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Abstract

In this paper, we employ total factor productivity data adjusted for factor utilisation
over the cycle, to model the dynamic interaction between TFP and employment. Our
data spans twenty 2-digit SIC code manufacturing sectors in the US. There are two
key results. First, we show that the impact of technology shocks on employment cycles
is much weaker than suggested by real business cycle-type models, and that in a
number of cases employment responds negatively to technology shocks. Second, in
examining the impact of employment shocks on TFP, we find some evidence for both
opportunity cost and learning-by-doing effects.
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1. Introduction

Policy-makers in OECD economies are increasingly focusing on the

determinants of long-run productivity growth. Indeed, institutional reforms in a

number of countries1 have attempted to ensure a more stable macroeconomic

environment on the grounds that this is conducive to long-run growth (see Balls,

1998). The key to understanding how business cycles impact on long-run growth

comes from recent theoretical research in endogenous growth. There are numerous

theoretical contributions which highlight the implications of this linkage for the

desirability of stabilisation policy (see for instance Stadler, 1990, Martin and Rogers,

1995, Muscatelli and Tirelli, 1996).

 However, very little is known at the empirical level about the extent to which

long-run productivity growth depends on fluctuations in output and/or employment.

Economic theory has identified various potential channels through which recessions

and booms can affect productivity growth, but empirical work in this area is still quite

rare (see Saint-Paul, 1997 for a survey). Existing empirical work also suffers from

serious shortcomings. As Saint-Paul points out, one of the key problems is the lack of

reliable data on total factor productivity growth. Standard constructions of total

factor productivity (TFP) ignore considerations pertaining to market power, returns

to scale and variations in factor utilization over the cycle. A second problem is that

existing work commonly uses VAR models with just-identifying assumptions which

involve imposing strong (and often arbitrary) a priori causal links on the interactions

between business cycles and TFP growth. A final problem is that the vast majority of

                                                       
1 There have been monetary and fiscal policy reforms in a number of countries: not only moves to
granting  Central Banks greater  independence, but in addition a number of economies have attempted
to limit the fiscal actions of governments (cf. recent UK reforms and the Stability Pact for prospective
EMU members).
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existing studies are conducted on aggregate data, and so ignore the possibility of

serious aggregation bias.

This paper addresses these problems, and investigates the dynamic interaction

between employment cycles and TFP growth using US manufacturing data from the

NBER productivity database. Our main results are as follows. First, there seems to be

little evidence of a significant impact of temporary employment shocks on the level of

TFP at the aggregate manufacturing level. This is consistent with existing aggregate

economy studies which only occasionally find significant effects of business cycles on

long-run productivity. Second, we find that the use of cyclically-adjusted TFP series

dramatically alters the results normally obtained using standard Solow residuals.

Third, we find that our adjusted TFP data also shed some light on the separate but

related issue of how technology shocks affect employment2. We find that, the impact

of technology shocks on employment varies considerably between sectors, in contrast

to existing results obtained using unadjusted TFP data. This result suggests that

technology shocks are less important in driving aggregate employment fluctuations

than assumed in standard real business cycle models. Finally we provide evidence that

technology shocks have temporary or even permanent negative effects on

employment.  This last result can be explained by sticky-price general-equilibrium

macroeconomic models and the presence of ‘creative destruction’ effects.

The rest of the paper is divided as follows. Section 2 provides a brief survey of

the theoretical literature which underpins our empirical models, and surveys the

existing empirical literature. Section 3 sets out the methodology which we follow in

constructing cyclically-adjusted TFP. Section 4 describes our modeling approach and

our econometric results, and section 5 concludes.
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2.  The Interaction between Business Cycles and Growth: Technology and
Employment Shocks

In examining the interaction between business cycles and growth we have to

allow for the possibility of bi-directional causal links.  We first consider how business

cycles (employment shocks3) affect TFP. Here the central issue is whether cyclical

downturns are periods of opportunity or waste. Indeed the debate on the impact of

business cycles on growth goes back to Keynes, Robertson and Schumpeter. A useful

survey of the various theoretical models which address this issue is provided by Saint-

Paul (1997), we only provide a summary here. One general approach in this literature

is to argue that productivity-enhancing activities are most likely to occur in periods of

cyclical upswing, through learning-by-doing effects (LBD) whereby individual

productive units tend to generate new ideas and design better ways of organising

production whilst they are actually engaged in productive activities (see Arrow, 1962,

Argote and Epple, 1990, Solow, 1997). Similarly, it is argued that where R&D

expenditures have to be financed from retained profits, R&D activity is more likely to

take place in booms than in recessions (see Stiglitz 1993).

An alternative approach is to argue that reorganization activities usually take

place within firms during recessions, when the opportunity cost (OC) in terms of lost

production is lower (see Bean, 1990, Hall, 1991). In addition, firms may respond to

greater financial discipline in downswings by resorting to innovation, and resource

reallocation may take place between firms in recessions as the least efficient productive

units exit from the industry (see Caballero and Hammour, 1994). The notion that there

is a process of ‘Darwinian Selection’ in recessions is also at the heart of the

Schumpeterian approach to cycles and growth.

                                                                                                                                                              
2 For recent empirical work on this issue see Gali (1996) and Malley and Muscatelli (1996).
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However, empirical evidence on the links between cycles and long-run

productivity growth is still extremely thin. There are only a handful of econometric

studies which analyse the impact of cyclical shocks on TFP levels in the long-run (Gali

and Hammour, 1991, Saint-Paul, 1993, Malley and Muscatelli, 1996). All of these

studies estimate bivariate semi-structural VARs for variations in employment and TFP

to detect the link between demand shocks and productivity, be it labour productivity or

TFP. They examine the impulse responses of TFP levels to temporary employment

shocks, and find some support for the ‘opportunity cost’ approach, suggesting that

cyclical downturns tend to have a positive impact on total factor productivity in the

long run.

It is notable that all these studies use variations in employment to identify

business cycle shocks, rather than a measure of output. The advantage of employment

as a measure of cyclical disturbances is that OC or LBD effects are more likely to be

correlated with actual changes in a firm’s production organisation (which often comes

with variations in employment or job reallocation) than with variations in production

levels. Davis and Haltiwanger (1990, 1992) show that the job destruction cycle does

not quite match the output cycle, and therefore identifying business cycle shocks with

employment fluctuations may provide a more accurate measure of the mechanism

through which organisational capital is accumulated4.

