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Abstract

The focus of this paper is on repeated bargaining games in which two parties can

decide how much to invest and how to share the remaining surplus for their own

consumption. The game is dynamic since the current level of investment affects

future surpluses. We characterise an MPE without delays in general terms and show

the parametrical effects for the specific case in which parties share the surplus equally.

We show that the relatively more patient player invests more than his opponent, for

a given capital stock. Moreover, if the probability of becoming a proposer decreases

for the more patient player, then such a player reduces his investment, while the

relatively impatient player increases his investment.

JEL Classification: C61, C72, C73, C78
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librium.
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1 Introduction

This paper focuses on bargaining games in which parties can invest part of the sur-

plus. Moreover, the invested surplus affects the size of future surpluses. Bargaining

games which allow parties to make both investment and consumption decisions and

for a repeated number of times are almost unexplored. There are two main strands

of the literature, namely, on the hold-up problem and on the tragedy of the commons,

which are related to the problem considered in this paper. However, there are fun-

damental differences between these models and our dynamic bargaining game with

investment. In the hold-up problem bargaining and investment are two completely

separate processes (see, for instance, Gibbons (1992), Muthoo (1996), Gul (2001)).

The investment takes place before the bargaining stage and only one party is in-

volved (he bears all the costs), moreover, the investment is once for all. Parties then

can share a surplus whose size depends on the initial investment. Differently, in this

paper the focus is on parties who jointly and repeatedly need to decide how much to

invest and consume. We assume that they make their consumption and investment

decisions at the same time but this assumption is not crucial (given the dynamic

structure of the game, their decisions would be linked even if the consumption de-

cisions were taken before or after the investment plan). The second strand of the

literature, on the tragedy of the commons, considers different parties who can extract

part of the surplus for their own consumption and the remaining surplus will affect
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the size available in the next period (see, for instance, Levhari and Mirman, 1980,

Dutta and Sandaram, 1993). Although this is a dynamic accumulation game, there

is no bargaining, in particular everyone can consume as much as he wishes (as long

as the sums of all the demands is smaller than the size of the surplus).

The model closer to ours, with focus on a repeated bargaining game with invest-

ment decisions in addition to the standard consumption decisions, is Muthoo (1999).

However, the most important difference with our paper is that in Muthoo (1999)

the focus is on steady-state stationary subgame perfect equilibria, while ours is on

Markov Perfect Equilbria (MPE). This implies that in the former, the investment

decisions are strongly simplified since parties need to investment as much as it is

necessary so as to have surpluses of the same size. Indeed Muthoo’s aim is to apply

his infinitely repeated game where parties share an infinite number of cakes with the

same size (Muthoo, 1995). In this sense the problem of how much parties should

invest remains open. A first step to address this question is in another paper of

ours (Flamini, 2002), in which we assume that parties can take their consumption

and investment decisions under the assumption of a take-it-or-leave bargaining struc-

ture. Although this assumption is necessary to deal with a dynamic game, that is

otherwise very complex, it is not always realistic, since one can imagine situations

where following a rejection of an offer, a counter-proposal can take place. To address

this issue in this paper we allow players to continue the bargaining process after a
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rejection. Although this case is very complex (since the game can be represented as

a recursive problem with a constraint that embodies another recursive problem), we

are able to characterise the MPE without delay. While the indifference conditions

(which are conditions that says that a proposal makes a player indifferent between

accepting and rejecting such a proposal) are important instrument for the definition

of an equilibrium without delay in bargaining games, we show that these work only

in rare conditions in our dynamic bargaining game. To show the parametrical ef-

fects on the equilibrium outcome, players are assumed to share equally the surplus

not invested. Although also in this case the analytical solution cannot be fully de-

rived, by numerical evaluations, we show that the more patient player invests more

than his opponent for a given level of capital stock. Moreover, if the more patient

player becomes less likely to make a proposal, then his investment decreases while his

opponent’s investment increases for a given capital stock.

