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Abstract

The existence of conditional volatility as a statistical property of the foreign exchange
markets is well known, with ARCH-type models having been successfully applied to many
time series. The present paper works toward an economic explanation of this property
of the foreign exchange markets by examining the hypothesis that there are speculative
noise traders that are attracted to “hot” markets. A simple model is offered of such a
phenomenon, with the empirical implication that markets which are far away from their
“fundamental values” will be characterized by high volatility.

This empirical implication is then tested using data for the U.S. dollar against each
of the other G7 currencies. Fundamental values are estimated by applying filters to the
data. To examine whether our model fits the data better than an ARCH/GARCH random
walk, Monte Carlo simulations are used. In these simulations, random walks with the same
(G)ARCH parameters as the actual data series are constructed. The empirical tests of the
model show that the actual data includes the phenomenon that deviations from fundamentals
are associated with subsequent high volatility, and that this phenomenon is more present in
the actual data than in the (G)ARCH random walk simulations.

1 Introduction

The hypothesis that the innovation to prices in financial markets in each time period is in-

dependently and identically distributed has been long realized as a simplifying assumption.

The proliferation of statistical models involving autoregressive conditional heteroskedasticity

has been driven in large part by economists seeking to represent more accurately the observed

process in many financial markets, including equity, debt, and currency markets.
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While a large amount of progress has been made in statistically characterizing volatility of

key financial variables as having a variety of autoregressive properties, somewhat less progress

has been made in understanding economically what drives this statistical property. The present

paper presents a model of “public interest” in financial markets, and examines whether it can

explain these statistical regularities in the foreign exchange market.

The model describes an environment in which non-informational trading has transitory

impacts on market prices. This interest is self-sustaining, in the sense that a large amount of

public interest in the market generates more publicity (for example, through news coverage).

The result of this publicity is that in the next period, a greater segment of the public enters,

either reinforcing the current trend or offsetting it. This means that “hot markets”, or those

markets priced far away from their “fundamental values”, will have more volatile prices than

markets for those assets which are currently priced close to their fundamental values.

This model is somewhat similar in spirit to DeLong, Shleifer, Summers, and Waldmann [6].

In DeLong et al., noise traders buy when prices have risen and sell when prices have fallen.

This creates self-reinforcing trends away from fundamental value as smart traders anticipate

their reactions and trade accordingly. The present model, however, has an infinite horizon and

focuses on the connections between noise trading and the heteroskedasticity of returns.

Whether the “hot markets” phenomenon can explain the time-series properties of volatility

is ultimately an empirical question. In order to test this empirically, both the “hot market”

phenomenon and the autoregressive volatility phenomenon must be quantified. The volatility

question is addressed by fitting the foreign exchange time series to ARCH and GARCH spec-

ifications in order to find a fitted measure of the conditional volatility time series. The “hot

market” question requires a measure of the distance between the market price and the funda-

mental price. In order to find a measure of the fundamental price that does not involve the

joint hypothesis of a specific exchange rate model (such as purchasing power parity) various

filters are used to separate the permanent trend from a transitory component. The permanent
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component is taken to be the fundamental value, with the transitory component representing

the effect on market price of transitory traders. Several filtering strategies are used to show

that the empirical results are robust to the choice of filtering methods.

The next section presents a simple model of the hot markets phenomenon. Section three

then describes in more detail the empirical testing strategy, while section four presents the result

of those tests. Section five then concludes.

2 Model

This section outlines a general model of the market for a financial asset. The asset itself is a

claim on a discrete cash flow stream {Ct}. The nature of this cash flow will depend on the

financial asset. In the case of debt instruments, it would be interest payments. In the case of

equity instruments, it may be dividend payouts. We focus on exchange rates, where a natural

interpretation of this cash flow stream would be the relative nominal short-term interest rates

of the two countries. The amount of this cash flow stream is known with certainty, and the

amount of the asset outstanding has been normalized to one unit. The market participants are

of two types: uninformed “noise traders”, who have an inelastic net demand (or supply) for the

asset, and “smart money”, who buy (or sell) the asset based on its expected return1.

