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Abstract

A basic analysis of stock market excess return data shows both linear and non-linear dependence present. Previous

papers have used this to argue that it must therefore be possible to predict future values. However, this paper shows

that the linear and non-linear dependence can be explained by simply allowing the mean and variance of Gaussian

noise to be modulated by a (typically 3 state) hidden Markov model. Attempting to �t a Markov modulated AR

process proved fruitless; the conclusion is that there is no AR-predictability present in excess return data.
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1 Introduction

Recent work on modelling stock market returns has focussed on the crucial questions of whether or not the returns

are independently distributed over time and whether or not they are normally distributed. There is evidence to

refute the claim that returns are linearly dependent [11, 27, 20, 23, 6, 10], and a growing literature documenting

dependence in the squares of the returns [8, 18, 21]. It is also now accepted that many �nancial time series exhibit

skewness and excess kurtosis and are therefore not normally distributed [13, 12]. The burgeoning literature on

ARCH modelling (for good surveys, see [1, 3, 26]) and stochastic volatility [16] can be viewed as an attempt to

reproduce these characteristics.

A perceived defect of many ARCH models is that persistence in the volatility of time series, which these

models induce, can persist for too long. For example, [9] has argued that the volatility consequences in stock

option prices of the 1987 crash disappeared more rapidly than suggested by simple ARCH models. An alternative

way of characterising changes in volatility or in the autoregressive component of excess returns is through the

use of Markov modulated models [14]. These models typically have less persistant volatility whilst also allowing

fundamental characteristics like negative skewness and excess kurtosis to be modelled [15, 4].

In this paper, we apply this framework to the monthly excess returns on equities for the period 1960{1988 which

was used in [6] for the USA, Japan, Germany, France, United Kingdom, Italy and Canada3. As with most data

on stock returns, our excess returns series are found to exhibit negative skewness and kurtosis normally associated

with asymmetric �nancial time series. We also �nd that linear dependence is much weaker than the observed

non-linear dependence in the data4. Finally, we show that a simple Markov modulated Gaussian noise process is

adequate to model our relatively low-frequency monthly data.

3In [6], the data was obtained from Morgan Stanley's Capital International Perspectives. We are grateful to Jim Poterba and Larry

Summers for supplying us with the data used in their study.

4For reasons of space, we do not report summary statistics and test of linear and non-linear dependence on the raw data here. The

stock return data is analysed fully in [6].
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2 Markov-Modulated Gaussian Noise

2.1 The Model

Let yt be our observed data on excess returns. Monthly excess returns in stock markets, yt, are calculated as

follows:

yt =
Pt +Dt

Pt�1(1 + it)

where Pt is the end-month equity price index, Pt�1 is the lagged price, Dt is dividend payments, and it is the

monthly short-term interest rate against which excess returns are measured (in this case short-term money market

or treasury bill yields). Let st be the state (or regime) we are in at time t. st is modelled by a K-state Markov

chain, which means the probability of switching from state i to state j at any time t (i.e., p(st = jjst�1 = i) = pij)

is a constant. Then we model each yt as being independent Gaussian noise with mean �(st) and variance �2(st).

Our parameter vector is thus � = [pi; pij ; �(sk); �
2(sk)] where pi is the probability of being in state i at time

t = 1.

2.2 Maximum Likelihood Estimate of the Parameter Vector �

Given the data set fy1; : : : ; yNg, computing the best (in the sense of maximum likelihood) value of � is a nontrivial

operation. The likelihood function is highly non-linear, making a direct attempt to �nd its maximum infeasible.

Instead, the expectation maximization (EM) algorithm [7] can be used to converge iteratively to a local maximum

of the likelihood surface. The fact that it is only a local maximum poses a degree of di�culty. In general, starting

the EM algorithm with di�erent initial parameter values can lead to convergence to di�erent local maxima. For

each local maximum, we explicitly calculate the likelihood. The best guess of the parameter vector � will thus be

the vector corresponding to the local maximum with the highest likelihood.