The paper is organised as follows. In the next section we present the model,

in section 3 we characterised an MPE without delays. To analyse the equilibrium

in more detail we consider the case in which parties split the surplus not invested

equally, in section 4. Some final remarks conclude the paper.
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2 The model

We consider a two-player bargaining game in which bargaining and production stages

alternate (and each stage can start only after the other has taken place). At the pro-

duction stage, a surplus is generated according to the production function F (kt) = kt,

where kt is the capital stock at period t, with t = 0, 1, ... Production takes place in an

interval of time τ . Once the output is generated, F (kt), the bargaining stage begins

and players attempt to divide F (kt). The bargaining stage is a classic random-

proposer procedure in which each party can become a proposer with a positive prob-

ability. In general, in period t player 1 (2, respectively) can become a proposer with

probability p (1 − p, respectively), with 0 < p < 1. A proposal by player i is a pair

(ixt,i It), where iIt is the investment level proposed by i at time t and ixt is the share

demanded by i over the remaining surplus at time t. The proposal (ixt,i It) depends

on capital, denoted by kt, that is the state variable in the model. Our notation is

simplified, in the sense that the subscript t in the proposal indicates that this is con-

ditional on the capital stock at t, kt. If there is an acceptance, the bargaining stage

ends and the proposer’s current per-period utility is,

ui(ixt,i It) =
[ixt(F (kt)− iIt)]

1−η

1− η

The output available at the next bargaining stage (at t+1) is F (kt+1), where kt+1 is

the capital stock in the next period and it is given by the investment level iIt and the
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capital remaining after depreciation, kt+1 = iIt+(1−λ)kt, where λ is the depreciation

rate (0 < λ ≤ 1). If there is a rejection, after an interval of time ∆, a randomly-

selected proposer can make an offer. Player i’s time preference is represented by his

discount rate ri (with i = 1, 2). We take into account the fact that intervals of time

have different lengths, with two distinct discount factors: the between-cake discount

factor αi = exp(−riτ) which takes into account that production takes time and the

between-cake discount factor δi = exp(−ri∆) that takes into account that there is an

interval of time between a rejection and a new proposal. In the first period, at t = 0,

a bargaining stage starts and the surplus available is 1, by assumption.

3 Characterisation of an MPE without delay

In this section we attempt to characterise an MPE without delay, if it exists. Some

remarks on the existence of MPE with delay are in section 5. Let vi(kt) be the

expected discounted utility that player i attempts to maximise as a proposer, while

wj(kt) is the expected discounted utility of player j when he accepts player i’s proposal

(ixt,i It), i.e.,
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(1)

where each element of a potential history ht, h, is equal to pi assuming player i

proposes and (1 − pi) when player j is assumed to propose (except for the unique

element of ht+1\ht, that is 1 by assumption) for t = 1, 2 . . .∞. The potential history

ht uniquely indicates the sequence of proposers to reach the node t from 1, where

the nodes considered are only the ones in which an offer is to be made. These are

numbered sequentially from 1. At each node there are two possibilities either i or j

will propose next, in each period the lowest number is given to the node where i will

propose next. Accordingly, the product of the elements of ht gives the probability of

reaching node t from node 1.
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In its recursive form the problem is as follows

Vi(kt) = max
ixt,iIt

[ixt(F (kt)− iIt)]
1−η

1− η
+ αi(piVi(kt+1) + (1− pi)Wi(kt+1)) (2)

s.t.Wj(kt) ≥ δj[pjVj(kt) + (1− pj)Wj(kt)] (3)

with kt+1 =

⎧⎪⎪⎨⎪⎪⎩
(1− λ)kt + iIt if there is an acceptance

kt otherwise
(4)

where Vi(kt) is the value function, i.e., the optimal expected utility to player i as

a proposer, while Wj(kt) is the optimal expected utility to player j as a responder.

The indifference conditions (so that a responder is indifferent between accepting and

rejecting a proposal) are important instruments for a solution of a bargaining game.