Noise traders, who inelastically demand or supply an asset, represent relatively uninformed

public involvement in the financial market. In periods where a particular market is already

attracting a lot of noise traders, the market is “hot” and receives a lot of publicity. The result

is that many noise traders may be attracted, on either side of the market, in the next period.

The net demand (in dollars) of these noise traders in time t is thus taken to be some fraction

0 < α < 1 of those noise traders remaining from period t − 1, plus a new contingent of noise

1A model with “smart money” investors similar to those presented here but without the fad characteristics of
the “noise traders” can be found in Shiller [13].
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traders whose size is correlated with the previous supply of noise traders:

Ft = αFt−1 + δt|Ft−1| (1)

where δt is normally distributed with mean zero and variance σ2
δ . The value of δt is not known

until period t. This means that the expected value of next period’s noise demand is the fraction

α of this period’s noise demand:

EtFt+1 = αFt (2)

The expected value of any future period’s noise demand can then be seen iteratively to be:

EtFt+i = αiFt (3)

The variance of next period’s noise supply depends on the current absolute level of noise trading:

V art(Ft+1) = σ2
δ (Ft)2 (4)

There are also “smart money” investors whose demand for stock is elastic and increasing

in the expected return. Since this paper does not model fundamental risk, variability in the

expected return is caused only by the price effects of the noise traders. The smart money

demand for shares in any given period is linear in the expected return over the next period:

St =
(EtRt − ρ)

ϕ
(5)

where ρ can be interpreted as a normal rate of return (the shadow cost of capital to the smart

money traders) and ϕ a measure of the risk aversion of the smart money2. The expected real

return on the asset is the cash flow for one period plus the expected capital gain, expressed as

2To traders with finite horizons, the noise traders create price risk even though the asset has no fundamental
risk.
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fraction of the purchase price:

EtRt =
Ct+1 + EtPt+1 − Pt

Pt
(6)

This means the smart money demand can be restated as:

St =

(
Ct+1+EtPt+1−Pt

Pt
− ρ

)
ϕ

(7)

In equilibrium, the amount of the asset outstanding (which has been normalized to unity) must

equal the smart money demand plus the noise trader net demand (expressed in shares).

1 = St +
Ft

Pt
(8)

Using equation (7), this can be rewritten as

1 =
1
ϕ

(
Ct+1 + EtPt+1 − Pt

Pt
− ρ

)
+

Ft

Pt
(9)

This can be solved for the current period’s price Pt:

Pt =
1
ϕ

(Ct+1 + EtPt+1 − Pt − ρPt) + Ft

ϕPt = Ct+1 + EtPt+1 − (1 + ρ)Pt + ϕFt

(1 + ρ + ϕ)Pt = EtPt+1 + Ct+1 + ϕFt (10)

If Pt is unbounded, then (10) can have “bubble”-type solutions. However, we focus on the

solution which is not characterized by these bubbles. A sufficient condition for this is to place
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any upper bound on the expected discounted price of the asset. This yields the unique solution:

Pt =
∞∑
i=0

Ct+i+1 + ϕEtFt+i

(1 + ρ + ϕ)i+1
(11)

This price can be separated into a “fundamental value” deriving from the claim to the cash flow

and a term reflecting the distortions of the transitory traders:

Pt =
∞∑
i=0

Ct+i+1

(1 + ρ + ϕ)i+1
+ ϕ

∞∑
i=0

EtFt+i

(1 + ρ + ϕ)i+1
(12)

Denoting this “fundamental value” as Vt and using equation (3), we can rewrite (12) as:

Pt = Vt + ϕ
∞∑
i=0

αiFt

(1 + ρ + ϕ)i+1
(13)

= Vt +
ϕFt

1 + ρ + ϕ

∞∑
i=0

(
α

1 + ρ + ϕ

)i

= Vt +
ϕFt

1 + ρ + ϕ

(
1

1 − α
1+ρ+ϕ

)