2.3 EM Algorithm

Let S = fs1; : : : ; sNg be the (unknown) state sequence, and Y = fy1; : : : ; yNg the observed output sequence. Let

f(S; Y ;�) be the probability (density function) of obtaining a state sequence S and output Y given the parameter

�. By de�ning the function

Q(�(p); �) = E

h
log f(S; Y ;�) j Y ;�(p)

i
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then it can be shown [7] that

�(p+1) = argmax
�

Q(�(p); �)

will result in a monotonically converging sequence

f(S; Y ;�(p+1)) � f(S; Y ;�(p))

of the likelihood function.

For the model at hand, the Q function can be derived as follows:

log f(S; Y ;�) = log f(S;�) + log f(Y j S;�)

log f(S;�) = log ps1 +

N�1X
t=1

log pst;st+1

log f(Y j S;�) =
NX
t=1

log f(yt j S;�)

=

NX
t=1

"
log

�
1p

2��(st)

�
� 1

2

�
yt � �(st)

�(st)

�2
#

= �N

2
log (2�)� 1

2

NX
t=1

log�2(st)� 1

2

NX
t=1

�
yt � �(st)

�(st)

�2

For convenience, the functions


(p)
t (k) = Prfst = k j Y ;�(p)g

�
(p)
t (i; j) = Prfst = i; st+1 = j j Y ;�(p)g

are introduced. They are standard de�nitions in hidden Markov models [28].

Let g(st) and h(st; st+1) be any two functions which depend on the state of the Markov chain. Then it is clear

that the following equations hold.

E

h
g(st) j Y ;�(p)

i
=

KX
i=1

g(i)
(p)
t (i)

E

h
h(st; st+1) j Y ;�(p)

i
=

KX
i=1

KX
j=1

h(i; j)�
(p)
t (i; j)

Hence, the Q function is given by:

Q(�(p); �) = E

h
log f(S; Y ;�) j Y ;�(p)

i

=
KX
i=1


(p)
1 (i) log pi +

N�1X
t=1

KX
i=1

KX
j=1

�
(p)
t (i; j) log pij � N

2
log 2�

�1

2

NX
t=1

KX
i=1


(p)
t (i) log�2(i)� 1

2

NX
t=1

KX
i=1


(p)
t (i)

�
yt � �(st)

�(st)

�2
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It can then be shown, by setting the partial derivatives of Q(�(p); �) to zero to �nd the maximum, and using

Lagrange multipliers to enforce the elements of pi and the columns of pij to sum to one, that the update equations

are:

p
(p+1)
i = 

(p)
1 (i)

p
(p+1)
ij =

PN�1
t=1 �

(p)
t (i; j)PN�1

t=1 �
(p)
t (i)

�(p+1)(i) =

PN

t=1 
(p)
t (i) ytPN

t=1 
(p)
t (i)

�(p+1)(i)2 =

PN

t=1 
(p)
t (i)

�
yt � �(p+1)(i)

�2
PN

t=1 
(p)
t (i)

Note that 
(p)
t (i) and �

(p)
t (i; j) are calculated using the old parameter vector �(p). The actual method of

calculation is once again standard, and is given in [28].

2.4 Filtering the data

Once the maximum-likelihood estimate of the model parameters has been obtained, the well-known Viterbi algo-

rithm [22] can be used to �nd the optimal state estimate in the Markov chain. In our case, the state estimate tells

us whether the excess returns are in a high, medium or low state for any particular month.

In order to determine whether the model accurately �ts the data or not, the model is used to calculate the

prediction error. We subtract from each data point an estimate of that data point based on the previous data

points and the model parameters. This gives us the model residuals. We divide by their expected variance to

obtain the scaled residuals.

Standard tests for linear and non-linear dependence, and for normality, are then applied to these residuals.

3 Estimation Results

3.1 Model Estimates and Adequacy

Before applying our Markov modulated Gaussian noise model, we tried a Markov modulated AR(1) model, where

we modelled the observed excess return data by yt = a(st)yt�1+�(st)wt where wt � iid N(0; 1), a(s) is the AR(1)

coe�cient for state s, and �2(s) is the variance for state s.

However, the estimates of a(st) were not signi�cant, suggesting that an AR process is not present. This claim

is substantiated by the fact that our Markov modulated Gaussian noise model produced residuals which contained
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no signi�cant linear or non-linear dependencies and also passed the Jarque and Bera test for normality. In Table 1,

we report the Jarque-Bera [17] test result along with the Ljung-Box [19] test for linear dependence. Table 2 lists

the McLeod-Li [24] test for non-linear dependence.

