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Abstract 

 

The purpose of this paper is to see how the term structure of interest rates has evolved 

in the sterling and euro treasury bond markets over the period 1999-2003. German 

bonds have been used as a proxy for euro-denominated bonds. A state-space 

representation for the single-factor Cox, Ingersoll and Ross (1985) model is employed 

to analyse the intertemporal dynamics of the term structure. Quasi-maximum 

likelihood estimates of the model parameters are obtained by using the Kalman filter 

to calculate the likelihood function. Results of the empirical analysis show that while 

the unobserved instantaneous interest  rate exhibits mean reverting behaviour in both 

the UK and Germany,  the mean reversion of the interest rate process has been 

relatively slower in the UK.  The volatility component, which shocks the process at 

each step in time is also higher in the UK as compared to Germany.   
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1 Introduction 

  

Term structure modelling can explore two distinct, but related aspects. The 

first involves the fitting of a zero-coupon yield curve to a set of cross-sectional bond 

price observations on any given trading day. The second aspect, which is the focus of 

this paper, relates to the specification of the intertemporal dynamics of the term 

structure and addresses the issue of how bond yields evolve over time. Estimating the 

term structure is based on the premise that bonds with different maturities are traded 

at the same time. Bonds with long maturities are risky when held over short horizons 

and risk-averse investors demand compensation for bearing such risk. Arbitrage 

opportunities in these markets exist unless long-yields are risk-adjusted expectations 

of average future short rates. Restrictions are therefore imposed on  inter-temporal 

interest rate behaviour by using the no-arbitrage argument. The absence of  arbitrage, 

would  ensure that movements of the term structure do not permit conditions to occur 

under which market participants may earn risk-free profits.  

 

As interest rates are stochastic processes, models rely on the reduction of 

interest rate uncertainty and attempt to provide a parsimonious characterisation of the 

dynamics of the term structure. There exist various specifications that differ with 

respect to the number of underlying state variables and the type of the stochastic 

process. Affine term structure models are constructed by assuming that bond yields 

are a linear function of the underlying state variables that provide uncertainty to the 

model. Most modelling approaches are based on the concept that although interest 

rates change randomly over time, it is possible to divide the changes into two parts 

using a stochastic differential equation. The first part is a non-random, deterministic 
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component, called the drift of the process, and the second is the random or noise part 

which entails the volatility component of the process. Examples are the one-factor 

Vasicek (1977) model with constant volatility, the Cox-Ingersoll-Ross (1985) model  

with square-root volatility and the two-factor model of  Longstaff and Schwartz 

(1992). Stochastic differential equations have, in recent years, been increasingly used 

to model financial data. However, the process specified by a stochastic differential 

equation is defined in continuous time, while the observed data are sampled at 

discrete time intervals. As discussed in Durham and Gallant (2002) the resulting 

estimation problem turns out to be nontrivial, and research has focussed on 

developing computationally and statistically efficient estimation schemes. Although 

maximum likelihood is typically  the estimator of choice, the transition density is 

generally unknown and has to be approximated. 

 

The Vasicek (1977) model is a one-factor partial equilibrium model and starts 

out with the specification of a time series process for the instantaneous spot interest 

rate which is treated as the only factor of uncertainty. The no-arbitrage restriction then 

permits the derivation of a bond pricing formula whereby the bond price is a function 

of the unobserved instantaneous spot rate and the model's parameters. The approach 

was extended to include a second factor of uncertainty.  

 

Cox, Ingersoll and Ross (1985, CIR hereafter) develop a general equilibrium 

asset pricing model that allows the derivation of the term structure of interest rates. 

The model is set up as a single-good, continuous time economy with a single state 

variable. A multivariate version was developed by  Longstaff and Schwartz (1992) in 

which the two-factors were the short-term interest rate and the variance of changes in 
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the short-term interest rate. Duffie and Kan (1996) define a general class of 

multifactor affine models of the term structure that allows for the nesting of some of 

the aforementioned term structure models such as Vasicek (1978), CIR (1985) and 

Longstaff and Schwartz (1992).  

 

The literature would suggest that three state variables are adequate to explain 

most of the variability in bond yields. For example, Litterman and Scheinkman (1991) 

show that this can  be captured by the level, the steepness and the curvature of the 

term structure.  This paper focuses on the one-factor CIR model as the empirical 

estimation showed that the inclusion of additional factors did not increase the 

performance of the model for either country. A plausible explanation for this could be 

the limited period of observation. Most studies have concluded that the level is the 

most important factor in explaining interest variation over time. In fact, Litterman and 

Scheinkman (1991) have demonstrated that three factors notwithstanding, almost 90 

percent of the variation in US Treasury rates is attributable to the variation in the first 

factor, which is considered to correspond to the level of interest rates. Thus from an 

empirical point of view a one-factor CIR model can be considered acceptable. 