With an ultimatum procedure, these are strong assumptions, since they impose that

a responder obtains a null expected utility in case of a rejection (Wj(kt) for any j

and t), but in our model a responder obtains a positive expected payoff in the case

he rejects a proposal. Can the indifference conditions hold? In the next section, we

show that the answer is yes, but only in specific cases.

3.1 The Indifference Conditions

The indifference conditions in our model are constraints (3) as equalities. Then

condition (3) can be written as follows

Wj(kt) =
δjpj

1− δj(1− pj)
Vj(kt) (5)
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for any j and k. Then by using (5) in (2) for player i at t + 1, the problem for a

proposer becomes as follows:

Vi(kt) = max
ixt,iIt

[ixt(F (kt)− iIt)]
1−η

1− η
+ βiVi(kt+1) (6)

kt = (1− λ)kt + iIt (7)

with βi =
αipi

1−δi(1−pi) . This is very similar to a standard growth model in which a

social planner has to decide the consumption and investment path. In particular

since in problem (6)-(7) there are no strategic interactions, a proposer, just like the

social planner, will not waste any resources and therefore ixt = 1. Moreover, the

consumption plan ict = ixt(F (kt)− iIt) = F (kt)− iIt is characterised in the following

proposition.

Proposition 1 The solution to problem (6)-(7) is given by the following consumption

plan

ict = kt(2− λ)(1− (βi(2− λ)1−η)1/η) (8)

with βi(2− λ) < 1. This can be a solution to the bargaining (2)-(4) if

α
1/η
j (2− λ)

1−η
η (2− δj)

2η−1 = δj[2− αj

µ
2− λ

2− δj

¶1−η
η

(9)

for i, j = 1, 2 and i 6= j.

Proof. The proof to show that the solution of (6)-(7) is given by ict in (8) is standard

and therefore omitted. The condition (9) is obtained by using the solution ict, (8), in

the immediate-agreement condition (5).
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Condition (9) implies that the relationships among the parameters are very spe-

cific. In conclusion, the indifference conditions, which are important instruments to

derive equilibrium outcomes of bargaining games can be used in our dynamic bar-

gaining game only under some specific cases, that is, when (9) holds.

3.2 A General Solution

In this section we consider the explicit form of problem (2)-(4), i.e., by using (1), and

we derive the necessary conditions for an MPE without delays. First of all, the FOC

for the proposer problem are as follows:

(1− ixt) = ixtd
1/η
j (10)

ix
1−η
t + dj(1− ixt)

1−η

izt
=

αipi ix
1−η
t+1 + αjdjpi(1− ixt+1)

1−η

izt+1
+ (11)

+
αi(1− pi)(1− jxt+1)

1−η + αjdjpj jx
1−η
t+1

jzt+1

where dj = imt(1 − δj(1 − pj)) and izt = (kt− iIt)
η where imt is the Kuhn-Tucker

multiplier, for any i, j = 1, 2 with i 6= j and t = 0, 1, 2, ...∞. Second, an additional

condition for the solution of the proposer’s problem is the transversality condition,

that is, at the limit as t tends to zero, the utility value of the discounted capital stock

(αt
iktv

0
i(kt)) goes to zero.

By using (10), the explicit solution of ixt is as follows:

ixt =
1

1 + [imt(1− δj(1− pj))]1/η
(12)
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In general, ixt depends on kt via imt and is not larger than 1, since imt is non-negative.

If in equilibrium the immediate-agreement condition (3) holds with strict inequality

for player 1 at some t, by the principle of complementary slackness, the multiplier (3)

must be zero, which implies that in equilibrium player i demands the entire surplus

not invested ixt = 1. On the other hand, if for player i, at some t, the constraint

holds with equality then the multiplier is non-negative. As shown in section 3.1, the

indifference conditions are strong assumptions since they state that the constraint (3)

holds as an equality for any i and t and the multiplier is zero.

In the next section we focus on the case in which each player demands the entire

surplus not invested whenever he proposes and, by the principle of complementary

slackness, the immediate-agreement conditions hold with strict inequality for any i

and t.