The number of volatility states was chosen after some experimentation. A three state model (except for Japan,

which turned out essentially to have only two states) was found to correctly characterise the excess returns data in

that the residuals were generally found to be white noise. The only evidence of remaining serial dependence is in

the case of Italy, where at lags 5 and beyond the Ljung-Box test appears signi�cant. The normality tests are also

passed in all cases except for the UK, where the Jarque-Bera statistic is signi�cant at the 5%, but not at the 1%

level. Generally these results are satisfactory, especially when compared to standard GARCH-type models. Using

a model with more than three states would result in a single state splitting into two sub-states, of almost identical

mean and variance. This also resulted in a noticeable sensitivity to initial parameter values, as might be expected.

In summary, the Markov modulated Gaussian noise model managed to explain the original linear and non-linear

dependencies in the data, and showed that once the change in variance for the di�erent states has been accounted

for, the data is essentially white noise.

3.2 Discussion of Results

Our main results are shown in Figures 1, 2, 3 and 4. The �gures show graphs of the mean and standard deviation

predicted by our models. The �rst interesting feature to note concerns the so-called leverage e�ect originally noted

in [2] in which volatility responds to past forecast errors in stock market returns5. As in recent attempts to model

stock market volatility using ARCH-type models [25, 29, 5], the leverage e�ect is clearly visible in our results:

excess return decreases lead to major increases in volatility, whilst increases in stock prices seem to have little

impact.

For example, sharp falls in excess returns (see Figures 1 and 3) occur at the time of the 1973{75 recession in the

US, France, the UK and Canada, at the time of the Mitterand experiment in France (1981), in Germany in 1960{1

when there was a tightening of monetary policy and a realignment within Bretton Woods, and in correspondence

to the 1987 stock market crash in all countries, with the exception of Japan. In the case of 1987, the most marked

e�ect is in the US and the UK model, whilst in continental Europe, as might be expected, the e�ect is much less

5The leverage e�ect has an intuitive explanation in terms of the riskiness of a �rm's equity. If a �rm's equity value unexpectedly

rises (excess returns are positive) this will lower its leverage ratio and hence its riskiness: hence volatility tends to fall. The opposite

happens in the case of an unexpected fall in equity values, which raises volatility.
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marked. As expected, the events outlined above correspond to high volatility states (see Figures 2 and 4).

There are, however, more subtle features to the relationship between excess returns and volatility, which are

apparent in our results and which standard ARCH-type models would not necessarily identify. Note for instance

that for some prolonged periods, there is no inverse relationship between excess returns and volatility. This is

particularly apparent for the late 1960s and 1970s in Germany and Japan, and for the 1980s in Italy. This suggests

that the leverage e�ect is only visible following sudden sharp movements in equity values, i.e. that there is a

\threshold e�ect". This suggests that any successful ARCH-type model would need to be \designed" very carefully

to capture such asymmetries and threshold e�ects.

The problem of traditional ARCH models (particularly the popular GARCH(1,1) model) in allowing volatility

to persist for too long has already been noted. The results reported here demonstrate that sudden changes in

volatility, such as the increase in volatility induced by major stock market declines (1987 and 1974{75), do not

persist beyond a couple of months in the US, with persistence in Germany, France and the UK only slightly longer.

It is di�cult to capture these transitions between di�erent volatility states using standard parametric techniques.

In general, we would argue that the models tend to track actual movements in stock prices quite well over this

period6 con�rming that these modelling techniques provide a useful adjunct to traditional ARCH models. The

advantage over ARCH models is that state transitions allow greater exibility in describing important, but short-

lived, episodes, and interesting asymmetrics and threshold e�ects. To capture similar features using variants of

ARCH models would require the use of complex and highly nonlinear ARCH schemes which may not be particularly

stable. On the other hand, the modelling approach followed here has some important disadvantages vis-a-vis ARCH

models. One key problem is that, by limiting the number of states considered, some features of the data may not

be captured. For instance, our model fails to capture the 1969{70 recession or the very end of the 1981{82 recession

(with the possible exception of the model for Canada). Whilst our approach is useful to capture major features in

the data, it is less useful in analysing minor changes in excess returns or volatility.