 

 

The purpose of this paper is to explore how the term structure has evolved in 

the sterling and euro treasury bond markets between January 1999 and January 2004. 

German bonds have been used to represent euro-denominated bonds as they are seen 

by market participants as the main component of the euro yield curve.  Although there 

exists a considerable literature on empirically  estimating the CIR model, most of the 

tests have been performed on US data. The few studies that have focussed on the UK 
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and European markets relate to the pre-EMU period. Steeley (1997) has modelled the 

forward premium in the UK gilt-edged market over the period 1982-96 using a two-

factor general equilibrium model of the term structure of interest rates. Nath and 

Nowman (2001) estimate multi-factor versions of the CIR model using the UK Gilt-

edged market data over the period 1982-97.  

 

It is believed that, this is the first study that estimates this model for the UK 

and Euro-denominated bond data since the launch of the single currency. By bringing 

together the empirical findings for the euro and sterling treasury bond markets an 

attempt is made to compare the dynamics of their  respective  term structures. This 

investigation into the intertemporal behaviour of the euro and sterling term structure 

may provide evidence on whether there exists any common factors. 

 

The rest of the paper is organised as follows. Section II provides the 

theoretical framework that discusses in detail the one-factor CIR model for the 

instantaneous interest rate. Section III provides an overview of the different 

estimation methods. In Section IV the state space representation of the CIR model is 

formulated and,  in Section V  the  Kalman filter algorithm is employed.  Section VI 

presents the data and results. Finally, Section VII concludes. 
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2 Theoretical Framework 

 

Affine term-structure models are constructed by assuming that bond yields are 

a linear function of the underlying state variables that provide uncertainty in the 

model. Developing an affine term structure model involves a specification of a 

stochastic process for the state variables, or factors, that drive the dynamics of the 

term structure. In a one-factor term structure model, the factor is generally taken to be 

the instantaneous spot rate of interest, r.  As mentioned in the introduction, it is 

possible to divide the change in its value (dr) into two parts, the first is a non-random 

deterministic component [µ(r,t)], called the drift of the process, and the second is a 

diffusion term or random part [σ(r,t)dW], which is the variance of the process. This 

involves the assumption, that the interest rate process is generated by a standard 

Brownian motion1, also known as a Wiener process, and that its dynamics can be 

described by the following first-order stochastic differential equation: 

 

 ( , ) ( , )dr r t dt r t dWµ σ= +      (1) 

 

where dW  is a Wiener process.  

 

The price of a pure discount bond, ( , )P t T ,  in an affine term structure model would 

have the following functional form: 

 

  ( , ) exp( ( ) ( ) )P t T A B Xτ τ= −     (2) 

                                                            
1 A Brownian Motion is a stochastic process where the change in a variable during each short period of 
time ∆t has a normal distribution with mean equal to zero and a variance that is proportional to time.   
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where X is the state vector. The coefficients ( )A τ  and  ( )B τ  are functions of the time 

to maturity, T tτ = − , the parameters  of the interest rate process and the market price 

of interest rate risk.  

 

 The set of prices of zero-coupon bonds as a function of  time to maturity, 

T tτ = −  will define the zero-coupon yield curve ( , )R t T , where 

 

  1 ( ) ln ( )( , ) ln[ ( , )] B X AR t T P t T τ τ
τ τ

−
= − =   (3) 

 

 The affine yield class property is displayed in equation (3). The zero-coupon 

yields are affine functions of the underlying factors, in this example the instantaneous 

short rate.  For models where both the drift and volatility specifications are affine in r, 

it is possible to have closed form formulae for ( )A τ  and  ( )B τ . Both the Vasicek 

(1977) and CIR (1985) models fulfil this criterion resulting in closed form solutions 

for the prices of pure discount bonds.   
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3 The Cox, Ingersoll, and Ross (1985) Model 

 

The CIR model is characterised by one factor, the instantaneous interest rate r,  that 

evolves in continuous time as described by the following first-order differential 

equation,  

 

  ( )dr k r dt rdwθ σ= − +   (4) 

 

Interest rates appear to be pulled back to some long-term average level over time and 

this phenomenon is known as mean reversion. Therefore, the drift term includes a 

long-term mean parameter, defined as θ , and a mean reversion parameter denoted  k. 

When the short rate deviates from its long-term mean, θ , it will revert back to this 

mean at a speed governed by the parameter k. This process is hampered in its ability 

to revert back to its mean level by the diffusion term, which essentially shocks the 

process at each step in time. This model is time homogeneous in the sense that neither 

the drift nor volatility terms are a function of time. By virtue of the square root 

process interest rates are prevented from becoming negative and are conditionally 

heteroskedastic i.e. the volatility of the short-term interest rates increases with an 

increase in the level of short-term interest rates. dw  is a Wiener process. Gaussian 

processes like the Vasicek (1977) model and the square-root processes as proposed in 

the CIR (1985) model are the most popular versions of affine diffusions. While 

Gaussian processes have a constant variance matrix, square root processes introduce 

conditional heteroskedasticity by allowing σ  to depend on the state. However, given 

the apparent stochastic properties of the volatility of interest rates, Gaussian or 

constant volatility models imply an element of simplification. In this study the 
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movements in bond yields are estimated using the square root processes of the CIR 

model. 