3.3 The Ultimatum-like MPE

It is now assumed that the immediate-acceptance conditions (3) hold in general as

inequalities and therefore, a proposer is able to consume the whole portion of the

surplus not invested. This section is closely related to Flamini (2002), where the focus

is on an ultimatum bargaining procedure, which implies that a proposer can ask as

much as he wishes without fearing a rejection and therefore in equilibrium he will ask

the entire surplus not invested. The main difference with the ultimatum procedure is
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that in our case the proposer needs to make sure that demanding the entire surplus

not invested is an acceptable proposal while in the ultimatum structure the immediate

agreement condition is always satisfied "by construction". That is, once the game is

solved, we need to find out for which set of parameters the conditions (3) are satisfied.

The following proposition and corollary define this set in general terms and under a

specific case, respectively.

Proposition 2 There is an MPE in which each player extracts the entire surplus not

invested as in an ultimatum bargaining procedure, if the conditions for the ultimatum

procedure hold and, in addition, the discount factor δi is sufficiently small (so that

LBψi < UBψi for any i).

Proof. According to the guess and verify method, first the function of the value

function is guessed, but the coefficients are left undetermined, then the guess is ver-

ified by showing that there is a unique value of the coefficient that make the guess

correct. Our ‘guess’ is that the value function is a function of the capital stock of

the same form as the utility function. Then the players’ optimisation problem can be
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written as follows.

φik
1−η
t

1− η
= max

ict

ic
1−η
t

1− η
+ αiβi

k1−ηt+1

1− η
(13)

β
i
= piφi + (1− pi)µi (14)

µik
1−η
t

1− η
= 0 + αiβi

(ϕikt)
1−η

1− η
(15)

kt+1 = kt(2− λ)−i ct given that there is an acceptance (16)

where ict = ixt(F (kt)− iIt) = F (kt)− iIt. The proof consists in writing the unknown

parameters φi, βi, µi, ϕi as a function of auxiliary variables ψi and ψj. In particular

after some manipulations (see Flamini (2002)) for more details), these are as follows.

β
i
= ψiφi (17)

φi =
(2− λ)1−ηµ

1− (2− λ)
1−η
η α

1
η

i ψ
1
η

i

¶η (18)

µi =
(ψi − pi)φi
1− pi

(19)

ϕi = (2− λ)
1
ηψ

1
η

i α
1
η

i . (20)

where ψi and ψj are the solution of the following system of two equations:

ψi =
pi

1− (2− λ)
1−η
η (1− pi)α

1
η

i ψ
1−η
η

j

(21)

with i, j = 1, 2 and i 6= j. If there is a unique solution (ψ∗1, ψ
∗
2), this uniquely defines

the unknown parameters and therefore the verification phase ends. If there is more

than one solution, or none, then the guess and verifying methods fails to deliver
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a solution. Next, we define the interval of interest in which only one solution can

be found. This interval is defined by the following constraints: first ψ∗1 and ψ∗2 are

non negative (so that we obtain a non-negative equilibrium); second, the immediate-

agreement condition is satisfied and third, the transversality condition is satisfied.

These conditions imply that ψ∗j has to belong to the interval [LBψj,UB ψj) where

LBψj = max

⎧⎨⎩pj,
δ
1−η
η

i

(2− λ)αjα
1−η
η

i

⎫⎬⎭ (22)

UBψj = min
©
dψj,TC ψj,u ψj

ª
(23)

dψj = 1/ai (24)

TCψj =
1

(2− λ)αjα
1−η
η

i

(25)

uψj =
1

(2− λ)1−ηαj
(26)

with ai = (2 − λ)
1−η
η (1 − pi)α

1
η

i and aj = (2 − λ)(1 − pj)
1−η
η α

1
1−η
j , i, j = 1, 2 and

i 6= j. In the ultimatum-bargaining procedure LBψj is simply pj since an offer is

always accepted. When the immediate-agremeent condition is binding, then LBψj is

larger then pj and therefore the interval of interest is smaller. Moreover, if a player

is sufficiently patient (δi → 1) LBψj can be even larger than the UBψj therefore δi

is required to be sufficiently small so that LBψj < UBψj. Then the proof consists in

showing that only one solution can be found in this interval (see Flamini, 2002).