We should also point out that, in concentrating on bivariate VARs which are

specified in variations of employment and TFP we are not able to differentiate between

aggregate demand shocks, and other real shocks (e.g. shocks to labour supply or

                                                                                                                                                              
3 The issue of why we focus on employment shocks rather than output shocks in examining the impact
of business cycles on productivity growth is dealt with below.
4 Although not reported here, we find that using an industry output measure as our cyclical variable
does not lead to significant OC or LBD effects for any industries in the long run. Again, this suggests
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taxation policy) which might cause employment to vary. Thus, when we assert that

these models are designed to pick up the interaction between business cycles and

growth, we are not restricting ourselves to a particular source of cycles in employment.

All the previous studies cited above (with the exception of Malley and

Muscatelli, 1996) use aggregate macroeconomic data, as opposed to industry-level

data whilst the phenomena described above may clearly differ considerably across

industrial sectors.  Intuitively we might expect OC effects to be predominant in some

sectors, and LBD effects in others. In addition, it may be easier to obtain a more

accurate measure of TFP at a more disaggregated level.

Furthermore, none of these studies make any systematic allowance for the mis-

measurement of TFP due to factor utilisation, market power and returns to scale

effects over the cycle. It is now recognised that this is an extremely important issue

(see Hall, 1990, Burnside et al., 1995, Basu, 1996), in that factor mismeasurement may

be up to 20% of the total change in measured factor use (see Basu, op cit.).

Finally, the VAR models estimated in previous work have generally used the

standard Choleski decomposition approach to just-identifying the impulse responses of

TFP to employment shocks, or an alternative just-identifying assumption based on

assuming a particular lagged impact of employment shocks on TFP. The problem with

these just-identifying restrictions is that they involve imposing a causal structure on the

model which cannot be tested.

Next, we turn our attention to the way in which shocks to TFP (technology

shocks) affect employment. The study of the impact of technology shocks on

employment has generally been the domain of real business cycle models, and more

                                                                                                                                                              
that most of the effect of business cycles shocks on TFP occur through variations in employment
levels.
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recently of sticky-price general equilibrium models (see, inter alia, King and Watson,

1995, Gali, 1996). The effect of technology shocks on employment in these models is

due to a standard shift effect on labour demand and the accompanying impact on

capital accumulation.  But in general such models do not focus on the long-run effects

of technology shocks on employment5.

Labour market search theory has also analysed the impact of productivity

growth on employment. These models (see Mortensen and Pissarides, 1994, Aghion

and Howitt 1991, 1994) have focused on how changes in the growth rate of

productivity can affect inflows and outflows from unemployment, and hence the

equilibrium unemployment/employment rate. Whether technology impacts positively or

negatively on employment depends partly on whether a positive technology shock

leads to the destruction of low-productivity jobs, the creation of new jobs in new firms

as technological innovation fosters firm creation, or capital-labour substitution effects.

The strength of these effects may again differ markedly between sectors, and this

provides an additional incentive to estimate industry-level VARs. Direct empirical

evidence on these effects is again difficult to find, but at the aggregate level, there

seems to be evidence that technology shocks cause employment to fall (at least

temporarily )6.

Of course there is nothing to rule out RBC type shocks co-existing with a

labour market search based propagation mechanism. Indeed, recently de Haan et al.

(1997) have shown using a calibrated model that job destruction dynamics may play an

important role in explaining the persistence of output effects arising from technology

shocks.  Ultimately, one cannot rule out a permanent effect of technology shocks on

                                                       
5 Also, it is important to note that long-run LBD or OC effects are ruled out by assumption in such
models. In fact VAR models based on RBC models or dynamic sticky price models generally assume
that the unit root in productivity is due solely to productivity shocks (see Gali, 1996).
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employment (or unemployment). If a unit root is present in the employment data, this

may be partly due to shifts in agent preferences or in wage and price-setting

mechanisms, but one cannot rule out a priori the effect of technology shocks in driving

the trend in employment.

In Section 4 we shall return to the issue of how our econometric methodology

allows us to capture the dynamic interrelationship between TFP and employment, and

the response of these variables to demand and technology shocks. We now turn our

attention to the construction of adjusted TFP series.

 3. Total Factor Productivity: Solow Residuals and Adjusted Series

In virtually all empirical work employing the growth accounting framework

(including the studies cited in Sections 1 and 2), TFP growth is measured as in Solow

(1957).  However, it is well know that the Solow residual may not be an accurate

measure of ‘true’ multi-factor productivity since it ignores considerations pertaining to

market power, non-constant returns to scale and variable factor utilisation over the

cycle (see Hall, 1991 and Basu, 1996).  Clearly any research which hopes to accurately

gauge the link between employment cycles and growth requires a measure of TFP

which, at least, accounts for the points raised by Hall and Basu7. Accordingly, in the

VAR analysis which follows in the next Section, we will use cyclically adjusted TFP

based on the measure developed in Basu (1996)8.

In order to illustrate the relationship between the traditional Solow residual and

the Basu measure of TFP, it is convenient to start by restating the standard definitions

which are commonly used in the literature.  First, consider the following production

function:

                                                                                                                                                              
6 See Forni and Reichlin (1995), Blanchard et al. (1995), Gali (1996), Malley and Muscatelli (1997).
7 This point is also forcefully made by Saint-Paul (1997).
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Y F N M Kt t t t t= Θ [ , , ]                                      (1)

where, Θt represents an index of Hicks neutral technical progress; F is a homogenous

production function of some degree, γ; Yt is real gross output; and Nt, Mt and Kt are

labour and real material and capital inputs respectively.

Taking logs of both sides of (1) and then differentiating with respect to time
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where, ΘFN, ΘFM and ΘFK are the marginal products of labour, material inputs and

capital respectively. The firm is assumed to minimise the following cost function in

order to determine the optimal levels of capital and labour to employ,

C wN P M rKm= + +   (3)

subject to the production constraint in (1).  The symbols w, Pm and r are defined as the

nominal wage per worker, the price of material inputs and the rental rate of capital

respectively.  Note that via Euler’s Theorem (1) can be equivalently expressed as

Y F N F M F KN M K= + +
1

γ
Θ Θ Θ .              (4)

The first-order conditions resulting from minimising (3) subject to (4) are
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,   and   (5)

where, the Langrangian multiplier λ is defined as marginal cost.

3.1  Revenue Based Total Factor Productivity

The original Solow (1957) residual is derived assuming (i) constant returns to

scale and (ii) perfect competition in the factor and product markets.  To measure

                                                                                                                                                              
8 Note that Basu’s measure is an extension of Hall (1991) and hence allows for the possibility of both
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marginal cost, Solow assumes that it is observable at the market price of output, P.