 

The absence of arbitrage would, intuitively, mean that assets which exhibit the same 

risk should earn exactly the same (excess) return. Thus in an arbitrage-free  market, 

bonds of all maturities have the same market price of risk, which does not depend on 

maturity. Using risk-adjusted processes consistent with the absence of arbitrage, the 

effect of the market price of risk on the level of the short can be incorporated in the 

model. Therefore, the CIR process given by equation (4) can be represented as: 

 

( ( ) )dr k r r dt rdwθ λ σ= − − +     (5) 

 

where λ is the market value of risk. For the one-factor CIR model, the solution for the 

nominal price of a pure discount bond is given by 

 

( , )( , ) ( , ) B t T rP t T A t T e−=      (6) 

 

where, after incorporating the market value of risk, λ,  

 

 
2

( )( ) / 2
2 /

( )

2( , ) [ ]
( )( 1) 2

k T t
k

T t

eA t T
k e

γ λ
θ σ

γ

γ
γ λ γ

+ + −

−=
+ + − +

   (7) 

 

 
( )

( )

2( 1)( , )
( )( 1) 2

T t

T t

eB t T
k e

γ

γγ λ γ

−

−

−
=

+ + − +
    (8) 
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2 2( ) 2kγ λ σ= + +       (9) 

 

The continuously compounded yield for discount bonds is given by: 

 

 log ( , )( , ) P t TR t T
T t

= −
−

      (10) 

 

Using (6), this can be rewritten as: 

 

log ( , ) ( , )( , ) A t T B t TR t T
T t

− +
=

−
    (11) 

 

 

4 Estimating the CIR model 

 

A variety of methods have been developed in the finance literature for the 

estimation of  CIR-type models. The two basic approaches may be characterised as 

the cross section approach and the time series approach.  

 

In the cross-section approach, only information on the yields of bonds with 

different maturities at a point in time is used in the estimation process. This generates 

a different set of parameters for each time period. The state variable rt, treated as an 

additional unknown parameter, is estimated jointly with the structural parameters. 

This solution is chosen when the purpose of the econometric analysis is to price 

derivative assets. The disadvantage of this approach is that the risk premium 

parameters cannot be identified because they are subsumed in the drift term. 



 11

Moreover, if the estimation is carried out sequentially at different points in time with 

different cross sections of rates, the estimated parameters can vary with sudden jumps 

when the observations have to contend with temporary shocks.  

 

The time series approach, on the other hand, focuses on the dynamic 

implications of the model and ignores the cross-sectional information. A univariate 

time series approach is based on fitting equation (4) to estimate the parameters, using 

short-term observable data ( e.g. the yield of one-month Treasury bills or money 

market rates) as an approximation of the unknown parameter estimates. In order to 

properly capture the information contained in the observed interest rates  it would be 

necessary to use these rates across a range of maturities. However,  if multivariate 

time series data are used it would give rise to an identification problem. The CIR 

model implies that any cross section of rates observed at time t is a function of the 

parameters (which are constant over time) and the value of the risk factors at time t. 

Therefore, using more interest rates than risk factors would result in the model 

becoming underidentified whereby its parameters cannot be consistently estimated. 

One solution is to allow for discrepancies between observed rates and the theoretical 

rates i.e. to introduce measurement errors in the relationship between observed rates 

and the state factors. These deviations can be explained by actual market features such 

as bid-ask spreads, rounding of  prices, differences in the timing of observing 

financial variables and non-synchronous trading. In a modelling context this can be 

done by assuming that observed rates are affected by temporary shocks which are 

Gaussian white noise errors. Therefore equation (3) which  is treated as an exact 

relationship  between factors and yields would now read as: 
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( ) ln ( )( ) t
B X AR τ ττ ε
τ τ

= − +  

 

Although the model is affine in the  state vector X, the functions ( )A τ  and 

( )B τ  are  non-linear functions of the underlying parameters. So when this assumption 

about measurement errors is made, maximum likelihood estimation is no longer 

feasible, because the density of the yields is not available in closed form. Depending 

on the structure of the variance-covariance matrix of measurement errors, different 

estimation methods have been proposed using a panel-data approach. 

 

 A basic approach to resolving this estimation problem is to select as many 

different yields as factors and obtain the factors by inverting the model. Pearson and 

Sun (1994) followed this approach by formulating a likelihood function for a two-

factor CIR model on the basis of the conditional density of the underlying factors. The 

model is estimated by replacing the two factors by two zero-coupon yields that are 

observed without error. Chen and Scott (1993) estimate a model with two factors and 

four maturities. In this case, the variance-covariance matrix of  measurement errors 

has less than full rank.  They assume that two yields are observed without error so that 

the model for these two maturities can be inverted directly to obtain the factors. The 

other yields are assumed to be measured with a normally distributed measurement 

error. The state variables can be uniquely determined and the inversion approach can 

be used to obtain the joint density function and therefore the log-likelihood function.  

