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Abstract
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Science is de…ned as “a systematic study of the nature and behaviour of the material

and physical Universe,” and technology as “the practical application of this knowledge

especially in industry and commerce” (HMSO, 1996, p.1). Given these de…nitions, we

quote Dasgupta and David (1995, p.487)

“To say that economic growth in the modern era has been grounded on

the exploitation of scienti…c knowledge is to express a truism”

This represents a widely-held view on the contribution of scienti…c progress to improv-

ing welfare. This view is strongly supported by empirical studies, such as Griliches (1986)

and Mans…eld (1980). Surprisingly, however, the endogenous growth literature pays little

attention to the role of science. For example, the models of endogenous technological

changes treat scienti…c and technological research equally under a single heading “R&D”

(see Aghion and Howitt (1992), Grossman and Helpman (1991) and Romer (1990)). This

may be because of the impression that scienti…c and technological research di¤er only in

the degree of non-excludability of knowledge they create, and hence distinguishing them

sheds little additional light on the understanding of economic growth.

The present paper aims to show that such an impression is quite misleading and

demonstrates that distinguishing between science and technology on the basis of the

types of knowledge created generates intriguing insights into the link between growth and

technology-induced cycles.

There are two observations which are particularly important for our purposes. First,

on the basis of his time-series evidence, Jones (1995) rejects a strong form of knowledge

externality as assumed in the standard R&D-based growth model. To be consistent with
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the evidence, we assume a “weak” knowledge externality. Due to this more realistic

assumption, diminishing returns to technological innovations arise. Second, in his in‡u-

ential work, Kuhn (1962) classi…es scienti…c progress into “normal” and “revolutionary.”

The former consists of incremental additions to the scienti…c knowledge on the basis of a

“paradigm” within which scientists engage in research, and the latter represents a trans-

formation of such a paradigm. Obvious examples of scienti…c revolutions are the work of

Copernicus, Newton and Einstein, which necessitated the rejection of then-prevailing sci-

enti…c theories. Kuhn stresses that scienti…c revolutions are a “non-cumulative” process

of scienti…c advance. A similar theory is also proposed by Lacatos (1978). These studies

suggest that the frontier of scienti…c knowledge occasionally expands in a discontinuous

way. Since we are interested in the e¤ect of science on technology, the present paper

interprets scienti…c revolutions broadly as more wide-spread phenomena, such as Bell

Laboratory’s discovery of properties of semi-conductors which led to the microelectronic

“revolution”.

In the model presented here, scienti…c research is conducted in both the public and

private sectors; the government …nances it through tax revenues and …rms invest part of

their pro…ts in it. When scienti…c breakthroughs stochastically occur, scienti…c knowledge

discontinuously expands, triggering a series of technological innovations. But, between

two major scienti…c discoveries, diminishing returns to technological research set in, and

as a result, technological research intensity falls over time until another scienti…c discovery

occurs. This process repeats itself over an in…nite horizon, so that an economy grows with

endogenous cycles in terms of the level and growth rate of output.

A prominent feature of ‡uctuations in our model is that technological innovations
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arrive in clusters. This resembles the Schumpeterian version of Kondratiev’s long-waves.

In the work published in 1925, Kondratiev saw long cycles as an expression of the internal

regulating mechanism of an economy and technological innovations passively respond to

these endogenous forces. In contrast, Schumpeter (1939) viewed long-waves as being

caused by innovations which occur in clusters, so that the growth rate accelerates and

decelerates in response. This latter theory received much attention in the 1980s, since it

could potentially give a coherent explanation of the productivity slowdown of developed

economies since the mid-1960s, although some economists remain sceptical.1 Endogenous

bunching of innovations is also found in the theoretical models of Shleifer (1986) and

Stein (1997) with di¤erent underlying mechanisms. Supportive evidence for clustered

innovations are given by, for example, Mensch (1975) and Kleinknecht (1987).