Accordingly the marginal products of capital and labour in (6) can be rewritten as
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The discrete time approximation to (7) is given by (see Diewert, 1976)
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Total factor productivity growth or the Solow residual is therefore derived as

the difference between output growth and weighted input growth, e.g.

% ~ ~ ~∆ ∆θ ∆ ∆ ∆ ∆TFP y n m kSolow t t t t
n

t t
m

t t
k

t≡ + = − − −ε α α α .                        (9)

Note that a random term, εt has been added in (9) to reflect the stochastic

nature of productivity growth.  Under this view, TFP growth is the sum of a constant

underlying growth rate, ∆θt plus a random component, εt.

3.2  Cost Based Total Factor Productivity

To address the problems of mis-measurement associated with imposing

constant returns to scale, Hall (1990) derives an alternative measure of TFP which

does not require an assumption regarding competition.  In contrast to Solow, Hall

                                                                                                                                                              
market power and non-constant returns to scale.
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assumes that marginal cost, λ is not observable as the market price of output, P.

Instead of measuring each input’s shares in revenue, (PY) he uses their shares in cost9.

Using the cost-shares, the marginal products in (5) can be rewritten as
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Again, output growth is found by substituting (10) into (2) and solving for ∆yt, e.g.
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Using the cost-based shares, TFP growth (adjusted for non-constant returns

and market power) can now be expressed as

% % ( )[~ ~ ~ ]∆ ∆ ∆ ∆ ∆ ∆TFP TFP n m kHall t
n

t t
m

t t
k

t t t= ′ − − + + ≡ ′ +′ ′ ′γ α α α θ ε1m r                (12)

Note that if γ=1 and PY=C then % % %∆ ∆ ∆TFP TFP TFPHall Solow= ′ ≡ .

3.3  Cost-Based (Utilisation Adjusted) Total Factor Productivity

Building directly on Hall’s cost-based measure, Basu (1996) provides a method

for obtaining a measure of TFP growth which is net of cyclical changes in factor

utilisation.  Basu’s proposed adjustment relies on using data on material inputs as an

indicator of cyclical factor utilisation. The argument he puts forward is that unlike

employment and capital material inputs do not have an utilisation dimension, and hence

one can use relative changes in the input of raw materials and other measured factor

                                                       
9 Note that the cost shares are defined as (C=wN+PmM+rK).  Further note that if PY>C, due to pure
monopoly profits, then Solow’s revenue shares will underestimate the elasticity of output with respect
to all inputs.
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inputs (capital and labour) to deduce the extent to which factor utilisation changes over

the cycle.

In contrast to (1), we follow Basu and employ the following production
function

Y F G N M Z Kt t t t t t t= ⋅ ⋅Θ [( ) ,( )],            (13)

where, G and Z are the levels of labour and capital utilisation. Using the same methods

as employed in (2)-(9) the following alternative cost-based Solow residual, net of

factor utilisation, can be derived

% ~ ~ ~ [~ ~ ]
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Hall t
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1 2444444 3444444 1 2444 3444

                  (14)

where the shares are defined as in Hall.
In other words, %∆TFPBasu in (14) is equal to %∆TFPHall net of changes

induced by capacity utilisation.  Note however, that the problem with (14) in its current

form is that this measure of TFP growth cannot be calculated since some of the

components of ut are unobservable (i.e. ∆g and ∆z).  To derive the relationship

between unobserved capital and labour inputs and observable or measured material

inputs Basu makes use of the following more restricted production function

Y F G N Z K H M= ⋅ ⋅Θ [ ),( )}, { }]V{(                        (15)

where the value-added function, V and the material costs functions, H are assumed to

have constant returns to scale.  Note that the function F, however, still has the same

properties as set out in (1).  Log-linearising (15) and using the first-order conditions

for cost minimisation the growth rate in value added, ∆vt  can be expressed as

∆ ∆ ∆ ∆v m p pt t v t mt= − −σ( )            (16)

where, ∆mt  is material cost growth, σ ≥ 0  is the (local) elasticity of substitution

between value-added and materials (with σ = 0  representing the Leontief case and
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σ = 1  the Cobb-Douglas unit-elastic case), and ∆ ∆p pvt mt,  measure value-added and

materials inflation, respectively10.

The growth in value-added can next be expressed as a Divisia index in terms of

the growth in observed capital and labour input and unobserved utilisation, e.g.

∆
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Substituting (17) into (16) for ∆vt, rearranging and substituting the resulting

expression, which is equal to ut(=
~ ~α αt

n
t t

k
tg z′ ′+∆ ∆ ), into (14) gives

% ~ ~∆ ∆ ∆ ∆ ∆TFP y m p pBasu t t t
n

t
k

v t mt= − − + −′ ′γ σ α α ε[[ ( )( )]] + t            (18)

Note that unlike (14), TFP growth in (18) is defined in terms of only observable

magnitudes.

3.4  Estimating Cyclically Adjusted TFP
 

To derive the utilisation adjusted measure of TFP growth, we next (using U.S.

manufacturing data from 1959-91) undertake instrumental variable (IV) estimation of

(18) to identify γ and hence %∆TFPBasu.  IV estimation is required in this context due

to the obvious endogeneity of the regressors. We will employ the same set of

instruments proposed by Ramey (1989) and Hall (1990) and augmented by Caballero

and Lyons (1992) and Basu (1996)11. Table 1 below reports the results of estimating

(via 3SLS) returns to scale for aggregate manufacturing and two major sub-

aggregates.  The results of Table 1 indicate for the chosen aggregations that (i) returns

                                                       
10 Bruno (1984) reviews a number of papers and reports a consensus range for σ between 0.3-0.4.  A
more recent study by Rotemberg and Woodford (1992) provide an estimate σ of 0.7 (which is the
baseline value used by Basu (1996)).
11 These include the growth rate of Military Spending; the growth rate of  the World Price of Oil
(deflated by both the price of Manufacturing Durables and Non-Durables); and the Political Party of
the President.  Note that the instruments have been chosen as ones which can cause important
movements in employment, material costs, capital accumulation and output but are orthogonal with
the random component of TFP growth.
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to scale are decreasing (but in an economic context, not far from constant) and (ii) the

estimates are extremely robust to alternative values of σ.

Tables 2 and 3 provide several different views on the extent to which the Basu

measure has succeeded in removing cyclical variation in Solow based TFP.  For

example, Table 2 reveals, regardless of the value of σ, that the correlation of the Basu

measure with alternative measures of the cycle is uniformly lower than the Solow

residual.  Additionally, Table 3 shows that the variance of TFP relative to alternative

measures of the cycle is uniformly lower for the Basu based measure. This lower

correlation of the adjusted TFP measure and the cycle implies smaller technology

shocks and therefore has been interpreted by some as a problem for real-business cycle

(RBC) type models.  However, a lower variance of TFP shocks might still  correlate

well with output and employment cycles: this would depend on the strength of the

propagation mechanism. Our VAR results in the next section will offer some insights

into this issue.