 

 In the case where the variance-covariance matrix of measurement errors is 

assumed to be full rank, a quasi-maximum likelihood estimator based on the linear 
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Kalman filter is a common technique. The Kalman filter has been used in a series of 

papers dealing with the estimation of exponential affine term structure models. The 

Kalman filter is a linear estimation method and  makes use of  the assumption of an  

affine relationship between bond yields and state variables to subsequently estimate 

the parameter set. The main advantage of this technique stems from the fact  that it 

allows the state variables to be unobserved magnitudes.   

 

The nature of the application of the Kalman filter depends on whether the term 

structure model is Gaussian such as the Vasicek model or non-Gaussian such as the 

CIR model. A Gaussian distribution is fully characterised by its first two moments 

and the exact likelihood function is obtained as a by-product of the Kalman filter 

algorithm. An example of the Gaussian case is provided in Babbs and Nowman 

(1999), who estimated a two-factor generalised Vasicek model.  Babbs and Nowman 

(1999) observed eight spot rates with  maturities between one and ten years.  When 

using non-Gaussian models the exact likelihood function is not available in closed-

form, however a quasi-maximum likelihood estimator can be constructed from the 

first and second conditional  moments of the state variables. Examples of the non-

Gaussian CIR model, may be found in Duan and Simonato (1995), Lund (1997) and 

Geyer and Pichler (1999). De Jong (2000) provides an empirical analysis of  the 

affine class of term structure models proposed by Duffie and Kan (1996) using a 

quasi-maximum likelihood estimator. 

 

Markov chain Monte Carlo estimation is an alternative to the Quasi Maximum 

Likelihood approach and has recently been proposed by Lamoureax and Witte (2002). 

The main drawback of this approach is that it turns out to be computationally 
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extremely time consuming because the state variables evolve very slowly. 

Lamoureaux and Witte (2002) report that it takes more than five days on a very 

sophisticated machine to obtain a sufficient number of iterations for a two-factor 

model. 

 

In this paper, a panel-data estimation of the CIR model is presented from 

multivariate time series data. Combined use of time series and cross section data as 

entailed in the panel data approach allows for the identification of the market price of 

interest-rate risk, which is not identified from each dimension separately. Panel data 

estimation also provides an effective specification of the model. Its cross section 

dimension captures the restrictions imposed by the model on the parameters of the 

bond pricing equations and its time series dimension captures the dynamic model for 

the state variables. 

 

The approach is based on a state-space representation of the term structure 

model where the underlying state variable(s) is treated as unobservable. This obviates 

the need to employ proxies for the unobserved factors. The yields are affine in the 

underlying state variables and the model explicitly allows for measurement errors. 

Quasi-maximum likelihood estimates of the model parameters are obtained by using 

an approximate Kalman filter to calculate the likelihood function.  
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5 The state space representation 

 

 This section demonstrates the reformulation of the CIR model given by 

equation (5) in the state space form and draws on the explanations provided in Harvey 

(1992).  This formulation includes a measurement equation that relates the 

observable, or measurable  bond yields to the unobservable state variables. The 

unobservable state variables are, in turn, assumed to follow a Markov process 

described by the transition equation.  

 

 Let the state vector  X  be a Markov process with )( 00 XpX ≈  and 

).|(| 11 −− ≈ tttt XXpXX  0( )P X is the density of the initial state and 
1

( )t t
P X X

−
is the 

transition density. The exact transition density of the state variable for the CIR model 

is a non-central chi-square,  2[2 ;2 2,2 ]tcX q uχ + , with 2 2q +  degrees of freedom and 

noncentrality parameter, 2u. (CIR 1985). Estimation of the unobservable state 

variables by the Kalman filter coupled with a quasi-maximum likelihood estimation 

of the model parameters can be accomplished by substituting the exact transition 

density by a Gaussian or normal density. Therefore, the probability density of the 

state vector at time t, conditional on its value at time, t-1, should be distributed in a 

manner such that: 

 

 ),(| 1 tttt QNXX µ≈−  
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where tµ and tQ  are distributed in such a way that the two moments of the 

approximate normal and exact transition density are equal. The elements of a   j x 1 

vector tµ  would be defined as 

 

 , 1,[1 ] jk tk t
t j j t je X eµ θ − ∆− ∆

−= − +    (12) 

 

where t∆ =  the time interval between t and t-1. 