= Vt +
ϕFt

1 + ρ + ϕ

(
1 + ρ + ϕ

1 + ρ + ϕ − α

)

Pt = Vt +
ϕFt

1 + ρ + ϕ− α
(14)

Equation (14) means that next period’s price is similarly given by:

Pt+1 = Vt+1 +
ϕFt+1

1 + ρ + ϕ − α
(15)

The expected value of next period’s price is increasing in the expected level of noise trader

demand:

EtPt+1 = Vt+1 +
ϕαFt

1 + ρ + ϕ− α
(16)

The variance of next period’s price, however, is increasing in the absolute value of the noise
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trader demand:

V artPt+1 =
ϕ

1 + ρ + ϕ − α
σ2

δ (Ft)2 (17)

Since equation (14) shows that noise traders distort the price Pt away from its fundamental

value Vt , the variance of next period’s price is increasing in the magnitude of the distortion of

this period’s price from fundamental value. Combining equations (14) and (17) shows this to

be the case:

V artPt+1 =
1 + ρ + ϕ − α

ϕ
σ2

δ (Pt − Vt)2 (18)

3 Empirical Methods

3.1 Data Description

The previous section derived some theoretical results with testable empirical implications. The

data on which this theory will be analyzed is weekly foreign exchange rates. The rates were

collected for each Friday close from 1978 through 1997. The country pairs are the United

States dollar against each of the other G7 currencies (Canada, France, (the Federal Republic

of) Germany, Italy, Japan, and the United Kingdom). In each case, logarithms have been taken

of the nominal exchange rate series.

3.2 Testing Strategy

Equation (18) is the key testable implication of this model. “Hot” markets, by virtue of the

same public interest which made their prices diverge from fundamental values, are also likely

to have more volatile returns. The goal will therefore be to determine whether deviations from

fundamental value explain changes in asset price volatility. This introduces three empirical

challenges: estimating fundamental value, estimating exchange rate volatility, and determining

whether the two are related.
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3.2.1 Estimating Fundamental Value

The first empirical challenge is to estimate the “fundamental value” of the asset in question,

which in the case of this paper will be the exchange rate. As combining equations (1) and (14)

implies, the noise trader’s effects on the market price are transitory deviations from fundamental

value. This means that a decomposition of the time series into permanent and transitory com-

ponents offers a plausible method to determine the fundamental value. This will be done using

a Hodrick-Prescott filter, a dynamic measure of central tendency which seeks to both match

the movements in the time series while maintaining a smooth filtered value. The alternative

to this statistical approach would be to pick a specific economic or structural model of “funda-

mental value”. For example, in the context of exchange rates, one could estimate purchasing

power parity. Unfortunately, this would then result in the empirical tests being tests of the

joint hypothesis of the interpretation of autoregressive volatility offered by this paper and the

economic model of fundamental value chosen. In order to focus on the question of time-varying

volatility, therefore, a statistical filtering technique rather than a particular economic model has

been chosen to estimate fundamental value.

The robustness of the results will be checked by separately subjecting the data to high-pass

filters with the threshold set at 26 weeks. The high-pass filter proposed by Baxter and King [1]

will be used as well as the modification to the Baxter and King filter proposed by Woitek [14].

3.2.2 Estimating Volatility

The second challenge is to estimate the volatility of the financial market price. It is well known

that time series in many financial markets including foreign exchange appear to be heteroskedas-

tic. We therefore seek to control for this effect by fitting the data to a heteroskedastic specifi-

cation in order to better represent these properties. In order to do this, autoregressive condi-

tional heteroskedasticity (ARCH)3 and generalized autoregressive conditional heteroskedasticity

3See Engle [7]
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(GARCH)4 statistical models have been applied to the data and the resulting fitted variances

are used to represent the volatility of the underlying series. The model to be estimated for the

innovations to the asset price will be an AR(n) model with ARCH or GARCH errors. Specifying

the time series as st, this implies that the process is given by:

∆st = a0 + a1∆st−1 + a2∆st−2 + . . . + an∆st−n + εt (19)

The variance ht of εt is given in an ARCH(q) process:

ht = c + q1ε
2
t−1 + q2ε

2
t−2 + . . . + qqε

2
t−q (20)

Alternatively, a GARCH(p,q) specification that allows for two channels of volatility persistence

is also used. Specifically, a GARCH(p,q) specification is one in which an ARCH(q) model is

augmented with p lagged terms of the variance term ht itself, and is given by:

ht = c + p1ht−1 + p2ht−2 + . . . ppht−p + q1ε
2
t−1 + q2ε

2
t−2 + . . . + qqε

2
t−q (21)

Based on the exchange rate data, we find that an AR(2) specification is an adequate time-

series representation of the change in the log spot exchange rate.5 Meanwhile, ARCH(2),

ARCH(3), and GARCH(2,3) processes are used to model the conditional variance function.6

Naturally, the entire data set is used to estimate the parameters in equations (20) and (21).

However, once these parameters have been chosen, the fitted variance for each period depends

only on lagged disturbance realizations. The present model predicts that deviations from fun-

damentals impact future volatility. This effect therefore will not appear fully in the ARCH and

4See Bollerslev [2]
5In most cases, an AR(1) would suffice, but the costs of overparameterizing slightly are small compared to

the alternative.
6A GARCH(1,3) model yielded unstable results for some currencies due to underparameterization. Hence, an

extra lag of ht was needed.
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GARCH specifications for several periods.

3.2.3 Do Deviations from Fundamentals Influence Volatility?

Equation (18) implies that a large (in magnitude) difference between market price Pt and

fundamental value Vt will create a large future volatility in the market price. Specifically, the

variance should be a linear function of the squared deviation (Pt − Vt)2. To incorporate the

lagged effect of observed variance on ARCH-fitted variance and the time needed for a price move

to attract public interest, the squared deviation has been lagged by 4 weeks. The ARCH-fitted

variance is then regressed on the lagged squared deviation.

3.2.4 Monte Carlo Estimation

An empirical finding that a large deviation from fundamentals results in high subsequent volatil-

ity validates the model and thereby provides an economic explanation for the ARCH character-

istics of the data.

Intuitively, one would expect even a simple random walk to produce some correlation be-

tween its ARCH-fitted variance and its deviation from a filtered trend if the data in fact follow

an ARCH specification. This is because a filter which seeks to smooth the series will tend to

produce large deviations in the regions of large jumps in the series: at the same time, the ARCH

specification necessarily predicts a large variance following large jumps in the series. A random

walk with ARCH innovations may have this property to an even greater degree than a random

walk with i.i.d. innovations. In order to account for this, Monte Carlo simulations have been

run in which a random walk is calibrated to have the same sort of innovations (including both

unconditional and conditional variances) as the underlying data series. The possibility that the

“hot markets” phenomenon merely a result of this spurious random walk correlation can then

be examined by comparing the coefficients from these random walk regressions of conditional

variance on filter deviations with the coefficients obtained from the actual foreign exchange
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data.7

This Monte Carlo testing procedure asks not only whether the present model can explain

the (G)ARCH properties in the data, but also whether it can improve on this statistical rep-

resentation. This is done by comparing actual data to a (G)ARCH-calibrated random walk.

Indeed, this empirical strategy is quite friendly to the hypothesis that the ARCH specification

is complete and the current model has nothing to add. Instead of merely asking whether the

present model can improve upon an ARCH model, we are asking whether the present model can

improve upon an ARCH model within an ARCH framework. Any improvements over the ARCH

specifications that the theoretical model predicts that may not be captured by the fitted ARCH

variance will not show up in the empirical results. To the extent that the model improves our

ability to forecast ARCH variance, then, presents striking evidence in favor of the endogenous

noise trading model being offered.

4 Empirical Results

The general result of equation (18) can be tested with a variety of filtering techniques and

heteroskedasticity specifications in order to analyze the robustness of the result. If the results

are robust to these alternative specifications, then the results can be seen as properties of the

data rather than specific techniques.