Finally Table 4 reports estimates of returns to scale for twenty 2-digit industries

over the period 1959-1991.  Not surprisingly, given the limited degrees of freedom

relative to the 3SLS estimations, returns to scale are not significantly different from

unity for nearly all industries12.

4.  The Econometric Model and Results

4.1 Econometric Methodology

As explained in the introduction, previous empirical verification of the

relationship between business cycles and growth (Gali and Hammour, 1991, Saint-
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Paul, 1993, and Malley and Muscatelli, 1996) has used semi-structural VAR analysis.

Consider the following pth-order structural or primitive VAR for TFP growth, ∆ zit ,

and the percentage change in total employment, ∆ lit , for each sector i,

 x it

it

it

z

l
=











∆
∆

 :

x A x uit j i t j it
j

p

t T= + =−
=

∑ , ; ,1
1

K            (19)

where xit is the (2 x 1) vector of dependent variables, Aj, j = 1, ... , p are the (2 x 2)

parameter matrices13, and uit is an (2 x 1) vector of disturbances, following the usual

assumptions: E( )u 0it = , E( )u uit it′ = ΣΣ , E( )u u 0it it t t′ = ∀ /= ′′ .

From our discussion in Section 2, the structural disturbance corresponding to

the TFP variable ( ∆ zit ) corresponds to technological shocks to TFP growth, and the

structural disturbance corresponding to the employment variable ( ∆ lit ) captures

demand-side or business cycle disturbances.

However, a number of issues have to be addressed. The first concerns the long-

run properties of the model. Our VAR is specified in differences. Given that both TFP

and employment will display a stochastic trend, then our LBD and OC theories suggest

we should not restrict the model so as to rule out the possibility of employment shocks

driving the stochastic trend in the TFP variable (in contrast to standard RBC models).

Vice-versa, as discussed in Section 2, we have to allow for the possibility of

technology shocks driving the trend in employment. This is especially important when

                                                                                                                                                              
12 This confirms earlier results obtained using a different method by Burnside et al. (1995). They use
electricity consumption as a proxy for capital utilisation. For a comparison of the two techniques see
the discussion to Burnside et al. (1995).
13 The order of the VAR is decided using the AIC criterion; the maximum lag is fixed at 2, the
minimum at 1.  To ensure that the estimated system is stationary, we computed the roots of the
characteristic polynomial |A-λ I|=0, where A is the system matrix of the VAR(1) representation of
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using sectoral data, as in some industries technology shocks may have helped to drive

negative trends in employment (labour substitution effects), or positive trends (labour

complementarity effects). This has implications for the identification of the VAR.

Unlike VAR modelling approaches where long-run effects are constrained a priori by

theoretical considerations (e.g. Blanchard and Quah, 1989), the questions posed by OC

and LBD theories require no long-run restrictions to be imposed on the effects of

technology and business cycle shocks.

Let us now consider the identification issue in more detail. Provided that the

above model is stationary, it has an infinite MA representation

x B u B I B A Bit j i t j
j

n j k j k
k

p

j= = = =−
=

∞

−
=

∑ ∑, ; ; ; , ,
0

0
1

1 2 K            (20)

If the error variance-covariance matrix ΣΣ is diagonal, the parameter matrices of

the MA representation can be interpreted as responses of the system to past shocks.

However, if ΣΣ is not diagonal, the VAR is not identified. To solve this problem,

orthogonalized impulse responses can be derived by using, amongst others, the

Cholesky (see Sims, 1980) or the Blanchard and Quah (1989) decompositions.

As already noted the Blanchard-Quah identification is inappropriate to our case

because we wish to test the long-run impact of employment and technology shocks.

Most previous authors (see Gali and Hammour, 1991, Malley and Muscatelli, 1996)

have used a Choleski decomposition, or an alternative restriction on the short-run

impact of shocks (Saint-Paul, 1993). However, all of these procedures require the

imposition of a priori knowledge regarding the contemporaneous or the long-run

dynamic interaction of the variables. The economic implications of the Choleski

                                                                                                                                                              
equation (19), and checked whether the moduli are inside the unit circle (see Lütkepohl (1991), p. 9-
13; results are available on request).
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identification might seem reasonable in our context, given that effects considered in

LBD or OC models (e.g. reorganisation, on-the-job training, the introduction of new

techniques, R&D activity) typically only impact TFP with a lag. However, this

restriction might be inappropriate, especially when using annual data if reorganisation

effects following employment shocks feed on to productivity improvements within a

year (see Saint-Paul, 1993). An alternative Choleski just-identifying restriction would

reverse the assumption regarding contemporaneous causation, thus assuming that

productivity shocks do not impact immediately on employment levels. But again, this

seems an arbitrary restriction.

Here we pursue an alternative identification scheme which overcomes these

problems, and which has recently been proposed by Pesaran and Shin (1998) and Koop

et al. (1996). If we interpret the impulse response function at lag h as the difference

between a h-step VAR forecast assuming a shock on the variable j,  δj, and a VAR

forecast without a shock, we obtain generalised impulse (GI) responses (ΩΩ t-1 is the

information set available at time t)

( ) ( )GI x x( , , ) E E .,h uj t t h t j j t t h tδ δΩΩ ,,  ΩΩ ΩΩ−− −−− + += = −1 11            (21)

In order to compute the forecasts for the other variables i, i ≠ j, we need

starting values at time t, conditional on the fact that there is a shock to series j. To

obtain these starting values, we use the contemporaneous relationship between the

error terms given by the estimated error variance covariance matrix. The assumption of

a multivariate normal distribution of the error terms leads to the following expression

for the starting value in series i

( )E ., ,u ut i t j j

ij

jj
j= =δ

σ

σ
δ            (22)
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i.e. we make use of the expected values for ut,i , i = 1, ... , n, conditional on the shock

on variable j. Setting δj equal to the standard deviation of uj, we obtain for the

generalised impulse responses

ψψ
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j h h

j

jj

nj

j

jj

h j

jj
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B e
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where ej is an (n x 1) vector of zeroes with unity as jth element. The generalised long-

run multiplier is defined as

ψψ ψψ
ΣΣ
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Finally, the generalised forecast error decomposition is defined as
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The above expression is calculated as the percentage decrease in the forecast error

variance of variable k, due to conditioning on the innovations to variable j by using the

contemporaneous relationship between the variables given by equation (25) (see

Pesaran and Shin, 1998).