The matrix  tQ  is diagonal and is dependent on the state of the process. For a three-

factor model, the conditional variance of the transition system would have the 

following form: 

1

2

3

00
0 0
00

it
Q

ξ
ξ
ξ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

, 

 

where 
2 2

22
1(1 ) ( ) ( )

2
j j jk t k t k tj j j

j j i
j j

e e e X t
k k

θ σ σ
ξ − ∆ − ∆ − ∆

−= − + −  (13) 

for 1, 2,3.j =  

 

Yields on zero-coupon bonds are the inputs to the estimation process. Eight maturities 

have been chosen that span the yield curve from 2 years to 25 years in order to 

incorporate information affecting trading at the short, medium and long ends of the 

yield curve.  
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In the CIR model, the measurement equation represents the affine relationship 

between zero coupon bond yields and the state variables.  Under the assumption that 

measurement errors in bond yields are additive and normally distributed,   the 

measurement equation for observed yields is given by:   

 

 ( ) ( )t t tR Z X dψ ψ ε= + + , ),0( HNt ≈ε      (14) 

 

where 1,...( , , , , )Nhψ θ κ σ λ=  is a vector of hyperparameters which contains the 

unknown parameters of the model including the parameters from the distribution of 

measurement errors. tR  is the n x 1 vector of observations, tX  is the unobservable   j 

x 1 state vector at time t,  Z  is an  n x  j   matrix, d  is an  n x 1 vector, tε  is an n x 1 

vector of  measurement errors. H is the variance-covariance matrix of  tε . In this 

estimation the number of observed bonds and the associated maturities do not change 

over time. Therefore, H has a constant dimension of n x n and is assumed to be a 

diagonal matrix. As 8  different maturities are considered in this estimation,  the 

variance-covariance matrix of the measurement errors, H ,  is an 8 x 8 diagonal 

matrix.  

 

 

2
1

2
2

2
8

0 0
0 0

00

h
h

H

h

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

L

L

MMOM

K

 

 

The values in the diagonal would differ implying that the variance of 

measurement errors will depend on the maturities under consideration. This can be 
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justified on the grounds that trading activity and, therefore, bid-ask spreads are not 

equally distributed across maturities. In the case of a one-factor affine term structure 

model, equation (14) would read as: 

 

 ( , ) log ( , )
t t t

B t T A t TR X
T t T t

ε= − +
− −

 ),0( HNt ≈ε  

 

The stochastic differential equation (5) represents the dynamics of the state variable as 

specified in continuous time. As the transition equation captures the discrete dynamics 

of the state variable, it corresponds to the discrete time version of equation (5). This, 

along with a first order autoregression model, is used to formulate the transition 

equation, 

 

1( ) ( ) ,t t tX X cφ ψ ψ η−= + +  1( ) 0,t tE η −ℑ =   1var( )t t tQη −ℑ =   (15) 

 

where 

(1 )jk t
jc eθ − ∆= −  is  j x 1 vector and  jk teφ − ∆=   is a  j x  j  diagonal matrix  

t∆ =  the time interval in the discrete sample (here 1 week)  

 and so the discretisation step 1
52t∆ =  for weekly data. 

tη  is g x 1 vector of disturbance terms with mean zero and variance-covariance matrix 

tQ  and where  1t−ℑ  represents the information available at time t - 1. 

 

It is further assumed that the error terms of the measurement ( tε ) and transition 

equations ( tη ) are not correlated. 
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6 The Kalman Filter 

 

Now that the model in (5) has been put in state space form, as defined in 

equations (14) and (15) and summarised below, the Kalman filter can be used  to 

obtain information about tX  from the observed zero coupon yields.  

 

Measurement Equation: 

( ) ( )t t tR Z X dψ ψ ε= + + ,   ),0( HNt ≈ε   

Transition Equation: 

1( ) ( ) ,t t tX X cφ ψ ψ η−= + +  1( ) 0,t tE η −ℑ =   1var( )t t tQη −ℑ =  

where 1,...( , , , , )Nhψ θ κ σ λ=  is a vector of hyperparameters which contains the 

unknown parameters of the model. 

 

A detailed explanation of the Kalman filter can be found in Harvey (1992) and 

Lutkepohl (1991). The Kalman filter recursion is a set of equations which allows an 

estimator to be updated once a new observation becomes available. It first forms an 

optimal predictor of the unobserved state variable vector  given its previously 

estimated value. This prediction is obtained using the distribution of the unobserved 

state variables, conditional on the previous estimated values. These estimates for the 

unobserved state variables are then updated using the information provided by the 

observed variables. Although the Kalman filter relies on the  normality assumption of 

the measurement error and initial state vector, it can calculate the likelihood function 

by decomposing the prediction error.  
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Consider the conditional distribution of the state vector tX  given information 

at time s. The mean and covariance matrix of this distribution can be defined as  

 

/
ˆ ( )t s s tX E X=        (16) 

ˆ ˆ([( )( ) ])s t tt s t s t sP E X X X X ′= − −     (17) 

 

where the expectations operator indicates that expectations are formed using 

the conditional distribution for that  period. 