For each example, logs have been taken of the six nominal exchange rate series. Table

1 shows results for an ARCH(2) specification for the conditional variance. The first results

shown use a Hodrick-Prescott filter [12] with the smoothing parameter λ set to 57600.8 The

Hodrick-Prescott filter separates the series into a permanent and transitory component, and this

transitory component is used as a measure of the deviation from fundamentals. In accordance

7This Monte Carlo specification is even more important when a GARCH specification of variance is used. This
is because a large innovation in one period will directly affect the GARCH-estimated variance four periods later.
With our four-period lag between deviations and the resulting variance, ARCH(2) and ARCH(3) specifications
have too short a memory to for the large innovation to directly affect the ARCH-estimated variance four periods
later.

8Alternative values for λ were also used and do not qualitatively affect the results.
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with equation (18), this deviation is then squared.

The innovations of each series are fitted to an ARCH(2) process, and the q1 and q2 terms

from equation (20) are shown in the first two rows. This generates a fitted conditional variance

series, which is then regressed on the squared deviation (lagged four weeks) and twelve lagged

values of the fitted conditional variance (to eliminate serial correlation). The β value shown in

the third row of Table 1 is the coefficient on the lagged squared deviation, and the standard

error is shown below, with the associated and p-value for the hypothesis that β = 0. Notice that

in each case, these results are statistically significant at the 5% level, and generally at statistical

significance levels well above that. This evidence is supportive of the hypothesis of the present

model, that deviations from fundamentals affect future volatility in prices.

However, this evidence is not sufficient in itself to distinguish from an alternative, less well-

defined hypothesis: that there is some other unobserved force which happens to generate ARCH

properties in the data, and that ARCH innovations inherently generate the sort of results for β

being generated here. Indeed, at least the second half of this alternative hypothesis has intuitive

appeal: a large shock in one period will tend to generate a large deviation from the smooth

trend. At the same time, with an ARCH process, the same large shock will generate high future

conditional variance. Deviations and future conditional variance will therefore be correlated.

In order to control for this alternative hypothesis, Monte Carlo simulations have been run.

In each case, a random walk calibrated with the ARCH parameters q1 and q2 found in the

actual data is generated. This random series is then treated just as if it was actual data: first

the series is detrended to calculate squared deviations and the conditional variance series is

estimated. Then the conditional variance is regressed on the lagged squared deviation (with

lagged dependent variables, as above) regressed for a βMC coefficient. 1,000 iterations were

conducted for each currency, and the results are shown as the Monte Carlo βMC values. P-

values are then presented for the hypothesis that the actual data βD values equal the Monte

Carlo βMC values, based on the actual data standard errors.
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The results are that for each of the six currencies, as the model predicts, the βD value is a

larger positive number with the actual data than in a Monte Carlo simulation, or βD > βMC .

The statistical significance of this result varies, being significant at the 1% level for four of the

six currencies but not significant for the other two. Taken as a whole, however, these results

represent broad support for the model, particularly given the stringent nature of the empirical

strategy discussed earlier. The “hot markets” phenomenon appears to be an empirical regularity

of the exchange rate data, beyond what a random walk with ARCH errors could account for.

The next part of Table 1 presents results of the same process using a high-pass filter in place

of the Hodrick-Prescott filter. As outlined in Baxter and King [1], a high-pass filter attempts

to separate the dynamics having a frequency below some threshold (in this case, 26 weeks)

from dynamics having a frequency above that threshold. Separating low from high frequency

movements thus determines the series’ permanent and transitory components.

The same ARCH parameters obtain since the series has its conditional volatility estimated

separately from the detrending calculations. Again, the data coefficients βD are positive for each

currency, and significantly (at 1%) greater than zero for five of the six currencies (the Deutsche

mark just misses the 5% level). The significance level against the Monte Carlo values βMC ,

however, is different. The yen, pound, and lire continue to be highly significant, with p-values

of no more than 0.1%. The French franc is now also significant at the 5% level. However,

the Deutsche mark and Canadian dollar coefficients are insignificant, and the Canadian dollar

is now (by a small margin) generating a result (which is not significant) on the “wrong” side

of its Monte Carlo simulations. Taken as a whole, however, the results remain reasonably

encouraging.