4.2 Results

We now present the results from our VAR analysis. We have estimated the

VAR model (19) using both aggregate manufacturing data, and disaggregated data for

twenty two-digit SIC code industries comprising the aggregate. We report estimates

using both the standard Solow measure for TFP as set out in (9), and the adjusted
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Basu TFP measure in (18). For reasons of space, we only tabulate the results for the

case where σ = 0.514.

First, let us turn to the aggregate data for manufacturing, and to a basic

disaggregation into durable and non-durable product industries. Tables 5 and 6 show

the cumulated impulse responses and the forecast error decompositions for these three

cases using the Solow and Basu measures. There are two important points to note

about the impulse responses. The first is that, although the Solow case confirms the

results in favour of the OC hypothesis found in earlier work, the total effect of

employment shocks on the level of TFP15 is insignificant. The second important point

to note is that the results using the Basu measure of TFP are, generally, weaker for

aggregate manufacturing. For the durable sector a significant LBD effect can be

detected, and for non-durables we have a negatively-signed long-run effect, but this is

not statistically significant at the 10% level. These disaggregated results cast some

doubts on the validity of earlier evidence on the prevalence of OC effects (see Saint-

Paul, 1997), and suggest much greater variability across different sectors. Note also

that our disaggregated models are also given greater statistical weight since the

forecast error decompositions indicate that our aggregate models generally explain a

smaller proportion of the total forecast variance than the industry results examined

below.

A natural reaction to these results is to examine a finer disaggregation of the

data. There is no reason to expect that OC or LBD-type effects or the impact of

technology shocks on employment are likely to be the same in different industries,

given their different susceptibility to the economic cycle, differences in technology, and

                                                       
14 Note however that these results, like those in Tables 5-8 are robust to changes in σ from 0 to 1. The

VAR results pertaining to alternative values of σ are available on request from the authors.
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the differing degree of labour reallocation and re-organisation within each sector. As

noted in the introduction aggregation bias is likely to be an important issue when

testing for LBD and OC effects.

The impulse responses using the 20 two-digit SIC industries are tabulated in

Table 7, and the forecast error decompositions in Table 8. The first key point to note

by comparing the results using the Solow and Basu definitions of TFP is that adjusting

the TFP data for factor utilisation over the cycle tends to change the impulse response

analysis markedly. Looking first at the impact of employment shocks on long-run TFP,

we see that using Solow TFP there is an initial positive impact, which is probably due

to increasing factor utilisation16. Then OC-type effects seem to set in, so that the long-

run multipliers are negative. This seems to confirm the results in the earlier literature,

except that for all but one industry the 95% confidence intervals for the impulse

responses include zero.  The Basu TFP measure takes account of factor utilisation

effects, and in this case the contemporaneous impact on TFP of employment shocks is

no longer positive for all industries. Interestingly, a variety of different significant long-

run effects can be found. There seems to be clear evidence of  LBD effects in the case

of three industries (SIC 23, 25, and 37), and OC effects in the case of three industries

(SIC 24, 30 and 38). For some industries there seem to be some temporary impacts on

changes in TFP, but no significant long-run effect on the level of TFP. This result

suggests that the OC effects detected in earlier work might have been the by-product

of using pro-cyclical TFP data.

The second point to note, looking at the reaction of employment to technology

shocks using the Solow TFP measures, is that we see a significant positive short- and

                                                                                                                                                              
15 To be more precise, the cumulated growth rate of TFP.
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long-run response. The short-run response is typical of the results predicted by RBC-

type models. However, results based on the using the Basu measures again produce a

variety of different results, with a prevalence of short-run negative employment effects

following technology shocks. These short-run negative effects cannot be explained

through standard RBC labor demand shifts. Instead the explanation must lie in

technology shocks causing either greater factor utilisation and a fall in employment in

the presence of sticky prices (see Gali, 1996), or technology shocks inducing labour-

substitution effects. Thus, the initial intuition in Basu (1996) that adjustments for factor

utilisation might weaken the role for technology shocks, seems to be borne out by our

VAR models. Our results are also consistent with the findings in other papers, such as

Blanchard et al. (1995) in that they support a sticky-price non-RBC interpretation of

business cycles.  Our findings of a significant long-run negative impact of technology

shocks in a small number of industries seems indicative of ‘creative destruction’ type-

effects.

Finally, the forecast error decompositions in Table 8 are much larger than those

calculated for the aggregate series, suggesting that disaggregation leads us to explain a

greater percentage of the forecast error. Once again, this suggests that our VARs fit

the disaggregated data better.

 Overall, our industry-level results seem to suggest that the results in the

existing literature may be seriously distorted by a failure to measure true productivity

shocks in the presence of factor utilisation effects. Also, it appears clear that LBD and

OC effects may prevail in different measures in different industries and that previous

studies on aggregate data may suffer from severe aggregation bias.

                                                                                                                                                              
16 Note that in earlier papers (Gali and Hammour, 1991, Saint-Paul, 1993, and Malley and Muscatelli,
1996), the impact effect of employment shocks is set at zero or reduced through the use of the
Choleski identification scheme or an alternative scheme putting a low weight on impact effects.
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Another interesting aspect of our results is the implication for the response of

employment to technology shocks. Early work on TFP adjustment (see Basu, 1996)

seemed to suggest that factor utilisation could account for a large amount of the

covariation between technology and the business cycle. Our VAR analysis shows that

in fact, for a number of industries, technology shocks produce reasonably persistent

responses in employment.  This is consistent with technology shocks accounting for

aggregate fluctuations in a number of industries. Moreover, the negative impact of

technology shocks on employment in a number of industries is suggestive that variants

of RBC models embodying job destruction effects in the propagation mechanism (see

de Haan et al., 1997) may be well-founded empirically.

5. Conclusions

In this paper we have extended the recent empirical literature on the interaction

between business cycles and growth by tackling some of the key difficulties in earlier

work (see Saint-Paul, 1997). The key difficulties include obtaining an accurate measure

of TFP over the cycle and the problem of identifying business cycle and technology

shocks in the absence of any obvious a priori theoretical identifying restrictions which

can be imposed on the basic VAR model.  Our results shed light on the effect of

technology shocks on employment, an issue which is central to both RBC-type models

and labour search models.