  

To obtain the one-step ahead mean, 1
ˆ

t tX −  and covariance, 1t tP −  of  tX  we use 

the conditional distribution implied by setting  1s t= − . This yields the following 

prediction equations 

 

 1 11
ˆ ( ) ( ) ( )t t tt tX E X X cφ ψ ψ− −− = = +     (18) 

where   11
ˆ ( )t tt tX E X−− =  

  

 11 ( ) ( )t tt tP P Qφ ψ φ ψ−− ′= +      (19) 

where  11 1 1
ˆ ˆ[( )( ) ]t t tt t t t t tP E X X X X−− − − ′= − −  

 
 
 
 
To calculate the prediction equations we need to assume initial values for the 

elements of the state vector in the previous period, 1
ˆ

tX −  and the system matrices 

( )φ ψ ,  ( )c ψ  and ( )Q ψ . Starting values of  0X and 0P  are provided. 
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The second step in calculating the Kalman filter is to revise the estimation from step-

one using the updating equations that are actual observations which are based on 

actual observations of  R  available at time  t. The updating equations are given by  

 

1 1
ˆ

t t t tR ZX d− −= + ;   estimation of  tR     (20)  

1t t t tv R R −= − ;   observation vector estimation error  (21) 

1t tt tF ZP Z H− ′= + ;  covariance matrix of 1t tR −    (22) 

1
1t t tt tK P Z F −
− ′= ;  Kalman gain     (23) 

1
ˆ ˆ

t t tt tX X K v−= + ;  updating of  the state vector   (24) 

1 1t t tt t t tP P K Z P− −= − ;  updating of state covariance matrix  (25) 

 

The prediction and update steps must be repeated for each discrete-time step in the 

data sample. For the analysis in this chapter , weekly observations over a period of 

five years were used.  

 

The intuition underlying the Kalman filter is that ˆ
tX  is the best linear approximation 

of the true state vector tX , if the state vector estimation error, ˆ( )t tX X− is 

independent of past and present observations tR , i.e.  

 

  ˆ[( ), ] 0t t sCov X X R− = ;   s = 1, …, t.    (26) 

 

The Kalman gain, tK  defined in equation (23) is derived to ensure that the above 

condition holds. In order to elaborate on this, one starts by assuming that the state 
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vector estimation error, ˆ( )t tX X− is equal to the difference between the true state 

vector, tX  and the prediction of the state vector based on information in the previous 

period, 1
ˆ

t tX −  net of a proportion,  tK  of the observation vector estimation error, 

1( )t t tR R −− , i.e.  

 

  1 1
ˆ ˆ( ) ( ) ( )t t t t tt t t tX X X X K R R− −− = − − − .  (27) 

 

Equation (26) implies the state updating equation given by equation (24) i.e. 

 

  1
ˆ ˆ

t t tt tX X K v−= +  

 

where 1( )t t t tv R R −= −   which was defined in equation (21). 

The above discussion implies that for the observations sR , s = 1, …, t-1 and any 

arbitrary matrix tK  the following condition must hold 

[ ˆ[ , ]t t sCov X X R− ] = 1 1
ˆ[{( ) ( )}, ] 0t t t st t t tCov X X K R R R− −− − − =   

         =  1 1[( ), ] [( ), ] 0t s t t st t t tCov X X R K Cov R R R− −− − − =  (28) 

   s =  1,…., t - 1.      

 

As discussed in Duan and Simonato (1998),  when the state space model is  Gaussian, 

the Kalman filter provides an optimal solution to predicting, updating and evaluating 

the likelihood function. When the state-space model is non-Gaussian, the Kalman 

filter can still be applied to obtain approximate first and second moments of the model 

and the resulting filter is quasi-optimal. The use of this quasi-optimal filter yields an 
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approximate quasi-likelihood function with which the parameter estimation can be 

carried out. 

 

Quasi-Maximum likelihood estimation 

 

In the state space form described above it is not possible to write the density of the 

observations 1,..., nR R  directly, because the conditional density is assumed. The joint 

density function of  the n x 1 vector  of observations is given by 

 

  1 1
1

ln ( ,... ; ) ( ),
n

n t t
t

L R R p Rψ −
=

= ℑ∏  

 

 where ψ  is a vector of hyperparameters and 1( )t tp R −ℑ is the distribution of  tR  

conditional on the information set, ℑ  at time t - 1. Given the information set 1t−ℑ , the 

true state vector is normally distributed with mean 1
ˆ

t tX −  and covariance matrix tP . 

Hence, tR  is also normally distributed with mean 1 1
ˆ

t tt t t tR Z X d− −= +  and error 

variance-covariance matrix tF .  