To show the result in a more transparent manner, we assume that players are

symmetric, that is, pi = 0.5, ri = r for any i and, in addition, η = 0.5.
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Corollary 3 For pi = 0.5, ri = r for any i and η = 0.5, there in an MPE in which

each player extracts the entire surplus not invested as in an ultimatum bargaining

procedure, if δ < α(2− λ)1/2 < 1.

This implies that only when the depreciation rate is low, this equilibrium is in-

teresting. Indeed, if there is maximum depreciation (λ = 1), an ultimatum-MPE is

sustainable only if the interval of time between a rejection and a new proposal, ∆, is

larger than the interval of time between an acceptance an a new proposal, τ (so that

δ < α), which is a strong assumption.

4 Splitting the Surplus Equally

To highlight the characteristics of the dynamic bargaining game, in this section we

assume that parties split the available surplus equally. For instance, before entering

a business two partners sign a contract that specifies that each will obtain half of the

profits not re-invested. In this case, the bargaining game remains unsolved, since a

proposed investment plan still needs to be accepted by the other party. However, since

the consumption plan is exogenously defined then the dynamic game is simplified and

can be solved numerically.

In an MPE without delay in which parties share equally a surplus, each proposer
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will attempt to solve the following recursive problem:

Vi(kt) = max
iIt

[1/2(kt − iIt)]
1−η

1− η
+ αi(piVi(kt+1) + (1− pi)Wi(kt+1)) (27)

Wj(kt) ≥ δj[pjVj(kt) + (1− pj)Wj(kt)] (28)

Wj(kt) =
[1/2(kt − iIt)]

1−η

1− η
+ αj(pjVj(kt+1) + (1− pj)Wj(kt+1)) (29)

kt+1 = (1− λ)kt + iIt (30)

By using the guess and verifying method, with the guess that the value function has

the same form as the per-period utility function, problem (27)-(30) can re-written as

follows

φik
1−η
t

1− η
= max

iIt

[1/2(kt − iIt)]
1−η

1− η
+ αiβi

k1−ηt+1

1− η
(31)

βi = piφi + (1− pi)µi (32)

µjk
1−η
t

1− η
≥ δjαjβj

(ϕikt)
1−η

1− η
(33)

kt+1 = kt(2− λ)−i ct given that there is an acceptance (34)

with ϕi such that kt+1 = ϕikt.

Proposition 4 A solution to the following system

ψη
i =

αi

(1 + ψi)
1−η [λ

1−η + piψi(2− λ)1−η + (1− pi)ψ
η
jψ

1−η
i (2− λ)1−η] (35)

with i, j = 1, 2 and i 6= j uniquely defined the equilibrium investment path

iIt =
ψi − (1− λ)

1 + ψi

kt (36)

17



if the transversality condition and the immediate-agreement conditions hold. That is,

αi(piϕi + (1− pi)ϕj)
1−η < 1 and µj ≥ δjαjβjϕ

1−η
i , respectively.

Proof. After some manipulations, the FOC of problem (31)-(34) is as follows.

iIt =
2(1−η)/η(αiβi)

1/η − (1− λ)

1 + 2(1−η)/η(αiβi)
1/η

kt (37)

This implies that the equation of motion (34) become kt+1 = ϕikt where

ϕi =
2(1−η)/η(αiβi)

1/η(2− λ)

1 + 2(1−η)/η(αiβi)
1/η

(38)

Moreover, from the optimal expected payoff of a responder µjk
1−η
t

1−η , by using (37) we

obtain the following equation:

µj =
1

2(1−η)/η

∙
λ

1 + 2(1−η)/η(αiβi)
1/η

¸(1−η)/η
+ αjβjϕ

1−η
i (39)

while for a proposer,

φi =
1

2(1−η)/η

∙
λ

1 + 2(1−η)/η(αiβi)
1/η

¸(1−η)/η
+ αiβiϕ

1−η
i (40)