Our results tend to show that the interaction between employment and TFP

growth is much more diverse in different industries than might appear at first sight. The

common practice of including Solow residuals in VARs picks up an artificial

correlation over the cycle between TFP and employment which arises due to factor

utilisation effects. Such correlations have the effect of creating an artificial
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homogeneity across sectoral VARs. The use of Basu TFP measures shows instead that

business cycles (employment shocks) have very different effects across different

industries. This runs counter to all existing empirical evidence in this area (see Saint-

Paul, 1997). Also, the apparently uniform positive response of employment to

technology shocks found using Solow residuals disappears.  This new evidence points

against the usual real business cycle mechanism, and favours alternative interpretations

for the propagation of technology shocks, which include a role for sticky prices.

One possible future extension of our work is to examine the interaction

between TFP, output fluctuations and labour re-allocation at the industry level. As

shown in Davis et al. (1997), most labour re-allocation between firms takes place

within industrial sectors rather than between sectors. Using data on job creation and

job destruction at the 2-digit SIC level it might be possible to examine the role played

by labour reallocation in production-enhancing activities. One might expect to find that

labour reallocation plays a role for those industries where OC effects are found.

Finally, another potential extension would be to carry out a comparison similar

industries in different OECD economies. If the presence of LBD or OC effects is, as

we suspect, a function of the industry technology, one might expect similar patterns to

emerge across different countries.
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DATA APPENDIX

The following data are provided by Bartlesman and Gray (1994), NBER Manufacturing
Productivity Database (see http://www.nber.org/productivity.html):

N total employment (1,000s)
w nominal wage per employee (mill., $)
Hp hours of  production workers (mill. of hours)
M real cost of materials inputs (mill., $1987)
K real capital stock (start of year); (mill., $1987)
Y real shipments (mill., $1987)
P price deflator for value of shipments (1987=1)
Pm price deflator for value of materials (1987=1)

GDP (bill chained $1992) is taken from the May 1997 Survey of Current Business (SCB),
BEA, U.S. Department of Commerce.

Defence Spending (bill chained $1992) from 1959 is taken from the May 1997 SCB.  Based on
quantity indexes 1992=100, provided by the Department of Commerce, movements in the
quantity index series were spliced to the billions of chained 1992 dollar series to obtain 1958.

The World Price of Oil from 1965 onwards is taken from 1995 International Financial
Statistics Yearbook Average Crude Price, spot (US$/barrel). It is calculated using UK Brent
(light), Dubai (medium) and Alaska North Slope (heavy), equally weighted. Prior to 1965 it is
taken from 1983 International Financial Statistics Yearbook. Average price (US$/barrel) is
calculated as a weighted average of the three oil prices listed: Saudi Arabia; Libya from 1961;
and Venezuelan.

Following Jorgenson and Sullivan (1981), Hall (1990), Cabellero and Lyons (1992), Nadiri
and Mamuneas (1994), and Basu (1996) the rental price of capital, r is calculated as follows17:
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,

PKi
  is the individual industry physical capital deflator and is taken from the BEA Fixed

Reproducible Tangible Assets Database (FRTA).

R  is the discount rate (10-year Treasury Notes) and is taken from the 1997 Economic Report
of the President (ERP).

δK,i  is the individual industry physical capital depreciation rate and is taken from BEA’s
FRTA.

                                                       
17 Note however that our measure additionally incorporates individual industry for data for several key
components of the user cost.
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iK  is the investment tax credit and is taken from Jorgenson and Sullivan (1981) until 1980.
Following Naadiri and Mamuneas (1994); for 1981 8% is used and for 1982 to 1986 7.5% is
used.  Post 1986 the rate is set to 0 due to tax code changes in the U.S..

 uC   is the corporate income tax rate and is taken from Jorgenson and Sullivan (1981) and
Auerbach (1983) up to 1983.  Following Nadiri and Mamuneas (1994) the rate is set to 0.46
after 1983.

z  is the present value of capital consumption allowances.

ρ is the capital consumption allowance rate obtained by dividing adjusted capital consumption
allowances by the capital stock and is obtained from the 1997 ERP.

ω is a dummy variable which takes the value of 0.5 in 1962-63 and 0 elsewhere. Under the
Long Amendment (1962-63) firms were required to reduce the depreciable base of their assets
by half the amount of the investment tax credit (see Nadiri and Mamuneas, 1994).
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Table 1:  Estimates of Return to Scale for Alternative Values of σ

                      Manufacturing         Durables    Non-Durables
σσ=0.0 0.94          0.92          0.92
σσ=0.3 0.95          0.93          0.94
σσ=0.5 0.95          0.94          0.95
σσ=0.7 0.96          0.94          0.95
σσ=1.0 0.96          0.95          0.96

Note that the above estimates are obtained by applying 3SLS to the relevant industries comprising a
particular aggregation.  Based on standard t-tests, all of the above estimates are significantly different
from zero at less than the 1% level.  Finally note that, based on standard Wald-tests, all of the above
estimates are significantly different from unity.

Table 2:  Correlation between TFP and Output/Hours Growth
                                    Solow Basu

σ=0     σ=0.3    σ=0.5     σ=0.7    σ=1
Manuf.Output 0.95 0.24 0.19       0.16       0.16       0.17
Durable Output 0.95           -0.09    -0.19      -0.24      -0.28     -0.32
Non-Durable Output 0.92 0.43 0.40       0.38       0.36       0.33
      
Manuf. Hours 0.84 0.25 0.16        0.12      0.09       0.08
Durable Hours 0.84           -0.02    -0.13       -0.20     -0.25      -0.31
Non-Durable Hours 0.79 0.41 0.37        0.34      0.32       0.28

Note, that based on standard t-tests, the bi-variate correlation coefficients which tested significantly
different from zero at the 5% level include the Solow residuals and the Basu residuals for Non-
Durable Output when σ=0, 0.3, 0.5 and 0.7 and for Non-Durable Hours when  σ=0 and 0.3).