 

Assuming that the prediction errors are normally distributed, the log-likelihood 

function is given by, 

 

 ' 1
1

1 1

1 1log ( ,..., ; ) log 2 log
2 2 2

n T

n t t t t
t t

nL R R F v F vψ π −

= =

= − − −∑ ∑ … (29) 
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Since the prediction error is Gaussian, equation (29) is the quasi maximum likelihood 

estimator which best explains the observed values of tR . Both tF  and tv  depend upon 

the  parameter set given by ψ . Therefore, ψ  is chosen so as to maximise the 

likelihood function log L . 
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7 Data and Estimation Results 

 

Data description 

The data comprises 265 weekly observations of  zero-coupon yields for UK and 

German Treasury bonds from January 6 1999 to January 28, 2003. These observations 

were sampled every Wednesday to take advantage of high liquidity and avoid 

beginning and end of week effects. The data sets have a panel data structure with a 

time dimension and a cross-sectional (maturity) dimension. For the UK, the data set 

used here are zero coupon yields available in the Bank of England public domain 

yield curve database. In the case of Germany, zero coupon yields on euro-

denominated bonds have been sourced from Reuters. Eight different maturities that 

would broadly cover the maturity spectrum of the yield curve are considered; they are 

2-, 3-, 5-, 7-, 10-, 15-, 20- and 25-year bonds. Table 1 provides the summary statistics 

for the estimated zero coupon yields. 

 

 
Table 1    
Summary statistics of zero coupon yields: 
Germany and UK (Jan 1999 to Jan 2004) 

 
  
Maturity 

    Mean Yield Standard Deviation

   years GER UK GER UK 
     

2 4.18 4.89 0.87 0.86
3 4.36 4.97 0.79 0.78
5 4.61 5.00 0.67 0.64
7 4.83 4.97 0.56 0.52
10 5.05 4.87 0.51 0.35
15 5.12 4.73 0.50 0.21
20 5.55 4.60 0.39 0.22
25 5.56 4.48 0.39 0.24
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Figure 1 shows the dynamic path of the UK term structure between January, 1999 and  

January, 2004.  Similarly, Figure 2 shows the dynamic path of the German term 

structure over the aforesaid period.  

 

 

Figure  1  Dynamic path of the UK Term Structure  (Jan'99 -Jan'04) 

 

 

In contrast to the UK, the German term structure has evolved in  a steady manner with 

no dramatic changes. It has maintained an upward slope during the five period since 

the launch of the euro. 
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Figure 2 Dynamic path of the German term structure (Jan'99 -Jan'04) 
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Parameter Estimation 

 

The Kalman filter was used to estimate the one-factor CIR model using data on the 

UK and German term structure of interest rates. The objective was to estimate the 

parameters of the processes that are posited to drive interest rate changes.  

 

The standard errors of the parameter vector 1 8( , , , , , , )h hψ κ θ σ λ= L can be 

computed by using the result shown by White (1982). He showed that the covariance 

matrix for ˆ( )n ψ ψ−  converges to  

 

 
1 1

2 2

i j i i i j

L L L LE E E
ψ ψ ψ ψ ψ ψ

− −
⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂
⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥ ⎢ ⎥⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

 

 

where L  is the log-likelihood function. The standard errors are given by the diagonals 

of the above matrix result. Thus for each observation, the partial derivatives of the 

likelihood with respect to the twelve parameters 1 8( , , , , , , )h hψ κ θ σ λ= L were 

numerically determined, evaluated at the maximum likelihood estimate ψ̂ . 

 

The elements of  
i

L
ψ
∂
∂

 can be computed by using the symmetric central difference 

method. 

   ( ) ( )
2

i i i i

i i

L LL ψ δ ψ δ
ψ δ

+ − −∂
=

∂
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Diagonal elements of  
2

, ( )
i j

L i j
ψ ψ
∂

=
∂ ∂

 

 

These are 
2

2
i

L
ψ
∂
∂

 and can be computed using the symmetric central difference method. 

 

  
2

2

( ) ( ) ( ) ( )i i i i i i

i i

i i

L L L L
L

ψ δ ψ ψ ψ δ
δ δ

ψ δ

+ − − −
−

∂
=

∂
 

or  
2

2 2

( ) 2 ( ) ( )i i i i i

i i

L L LL ψ δ ψ ψ δ
ψ δ

+ − + −∂
=

∂
 

 

Off-Diagonal elements of  
2

, ( )
i j

L i j
ψ ψ
∂

≠
∂ ∂

 

 

These are 
2

i j

L
ψ ψ
∂

∂ ∂
 and can be computed along each axis (i or j) in turn so that  

 

2

( , ) ( , ) ( , ) ( , )
2 2

2

i i j j i i j j i i j j i i j j

i i

i j j

L L L L
L

ψ δ ψ δ ψ δ ψ δ ψ δ ψ δ ψ δ ψ δ
δ δ

ψ ψ δ

+ + − − + + − − + −
−

∂
=

∂ ∂
 

 