Table 2 repeats the same process as Table 1, except that the conditional volatility is now

modeled as an ARCH(3) process. With the Hodrick-Prescott filters, the results are strikingly

similar to Table 1. The parameter values βD from the actual data, the parameter values βMC

from the generated data, and the statistical coefficients are quite similar to the ARCH(2) results.
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The inference is that the results are robust to alternative ARCH specifications. Similarly, the

results using the Baxter-King high-pass filter are similar to those in Table 1. The only dramatic

change is in the case of the Deutsche mark, which is now showing more signs of “hot markets”

than its Monte Carlo counterpart. All six currencies now have a stronger “hot markets” effect

in the actual data than in calibrated ARCH(3) random walks, and in four of the six cases the

results are statistically significant. This suggests that the insignificance (and marginal failure

of the ARCH(2)-calibrated Deutsche mark) of some results may be due primarily to excessively

parsimonious representations of the conditional variance.

Finally, a GARCH(2,3) has been analyzed and the results reported in Table 3. For the

Hodrick-Prescott filters, the data reports results which are always greater than zero at a 5%

significance level, and aside from the Canadian dollar, at a 0.1% significance level. Four of the

six currencies show results different than their Monte Carlo estimates at the 1% significance

level, and all currencies have results whose point estimates are stronger than the GARCH

random walk can explain. The qualitative results are quite similar when the Baxter-King high

pass filter is applied instead.

Woitek [14] has proposed a modification to the Baxter-King filter to ameliorate side lobe

problems. As a further robustness check, the results have been computed once again using his

algorithm. The bottom of each of Tables 1, 2, and 3 show the results, which are very close to

the unmodified Baxter-King filter results, demonstrating further robustness of the results.

5 Conclusion

This paper has presented a model of “hot markets”. In the model presented, non-informational

“noise traders” are attracted in larger number (on either side of the market) to markets which

are currently “hot”, that is, moving away from their long-term fundamental values. The model

generates the testable prediction that a large deviation from fundamentals will increase future

volatility in the prices.
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The model therefore offers an economic interpretation of autoregressive conditional het-

eroskedasticity (ARCH) and generalized autoregressive conditional heteroskedasticity (GARCH)

models. Importantly, however, the empirical tests on G7 foreign exchange rate data not only

validate this economic interpretation, but also show that the model can improve on statistical

ARCH/GARCH models which do not incorporate this economic phenomenon.

References

[1] Baxter, Marianne, and R.G. King, “Measuring Business Cycles: Approximate Band-Pass
Filters for Economic Time Series”, NBER Working Paper 5022, February 1995

[2] Bollerslev, T. “Generalized Autoregressive Conditional Heteroskedasticity”, Journal of

Econometrics, 31, 1986, pp. 307-327

[3] Campbell, John Y., and Albert S. Kyle, “Smart Money, Noise Trading and Stock Price
Behavior”, Review of Economic Studies, 60, 1993, pp. 1-34

[4] Caplin, Andrew, and John Leahy, “Business as Usual, Market Crashes, and Wisdom After
the Fact”, American Economic Review, 84, 1994, pp. 548-565

[5] Cogley, Timothy, and James M. Nason, “Effects of the Hodrick-Prescott Filter on Trend
and Difference Stationary Time Series: Implications for Business Cycle Research”, Journal

of Economic Dynamics and Control, 19, 1995, pp. 253-278

[6] DeLong, J. Bradford, Andrei Shleifer, Lawrence H. Summers, and Robert J. Waldmann,
“Positive Feedback Investment Strategies and Destabilizing Rational Speculation”, Journal

of Finance, 45, 1990, pp. 379-395

[7] Engle, R., “Autoregressive Conditional Heteroskedasticity with Estimates of the Variance
of UK Inflation”, Econometrica, 50, 1982, pp. 987-1008