Table 3:  Variance of TFP to Variance Output/Hours Growth
                                   Solow Basu

σ=0     σ=0.3    σ=0.5     σ=0.7     σ=1
Manuf.Output 0.52 0.02 0.02       0.02       0.03       0.03
Durable Output 0.39 0.02 0.02       0.02       0.02       0.02
Non-Durable Output 0.71 0.14 0.14       0.14       0.14       0.15
      
Manuf. Hours 0.50 0.02 0.02        0.02      0.02       0.03
Durable Hours 0.42 0.02 0.02        0.02      0.02       0.02
Non-Durable Hours 0.71 0.14 0.14        0.14      0.14       0.15
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Table 4:  Estimates of Return to Scale, $
..γ i=20 39  for Alternative Values of σ

Durable Goods Industries
{σσ= 0.0 0.3 0.5 0.7 1.00}
sic24 Lumber and wood 0.97 0.98 0.98 0.99 1.00
sic25 Furniture and fixtures 1.00 1.02 1.02 1.03 1.04
sic32 Stone, clay and glass 0.90 0.92 0.93 0.94 0.96
sic33 Primary metals 0.99 0.98 0.96 0.95 0.94
sic34 Fabricated metals 1.12 1.12 1.12 1.12 1.13
sic35 Industrial machinery & equipment 0.96 0.95 0.94 0.94 0.93
sic36 Electronic & electric equipment 1.18 1.16 1.15 1.13 1.11
sic37 Transportation equipment 0.83 0.84 0.85 0.86 0.87
sic38 Instruments & related products 1.12 1.10 1.08 1.07 1.05
sic39 Miscellaneous industries 1.03 1.04 1.04 1.05 1.06

Nondurable Goods Industries
{σσ= 0.0 0.3 0.5 0.7 1.00}
sic20 Food and kindred products 1.20 1.20 1.21 1.21 1.22
sic21 Tobacco products     1.44 1.41 1.39 1.37 1.34
sic22 Textile mill products 1.08 1.09 1.09 1.09 1.09
sic23 Apparel & other textile     0.91 0.93 0.94 0.95 0.96
sic26 Paper & allied    1.21 1.19 1.17 1.16 1.14
sic27 Printing  & publishing     0.85 0.89 0.91 0.95 1.00
sic28 Chemicals & allied    1.25 1.22 1.20 1.18 1.15
sic29 Petroleum & coal products  1.11 1.10 1.09 1.08 1.06
sic30 Rubber & misc. plastics products 1.11 1.11 1.11 1.11 1.10
sic31 Leather & leather products 1.33 1.32 1.32 1.32 1.31

Note that, based on standard t-tests, all of  the above IV estimates of $γ i are significantly different

from zero at less than the 1% level except for sic21.  Further note that, based on standard Wald-tests,

none of the estimates of $γ i  are significantly different from unity except sic26 and sic37.
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Table 5: Aggregate Series - Impulse Responses

Solow

Technology → N N → Technology
Horizon Horizon

0 1 2 3 ∞ 0 1 2 3 ∞
Aggregate 0.026** 0.010** -0.004 -0.006 0.027** 0.021** -0.012** -0.014* -0.004 -0.004
Durables 0.034** 0.019** -0.010 -0.009 0.035** 0.026** -0.011** -0.023** -0.011 -0.017
Non-Durables 0.016** 0.005 -0.001 -0.001 0.019** 0.015** -0.009** -0.007** -0.002 -0.002

Basu (σ=0.5)

Technology → N N → Technology
Horizon Horizon

0 1 2 3 ∞ 0 1 2 3 ∞
Aggregate 0.004 0.002 0.000 0.000 0.006 0.001 0.000 0.000 0.000 0.000
Durables -0.007 -0.009 0.000 0.003 -0.012 -0.001 0.004* 0.002 0.002 0.005*

Non-Durables 0.005 0.006 0.002 0.000 0.012** 0.003 -0.003 -0.001 0.000 -0.002
Notes:
a) Superscript **/*: impulse responses significant at the 5%/10% level.
b) The confidence intervals are obtained by employing the bootstrap method using 1000 replications

for each step.

Table 6: Aggregate Series - Forecast Error Decomposition

Solow

Technology → N N → Technology
Horizon Horizon

1 2 3 ∞ 1 2 3 ∞
Aggregate 0.663 0.689 0.655 0.658 0.663 0.637 0.703 0.699
Durables 0.683 0.741 0.736 0.738 0.683 0.679 0.776 0.789
Non-Durables 0.541 0.561 0.551 0.551 0.541 0.562 0.597 0.598

Basu (σ=0.5)

Technology → N N → Technology
Horizon Horizon

1 2 3 ∞ 1 2 3 ∞
Aggregate 0.013 0.014 0.014 0.014 0.013 0.014 0.015 0.015
Durables 0.023 0.052 0.048 0.052 0.023 0.255 0.283 0.344
Non-Durables 0.055 0.120 0.124 0.124 0.055 0.118 0.130 0.130
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Table 7: Industry VARs - Impulse Responses
Solow TFP

Technology → N N → Technology
Industry Horizon Horizon

0 1 2 3 ∞ 0 1 2 3 ∞
20 0.006** -0.001 0.005** -0.001 0.009** 0.008** -0.007** -0.001 0.000 0.001
21 0.008 0.006 0.002 0.001 0.018 0.010 -0.003 -0.002 -0.001 0.004
22 0.016** 0.021** -0.001 -0.004 0.043** 0.012** -0.016** -0.018** 0.000 -0.026
23 0.019** 0.013 0.006 -0.004 0.044 0.014** -0.004 -0.008* -0.007 -0.022
24 0.018* 0.013 0.006 -0.006 0.029** 0.013* -0.016** -0.022** -0.001 -0.015
25 0.032** 0.025** -0.019** -0.013 0.036** 0.023** -0.002 -0.015** -0.003 0.008
26 0.018* 0.002 -0.006 0.001 0.016 0.020* -0.018** -0.011 0.004 -0.006
27 0.015** 0.004 0.000 0.000 0.019* 0.007** -0.008 -0.002 0.000 -0.003
28 0.009** 0.010** 0.004 0.000 0.021** 0.021** -0.015** -0.013** -0.005 -0.010
29 0.019** -0.010** 0.006 0.010* 0.025** 0.026** -0.007 -0.005 -0.017 -0.021
30 0.036** 0.016 -0.023** -0.009 0.028** 0.025** -0.007 -0.024** -0.016* -0.013
31 0.017* 0.017** 0.004 0.001 0.039** 0.014* -0.005 -0.002 0.000 0.007
32 0.028** 0.009* -0.004 -0.006 0.027** 0.021** -0.012** -0.015** -0.006 -0.007
33 0.052** 0.025* -0.010 0.001 0.067** 0.057** -0.015 -0.021 -0.006 0.006
34 0.036** 0.023** -0.004 -0.011* 0.047** 0.025** 0.000 -0.014** -0.007 0.010
35 0.039** 0.018** 0.003 -0.004 0.049** 0.024** -0.013** -0.021** -0.015* -0.027**

36 0.038** 0.026** 0.002 -0.006 0.057** 0.021** -0.005 -0.008* -0.003 0.007
37 0.038** 0.017* -0.003 -0.005 0.047** 0.042** -0.023** -0.017* 0.000 0.006
38 0.014** 0.023** 0.008 -0.007 0.034** 0.008** -0.001 -0.009** -0.004 -0.001
39 0.026** 0.011 0.003 -0.006 0.031** 0.020** 0.005 -0.022** -0.004 0.006