2 ( , ) ( , ) ( , ) ( , )
4

i i j j i i j j i i j j i i j j

i j i j

L L L LL ψ δ ψ δ ψ δ ψ δ ψ δ ψ δ ψ δ ψ δ
ψ ψ δ δ

+ + − − + − + − + − −∂
=

∂ ∂
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Estimation Results 

 

In keeping with the different dynamics of the term structure observed in the two 

markets different starting values are chosen. For the UK term structure, the true 

values or initial starting values chosen for the parameters were 0.15κ = , 0.05θ = , 

0.1σ = , 0.1λ = − . Results of the parameter estimation using the Kalman filter over 

the entire observation period from January, 1999 to January, 2004 are shown in Table 

2. Figures in parenthesis indicate t-values. 

 

Table 2  The Kalman Filter estimates of the one-factor CIR model for 
       UK Treasury bond yields from 06.01.1999 to 28.01.2004 
___________________________________________________________ 

   κ           θ                 σ     λ  

--------------------------------------------------------------------------------------- 

0.1443       0.0879    0.0801  -0.1176 

(3.45)                   (3.46)               (3.76)               (2.53) 

__________________________________________________________ 

           

Significant parameter estimates were obtained for all the parameters at the 5% level  

The significant mean reversion parameter of   0.1443 implies  mean reversion in the 

underlying interest rate. The estimate of 0.1443 indicates a mean half life of 4.8 years 

which is the expected time for the short rate to return halfway to its long-run average 

mean, θ.2 Half-life gives the slowness of the mean reversion process and a value of 

4.8 years would indicate slow mean reversion for interest rates. Accordingly, this 

process is also characterised by a low but significant volatility estimate (σ = 0.0801). 
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The market  price of risk (λ = -0.1176) is negative, a necessary condition for positive 

risk premia. The result implies that the  risk premium for holding long term bonds is 

positive. 

 

In  the case of the German term structure, the initial starting values chosen for the 

parameters were 0.15κ = , 0.04θ = , 0.05σ = , 0.1λ = − . Results of the parameter 

estimation using the Kalman filter are shown in Table 3. Figures in parenthesis 

indicate t-values. 

 

Table 3   The Kalman Filter estimates of the one-factor CIR model for  
    German Treasury bond yields from 06.01.1999 to 28.01.2004 
___________________________________________________________ 

   κ           θ                 σ     λ  

--------------------------------------------------------------------------------------- 

0.1579            0.0646    0.0556  -0.00095 

(20.83)                 (15.1)               (2.37)               (0.12) 

__________________________________________________________ 

           

Parameter estimates are significant  for all the parameters except the market price of 

risk. This would suggest that this  variable has not been priced by the market. In 

accordance with the lower level of short-term yields for German Treasury bonds, the 

long-term mean parameter is 6.46 per cent as compared to 8.79 per cent for the UK 

Treasury. The mean reversion of 0.1579 implies a mean half-life of 4.38 years and 

this is somewhat smaller than that obtained for the UK term structure. However, the 

                                                                                                                                                                          
2 The half life is given by  0.5kte− = . This implies ln(0.5) /t k= −  



 32

volatility parameter given by 0.0556 is significantly smaller than that obtained for the 

UK term structure. 

 

6 Conclusion 

 

In this chapter a single-factor CIR model has been estimated for the UK and German 

term structure for the period January, 1999 to January, 2004. Modelling continuous 

time term structure models, started with the specification of a time series process for 

the instantaneous spot interest rate. The no-arbitrage condition then permits the 

derivation of a bond pricing formula whereby the bond price is a function of the 

unobserved instantaneous spot rate and the model's parameters. These parameters are 

the long-run mean, the speed of adjustment towards the long-run mean, the volatility 

of the short-term interest rate and the market price of risk. The model was estimated 

for a single factor using a quasi maximum likelihood approach based on the Kalman 

filter. The Kalman filter algorithm uses observable data on bonds to extract values for 

the unobserved state variables. It combines both the cross section and time series 

information in the term structure. 

  

Yields on zero-coupon bonds were used as inputs for the estimation process. The 

empirical analysis was based on weekly observations of UK and German Treasury 

zero coupon bonds over the period January 1999 to January 2004. Eight maturities 

were chosen that spanned  the yield curve from 2 years to 25 years and were expected 

to incorporate influences on the short, medium and long end of the term structure. The 

parameters of the model and their standard errors were estimated.  
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Results of the empirical analysis showed that the unobserved instantaneous interest  

rate exhibits mean reverting behaviour in both the UK and German term structure. 

However, the mean reversion of the interest rate process has been relatively slower in 

the UK as compared to Germany since the introduction of the euro.  Accordingly, the 

volatility component, which shocks the process at each step in time was also higher in 

the UK as compared to Germany. The results indicated that the one-factor CIR model 

provides a good representation of the UK Gilt-Edged market. However, its inability to 

meaningfully account for the market price of risk has impinged on its efficacy in 

capturing the dynamics of the German term structure. 
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