[8] Faruqee, Hamid, and Lee Redding, “Endogenous Liquidity Providers and Exchange Rate
Dynamics”, Canadian Journal of Economics, forthcoming

[9] Froot, Kenneth A., David S. Scharfstein, and Jeremy C. Stein, “Herd on the Street: Infor-
mational Inefficiencies in a Market with Short-Term Speculation”, Journal of Finance, 47,
1992, pp. 1461-1484

[10] Grossman, Sanford J., and Merton H. Miller, “Liquidity and Market Structure”, Journal
of Finance, 43, 1988, pp. 617-633

[11] Harvey, A.C., and A. Jaeger, “Detrending, Stylized Facts and the Business Cycle”, Journal
of Applied Econometrics, 8, 1993, pp. 231-247

[12] Hodrick, R., and E.C. Prescott, “Post-War U.S. Business Cycles: An Empirical Investiga-
tion”, Journal of Money, Credit, and Banking, 29, 1997, pp. 1-16

[13] Shiller, Robert J., “Stock Prices and Social Dynamics”, Brookings Papers on Economic

Activity, 1984:2, pp. 457-510

[14] Woitek, Ulrich, “A Note on the Baxter-King Filter”, University of Glasgow discussion
paper #9813, 1998

15



ARCH(2) Parameters
Japan Germany Britain France Canada Italy

Q1 0.1210 0.1557 0.1947 0.2108 0.2158 0.3543
Q2 0.0549 0.1754 0.0832 0.1289 0.0240 0.1454

Hodrick-Prescott Filter
Japan Germany Britain France Canada Italy

βD 0.00595 0.00512 0.01757 0.01027 0.00599 0.04510
(0.00103) (0.00172) (0.00152) (0.00211) (0.00295) (0.00351)

p(βD = 0) 0.000 0.003 0.000 0.000 0.042 0.000
βMC 0.00180 0.00351 0.00328 0.00391 0.00349 0.00930

p(βD = βMC) 0.000 0.351 0.000 0.003 0.397 0.000
Baxter-King Filter

Japan Germany Britain France Canada Italy
βD 0.02215 0.00998 0.07049 0.02903 0.02107 0.18008

(0.00358) (0.00541) (0.00620) (0.00665) (0.00787) (0.01388)
p(βD = 0) 0.000 0.065 0.000 0.000 0.008 0.000

βMC 0.00817 0.01417 0.01396 0.01543 0.01513 0.03248
p(βD = βMC) 0.000 0.439 0.000 0.041 0.451 0.000

Baxter-King-Woitek Filter
Japan Germany Britain France Canada Italy

βD 0.02340 0.01004 0.07376 0.02997 0.02220 0.18880
(0.00379) (0.00566) (0.00656) (0.00696) (0.00827) (0.01469)

p(βD = 0) 0.000 0.077 0.000 0.000 0.007 0.000
βMC 0.00857 0.01477 0.01457 0.01607 0.01583 0.03366

p(βD = βMC) 0.000 0.404 0.000 0.046 0.441 0.000

Notes: The top panel contains the ARCH(2) parameters Q1 and Q2, as described in the text.
The next panel has the results of regressing conditional variance on squared deviations, where
deviations have been calculated using the Hodrick-Prescott [12] filter. The deviations are lagged
four periods. The results are shown both for the actual data (βD) and for the Monte Carlo
results (βMC) of random walks with the same ARCH coefficients. The third panel repeats the
analysis of the second panel using the Baxter-King [1] high-pass filter with a threshold of 26
weeks. The bottom panel repeats this analysis again using Woitek’s [14] modifications to the
Baxter-King filter.