Let

ψi = 2
(1−η)/η(αiβi)

1/η (41)

then equations (37), (38), (39) and (40) can be re-written as follows.

iIt =
ψi − (1− λ)

1 + ψi

kt (42)

φi =
λ1−η + ψi(2− λ)1−η

(1 + ψi)
1−η21−η

(43)

µj =
λ1−η + ψη

jψ
1−η
i (2− λ)1−η

(1 + ψi)
1−η21−η

(44)

ϕi =
(2− λ)ψi

1 + ψi

(45)
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In addition, the coefficient βi is also uniquely defined given (32). In particular, by

using (43) and (44),

βi =
λ1−η + piψi(2− λ)1−η + (1− pi)ψ

η
jψ

1−η
i (2− λ)1−η

(1 + ψi)
1−η21−η

(46)

Then, by using (46), equation (41) can be written as (35). Then a unique solution

to (35), uniquely defined the coefficients φi, βi, µi and therefore the investment level

iIt. However, this can only be a solution to the bargaining game if the transversality

condition holds, that is, αi(piϕi + (1 − pi)ϕj)
1−η < 1 and the immediate agreement

condition holds, that is, µj ≥ δjαjβjϕ
1−η
i .

If there is maximum depreciation (λ = 1), the transversality condition always

holds since ϕi is always smaller than 1 (see (42) and therefore, αi(piϕi + (1 −

pi)ϕj)
1−η < 1). In general, we cannot explicitly solve system (35), since the polyno-

mial is of degree 1/(1 − η)η. In the remaining of this section, we therefore consider

some specific cases in which a solution is possible. First, players are assumed to have

the same rate of time preference. Next, we evaluate the equilibrium numerically.

Corollary 5 When players have the same rate of time preference (ri = r), there is

a unique solution to system (35) and the investment level in equilibrium is

iIt = [α(2− λ)1−η]1/ηkt

for α(2− λ) < 1.
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Although players can make a proposal with different probabilities, they are sym-

metric since they have the same rate of time preference and they share the surplus

for their own consumption equally. Then, the problem is similar to a standard social

planner’s problem in which a regulator need to choose how much to invest.

When players have different time preferences, to make the problem more tractable

we assume that η = 0.5 and to simplify the depreciation rate λ is equal to 1. Under

these conditions we evaluate numerically the equilibrium and the parametrical effects

on the equilibrium outcome.

Result 1 There is always an equilibrium as long as αi is not too large while αj

has an intermediate value for any i, j = 1, 2 and i 6= j.

To show this we assume that players have the same probability to propose (p =

1/2). Then, fig. 1 shows that if αj is close to 0.999 while αi is smaller than 0.7,

then the equilibrium does not exists (this area is indicated by green dashes, while the

black bars indicate that the conditions for the existence on an MPE without delay

are satisfied). A similar result can be obtained when the probability to propose varies

(see result 3 below). This result implies that in the most likely case in which parties

have discount factors very close to 1, an equilibrium without delays exists.
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Fig. 1 Area with no MPE is indicated by green crosses for p=1/2.

Result 2 The most patient player invests more than his opponent for a given level

of capital stock kt.

Fig. 2 below shows the case in which parties can propose with equal probability,

however, this result can be shown for any value of pi. The red circles indicate the area

in which player i invests more than player j, vice-versa for the black diamonds. The

green crosses indicate the case in which there is no MPE (that is for α1, α2 exactly

equal to either 0 or 1 in this less detailed graph. See fig. 2 for αi in (0,1)). This result

is intuitive: if a player is relatively more patient than his opponent, then he prefers

a higher investment plan.
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Fig. 2 Player i invests more than player j whenever αi > αj for any i and j.

Result 3 When a player can propose more often then the other player then the

area in which an MPE does not exist is slightly modified.

This result can be shown by comparing fig. 1 (pi = 0.5) with fig. 3 (pi = 1/3). In

the latter the green area is slightly smaller for αi < 0.5 and just the same for larger

αi. However, when the focus is on αi very large and αj at intermediate levels, the

green crossed area is slightly larger. In other words, the area in which there is no

MPE becomes asymmetric when pi differs from 1/2.
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Fig. 3 Area with no MPE is indicated by green crosses for p=1/3.