Finally, it should be noted that we were unable to detect linear dependence in excess returns. In this regard, it

is worth recognising that estimated transition probabilities describe each state as highly persistent, which explains

why AR e�ects are di�cult to �t. This tends to support those studies (e.g. [10]) which attribute apparent patterns

in stock returns to changes in volatility [10] and con�rms that any autoregressive elements present are extremely

weak [6].

6For example, the progressive tightening of monetary policy in Canada in the 1980s is apparent in a number of downward adjustments

in the mean value.
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4 Conclusion

In this paper we have examined an alternative method of modelling stock returns, using Markov modulated Gaussian

noise. Our results show that a three-state model can adequately characterise excess returns for the major G7

economies. Despite some evidence of linear dependence, allowing for changes in variance for di�erent states fully

accounts for this phenomenon.

A potential extension of our model would be to apply it to higher-frequency data, using more than 3 states in the

analysis. It may well turn out that the resulting states may be grouped into three blocks, corresponding to the three

main states found in this paper. The interpretation would be that a stock market can be in three main states in

relation to the mean excess return, and that each of these states can be broken down into two sub-states, depending

on whether volatility is high or low. This is something which should be explored in future work. However, as noted

previously, it seems likely that such models would be more applicable to a higher-frequency data set, given that the

simpler three state models employed here seem to work adequately on monthly data. Conceivably, one might also

examine whether transitions between states in any one stock market depend on transitions in other stock markets,

as one might expect.
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US Germany Japan France Canada Italy UK

Mean 0.0097 0.0077 0.0006 0.0115 0.0033 0.0009 0.0045

Variance 1.0554 0.9947 0.9227 1.1277 0.8534 1.1683 1.0517

J-B �2 2.4603 1.0766 1.4874 2.8760 1.1413 1.6153 8.6345

Q(1) 0.5072 2.8200 0.7913 1.5069 2.2558 4.7505 0.2642

Q(2) 1.2221 3.9996 0.8065 3.3136 2.7738 7.5195 4.2852

Q(3) 1.2909 4.0014 1.5630 3.8135 3.6025 7.5218 5.2748

Q(4) 1.6786 4.9236 2.1337 5.2043 5.8515 7.5828 5.5048

Q(5) 8.4121 4.9258 2.1337 5.2271 6.1390 12.0011 5.9603

Q(6) 9.1366 4.9280 2.1893 5.2592 6.1551 19.7027 6.2924

Q(7) 11.9272 5.9939 2.2047 7.4184 9.2809 20.8027 6.2979

Q(8) 14.3294 6.0491 2.2327 9.1464 14.1483 25.4442 6.9918

Q(9) 14.9102 6.0522 2.4988 10.7440 14.8296 25.6517 10.8575

Q(10) 15.9061 9.7040 3.2715 11.1543 16.9600 27.7705 10.8744

Table 1: Basic Statistics and test for Linear Dependence

US Germany Japan France Canada Italy UK

Q2(1) 1.7245 0.2989 4.3740 0.0365 0.4248 0.5835 0.2499

Q2(2) 1.7270 3.3098 7.0219 0.0708 0.8206 4.7415 1.2252

Q2(3) 2.3818 3.7697 7.1902 0.2131 4.7749 5.0107 2.4772

Q2(4) 2.4592 3.7916 7.6161 6.0524 6.1589 6.1632 2.4888

Q2(5) 3.4976 5.2456 7.6265 6.1251 7.5172 8.4698 2.7512

Q2(6) 4.2055 5.3297 8.4183 6.1676 8.2656 8.5005 8.6316

Q2(7) 7.1784 5.4018 8.9407 6.1883 10.9882 8.5067 8.8589

Q2(8) 7.3979 5.5097 8.9581 6.2050 13.2059 8.9168 11.4294

Q2(9) 9.2919 6.0408 9.4390 6.9452 14.1299 10.8959 11.5308

Q2(10) 9.5223 6.3306 9.4428 7.0728 16.7391 10.9040 11.5417

Table 2: Test for Non-Linear Dependence
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Figure 1: The mean value of excess returns for the three largest economies.
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Figure 2: The standard deviation (volatility) of excess returns for the three largest economies.
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Figure 3: The mean value of excess returns for the remainder of the G7.
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Figure 4: The standard deviation (volatility) of excess returns for the remainder of the G7.
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