Table 1: ARCH(2) Results
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ARCH(3) Parameters
Japan Germany Britain France Canada Italy

Q1 0.1230 0.1164 0.1959 0.1866 0.1453 0.3433
Q2 0.0547 0.1430 0.0497 0.1233 0.0326 0.1324
Q3 0.0002 0.1342 0.1647 0.0787 0.1337 0.1848

Hodrick-Prescott Filter
Japan Germany Britain France Canada Italy

βD 0.00606 0.00555 0.01807 0.00908 0.00443 0.04399
(0.00104) (0.00132) (0.00152) (0.00187) (0.00206) (0.00342)

p(βD = 0) 0.000 0.000 0.000 0.000 0.032 0.000
βMC 0.00164 0.00293 0.00364 0.00364 0.00282 0.01027

p(βD = βMC) 0.000 0.047 0.000 0.004 0.436 0.000
Baxter-King Filter

Japan Germany Britain France Canada Italy
βD 0.02257 0.01731 0.07354 0.02568 0.01616 0.17562

(0.00365) (0.00413) (0.00621) (0.00590) (0.00551) (0.01350)
p(βD = 0) 0.000 0.000 0.000 0.000 0.003 0.000

βMC 0.00779 0.01163 0.01729 0.01408 0.01270 0.03052
p(βD = βMC) 0.000 0.169 0.000 0.049 0.531 0.000

Baxter-King-Woitek Filter
Japan Germany Britain France Canada Italy

βD 0.02384 0.01799 0.07697 0.02652 0.01708 0.18412
(0.00386) (0.00432) (0.00658) (0.00617) (0.00578) (0.01428)

p(βD = 0) 0.000 0.000 0.000 0.000 0.003 0.000
βMC 0.00818 0.01215 0.01836 0.01466 0.01337 0.03140

p(βD = βMC) 0.000 0.177 0.000 0.055 0.522 0.000

Notes: See the notes to Table 1, except that the conditional variance is now modeled as an
ARCH(3) process.

Table 2: ARCH(3) Results
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GARCH(2,3) Parameters
Japan Germany Britain France Canada Italy

Q1 0.1390 0.1152 0.1547 0.1840 0.1157 0.3300
Q2 0.0000 0.0704 0.0000 0.1143 0.0317 0.0000
Q3 0.0089 0.0956 0.0416 0.0143 0.1049 0.0507
P1 0.4706 0.4003 0.3579 0.0000 0.0668 0.4370
P2 0.0122 0.0000 0.3567 0.3830 0.2863 0.1497

Hodrick-Prescott Filter
Japan Germany Britain France Canada Italy

βD 0.00685 0.00458 0.01423 0.00897 0.00353 0.04238
(0.00118) (0.00114) (0.00122) (0.00184) (0.00164) (0.00329)

p(βD = 0) 0.000 0.000 0.000 0.000 0.032 0.000
βMC 0.00217 0.00265 0.00313 0.00359 0.00245 0.00978

p(βD = βMC) 0.000 0.090 0.000 0.003 0.510 0.000
Baxter-King Filter

Japan Germany Britain France Canada Italy
βD 0.02555 0.01269 0.05842 0.02542 0.01300 0.16990

(0.00412) (0.00359) (0.00497) (0.00582) (0.00437) (0.01300)
p(βD = 0) 0.000 0.000 0.000 0.000 0.003 0.000

βMC 0.00932 0.01019 0.01103 0.01286 0.01045 0.02570
p(βD = βMC) 0.000 0.486 0.000 0.031 0.559 0.000

Baxter-King-Woitek Filter
Japan Germany Britain France Canada Italy

βD 0.02699 0.01314 0.06094 0.02625 0.01376 0.1775
(0.00436) (0.00376) (0.00525) (0.00608) (0.00459) (0.0137)

p(βD = 0) 0.000 0.005 0.000 0.000 0.003 0.000
βMC 0.00976 0.01065 0.01153 0.01337 0.01103 0.02645

p(βD = βMC) 0.000 0.509 0.000 0.034 0.553 0.000

Notes: See the notes to Table 1, except that the conditional variance is now modeled as a
GARCH(2,3) process.

Table 3: GARCH(2,3) Results
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