Result 4 If player i is more impatient than player j, but the probability that

player i proposes increases then player j0s level of investment decreases while player

i0s increases for a given kt.

Fig. 4 shows this result for the case in which players’ between-cake discount

factors are as follows αi = 0.7 and αi = 0.8. This result can be shown for any general

asymmetry in players’ rate of time preference, as long as there is an MPE. Since

the investment level iIt is an increasing function of ψi, then from in fig. 4, we can

conclude that although player i always invests less than player j for a given level of
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capital stock kt, player i0s level of investment, for a given kt, increases with pi, while

player j0s decreases with pi.

Fig. 4 Auxiliary valiables for pi in (0,1) when αi = 0.7 and αi = 0.8.

The intuition is that a more patient player always prefers to invest more than his

opponent. However, if his opponent is more likely to make an offer, then it is more

likely that the total share of the surplus consumed increases (since the less impatient

player will reduce the level of investment, for a given capital stock, as soon as he can

make an offer), then the high investment made by a patient player is partially lost.
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For this reason, when the probability of proposing increases for the impatient player,

the patient player reduces his investment plan. On the other hand, the other player

has to increase the investment level to compensate for the fact that the investment

made by his opponent is not as high as in the past and moreover, the opponent is less

likely to make an offer. The impatient player also needs to take into account that his

offer has to be acceptable to the patient player and therefore he has to increase the

level of investment.

5 Final Remarks

A bargaining model with investment decisions can be very complex, since it has a

recursive structure (the bellman equation), which embodies another recursive struc-

ture (via the immediate agreement condition). However, we can conclude that in an

MPE without delay a proposer is able to extract all the surplus not invested if the

constraint (the immediate agreement condition) is not binding, otherwise he has to

leave a positive share to his opponent.

Moreover, when the parties agree to share the surplus in equal parts before engag-

ing in a bargaining game on the investment levels, we show that there is an equilib-

rium whenever players’ rates of time preference are not too different when one party

becomes very patient. Finally, when an equilibrium exists, the most patient player

invests more than his opponent, for a given level of capital stock, but he decreases
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his investment plan if his opponent is more likely to propose.

We conclude this analysis with a comment on the possibility of other MPE. In

particular, can an MPE with delays exist? Given the non-stationary structure of

the game (in the sense that at similar nodes, for instance whenever player i pro-

poses, the subsequent subgames do not look the same) equilibria with delays cannot

be excluded. Since we need an analytical solution of the model to investigate this

possibility, here we attempt to give some intuition as to why delays are possible in

equilibrium. Suppose that at time t, a proposer (say, i) prefers to make an offer which

induces a rejection rather than an acceptance, moreover, this is the only point in time

in which a delay is profitable. If at some point a delay is profitable, it must be that

what a proposer, i, gets when there are no delays, vi(kt), is smaller than what he

would get, in expectation, in the continuation game. This implies, vi(kt) < ziwi(kt)

with zi = δi(1− pi)/(1− δipi) < 1, where wi(kt) is the expected discounted utilities

of a responder. That is, the cost of a rejection has to be small (δi large) and the

probability to become again a proposer, pi, has to be small. Moreover, player i’s

expected utility as a responder must be sufficiently higher than the expected utility

of being a proposer. This can hold when a responder is able to invest more than the

other player, for a given level of capital stock. The discounting plays an important

role. On the one hand, a player with a high discount factor is able to make a large

investment. On the other hand, a player who induces a rejection must be sufficiently
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patient. In other words, players’ differences in discounting are marginal. This implies

that the cost of a rejection for a proposer is low, but so is the gain. In conclusion, if

the gain from a rejection is smaller than the cost of a rejection then a proposer will

never have an incentive to make an unacceptable proposal. However, when the gain

from a rejection is larger than the costs, then an equilibrium with delays can exist.
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