Basu TFP (σσ=0.5)

Technology → N N → Technology
Industry Horizon Horizon

0 1 2 3 ∞ 0 1 2 3 ∞
20 0.001 -0.004 -0.001 0.000 -0.004 0.002 0.001 0.000 0.000 0.002
21 0.002 0.002 0.000 -0.013* -0.004 0.002 0.009 -0.003 0.005 0.011
22 -0.007 0.009 -0.001 0.001 0.001 -0.003 0.001 0.000 0.000 -0.003
23 0.017* -0.006 -0.003 -0.001 0.008 0.008* 0.002 0.000 0.000 0.010*

24 -0.020** 0.008 0.001 0.000 -0.010 -0.006 -0.004 0.000 0.000 -0.009*

25 0.017* 0.000 0.000 0.000 0.017 0.005* 0.002 0.000 0.000 0.007**

26 -0.010** 0.009** 0.003 -0.005 -0.003 -0.004** 0.002 -0.001 -0.001 -0.004
27 -0.002 -0.004 -0.001 0.000 -0.006 -0.001 0.001 0.000 0.000 0.000
28 -0.006** 0.002 0.003 0.001 0.001 -0.009** -0.011 0.009** 0.005 -0.003
29 -0.001 -0.004 0.000 0.000 -0.006 -0.001 -0.016* 0.000 -0.001 -0.019
30 -0.023* -0.009 0.012 0.008 -0.019** -0.010* -0.008** 0.011* 0.005 -0.007**

31 -0.029* -0.008 -0.009 -0.004 -0.057** -0.021* -0.001 0.012** 0.005 -0.010
32 0.006 0.003 0.001 0.000 0.011 0.002 -0.001 0.000 0.000 0.000
33 0.007 0.008 0.000 0.000 0.015 0.002 -0.002 0.000 0.000 0.000
34 -0.015** -0.012 -0.003 0.003 -0.025* -0.005** -0.003 0.005** 0.005** -0.001
35 -0.012 -0.007 -0.002 -0.001 -0.022 -0.004 0.001 0.000 0.000 -0.002
36 -0.034* -0.024* 0.014 0.008 -0.045* -0.015* 0.003 0.012* 0.005 0.002
37 0.019 -0.001 0.002 -0.002 0.018 0.004** 0.003 0.005** -0.002 0.011*

38 -0.027* -0.007 -0.003 -0.001 -0.040* -0.022* 0.006 -0.001 0.000 -0.016**

39 -0.001 -0.003 0.000 0.000 -0.005 -0.001 -0.002 0.000 0.000 -0.003
Notes:
a) Superscript **/*: impulse responses significant at the 5%/10% level.
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Table 8: Industry VARs - Forecast Error Decomposition
Solow

Technology → N N → Technology
Horizon Horizon

Industry 1 2 3 ∞ 1 2 3 ∞
20 0.241 0.233 0.331 0.331 0.241 0.323 0.324 0.322
21 0.071 0.102 0.107 0.108 0.071 0.068 0.070 0.070
22 0.220 0.448 0.421 0.403 0.220 0.408 0.541 0.477
23 0.358 0.423 0.407 0.383 0.358 0.376 0.424 0.462
24 0.113 0.164 0.131 0.136 0.113 0.227 0.380 0.393
25 0.691 0.658 0.701 0.711 0.691 0.514 0.556 0.551
26 0.409 0.411 0.435 0.435 0.409 0.546 0.582 0.584
27 0.115 0.121 0.121 0.121 0.115 0.218 0.225 0.225
28 0.221 0.346 0.364 0.363 0.221 0.294 0.344 0.347
29 0.481 0.517 0.528 0.589 0.481 0.460 0.443 0.544
30 0.628 0.634 0.701 0.659 0.628 0.640 0.748 0.734
31 0.142 0.238 0.243 0.243 0.142 0.157 0.158 0.158
32 0.659 0.648 0.585 0.583 0.659 0.538 0.603 0.609
33 0.754 0.781 0.786 0.786 0.754 0.735 0.756 0.759
34 0.713 0.778 0.774 0.783 0.713 0.671 0.722 0.724
35 0.611 0.649 0.643 0.630 0.611 0.573 0.666 0.705
36 0.537 0.632 0.612 0.614 0.537 0.490 0.524 0.522
37 0.520 0.563 0.550 0.552 0.520 0.548 0.575 0.573
38 0.155 0.388 0.407 0.428 0.155 0.154 0.255 0.264
39 0.284 0.310 0.291 0.301 0.284 0.289 0.463 0.465

Basu ( σ = 0.5 )

Technology → N N → Technology
Horizon Horizon

Industry 1 2 3 ∞ 1 2 3 ∞
20 0.011 0.099 0.102 0.102 0.011 0.013 0.013 0.013
21 0.005 0.010 0.010 0.171 0.005 0.048 0.050 0.060
22 0.031 0.078 0.079 0.079 0.031 0.030 0.030 0.030
23 0.237 0.236 0.239 0.240 0.237 0.254 0.254 0.254
24 0.096 0.107 0.108 0.108 0.096 0.130 0.130 0.130
25 0.096 0.096 0.096 0.096 0.096 0.105 0.105 0.105
26 0.135 0.211 0.217 0.247 0.135 0.151 0.127 0.132
27 0.002 0.010 0.010 0.010 0.002 0.004 0.004 0.004
28 0.094 0.071 0.082 0.085 0.094 0.188 0.246 0.262
29 0.001 0.017 0.017 0.017 0.001 0.106 0.106 0.106
30 0.242 0.253 0.264 0.267 0.242 0.332 0.441 0.483
31 0.386 0.349 0.370 0.368 0.386 0.381 0.431 0.451
32 0.027 0.032 0.033 0.033 0.027 0.032 0.034 0.034
33 0.013 0.027 0.027 0.027 0.013 0.026 0.026 0.026
34 0.117 0.159 0.156 0.155 0.117 0.142 0.225 0.287
35 0.049 0.062 0.062 0.063 0.049 0.055 0.055 0.055
36 0.441 0.508 0.524 0.538 0.441 0.422 0.540 0.558
37 0.115 0.107 0.106 0.106 0.115 0.148 0.254 0.262
38 0.417 0.403 0.403 0.402 0.417 0.426 0.426 0.426
39 0.000 0.005 0.005 0.005 0.000 0.004 0.005 0.005
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