, K. (1987): “Perfect Equilibria in Bargaining Models”, in K. Binmore, and P.
Dasgupta (eds.), The Economics of Bargaining Basil Blackwell, Oxford.

Cole, H.L, Mailath, G.J, Postlewaite, A. (2001): “Efficient Non-Contractible
Investments in Finite Economie”, Advances in Theoretical Economics 1, No1.

Flamini, F. (2002): Three Essays on Sequential Bargaining Theory, PhD thesis,
University of Exeter.

Fudenberg, D. and Tirole, J. (1991): Game Theory. MIT Press, Cambridge,
Massachusetts.

Levhari, D. and Srinivasan, T.N. (1969): “Optimal Saving under Uncertainty”, Review
of Economic Studies 36, 153-163.

Ljungqvist, L. and Sargent, T.J. (2000): Recursive Macroeconomics Theory. MIT Press,
Cambridge Massachusetts.

Lochwood, B. et al. (1996): “Fiscal Policy, Public Debt Stabilisation and Politics:
Economics Journal 106, 894-911.

Maskin, E. and Tirole, J. (2001): “Markov Perfect Equilibrium”, Journal of Economic
Theory 100, 191-219.

Muthoo, A. (1995): “Bargaining in a Long Run Relationship with Endogenous
Journal of Economic Theory 66, 590-98.

Muthoo, A. (1996): “Sunk Costs and the Inefficiency of the Relationship-Specific
Economica 65, 97-106.

Muthoo, A. (1999): Bargaining Theory with Applications. Cambridge University Press,
Cambridge.

Rubinstein, A. (1982): “Perfect Equilibrium in a Bargaining Game”, Econometrica 50,
97-109.

Stokey, N.L. and Lucas, R.E., Jr. (with Prescott, E.C). Recursive Methods in Economic
Dynamics. Harvard University Press, Cambridge, Massachusetts.