There are several studies related to the work presented here. Within a general equi-

librium framework, R&D-based growth models of Aghion and Howitt (1992), Cheng and

Dinopoulos (1992), Corriveau (1994), Helpman and Trajtenberg (1994, 1996) generate

endogenous cycles in the growth rate as well as in the level of output.2 A common mech-

anism goes as follows. When returns from R&D are expected to be high for endogenous

or exogenous reasons, resources are switched to the research sector from the production

sector, causing a rise in the growth rate but a fall in the level of output. The reverse

happens when returns from R&D are expected to be low. Thus, ‡uctuations of output

are created through reallocation of workers between the research and production sectors.

1See, for example, the August issue of Futures, 1981, for pro-long-waves studies. See also Rosenberg

and Frischtak (1983) and Mans…eld (1983) for studies which are sceptical about it.
2For studies which treat ‡uctuations as exogenous in endogenous growth models, see King and Rebelo

(1986), Stadler (1990), Aghion and St.Paul (1991) and Caballero and Hammour (1994).
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However, a crucial limitation of such a mechanism is that, as Aghion and Howitt (1998)

point out, only 2 or 3 percent of the labour force are allocated to research in modern

economies. This fact calls into question the plausibility of this mechanism in creating

large aggregate ‡uctuations.

In contrast, the present model is not subject to such a criticism, since we assume that

skilled workers are exclusively used for scienti…c and technological research and unskilled

workers are employed only for a manufacturing purpose. This assumption removes the

possibility of reallocating workers between the research and production sectors. Employ-

ment ‡uctuations within the research sector, which is tiny compared with the production

and service sectors, is the propagating mechanism to generate aggregate cycles. Such

‡uctuations make the rate of technological progress ‡uctuate in an endogenous way, and

as a result, output grows in waves rather than in a smooth exponential fashion. The

model of Amable (1995) exhibits a similar time-pro…le of output. But his main concern is

expectations-driven ‡uctuations of research employment. By contrast, we are interested

in cycles of output induced by science and technology.

The plan of this paper is as follows. Section 1 develops the model with a close attention

to the structure of the general knowledge and …rms’ decision on private scienti…c research.

Section 2 examines the equilibrium dynamics when scienti…c knowledge is constant and

expands. We shall examine the cyclical movement of some key economic indicators and

the e¤ect of an industrial policy. Section 3 concludes.
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1 The Model

Since our model is based on a familiar framework of Grossman and Helpman (1991,

Ch.3), we outline it brie‡y. Interested readers are referred to their work. To facilitate

the presentation, we abbreviate technological research as “TR” and scienti…c research as

“SR.” We also use terms “technologists” and “scientists” for skilled workers engaged in

TR and SR respectively.

1.1 Consumers and Final Output Sector

There are two types of consumers who act as suppliers of labour services: H skilled

workers and L unskilled workers. The former are exclusively used for TR and SR, and

the latter are employed in manufacturing only. Their intertemporal utility function is

time-separable and the instantaneous utility function is logarithmic in homogeneous …nal

output. Under this assumption, Grossman and Helpman (1991) shows that the interest

rate is always equal to consumers’ time preference rate ½ if aggregate consumer expendi-

ture is normalised.

Final output yt is produced under competitive conditions with the CES aggregate

production function:

yt =
µZ 1

0

Z nit

0
x®jitdjdi

¶1=®
; 0 < ® < 1 (1)

where xjit denotes intermediate products and nit is the number of varieties in the ith

industry. This speci…cation implies that there is a continuum of industries indexed by i 2

[0; 1] and their associated sub-industries indexed by j 2 [0; nit]: Technological innovations

take the form of increasing nit: Given the production technology (1), output producers’
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demand for xit has the price elasticity of ¡1=(1¡ ®):

1.2 Intermediate Goods Sector

The intermediate goods sector is monopolistically competitive. It is assumed that a single

…rm monopolises the ith industry. Those incumbent …rms engage in TR to expand the

variety in its industry and conduct SR. This captures the observations of Rosenberg (1990)

that (i) SR capabilities are complementary to technological research activities in the sense

that the former may provide guidance to how the latter is conducted,3 and (ii) private SR

is highly concentrated in the sense that a small number of large …rms with strong market

position dominate basic research in industry.4

Producing one unit of inputs is assumed to require one unskilled labourer. Given a

constant price elasticity demand, input producers maximise their pro…ts by setting their

prices at pit ´ pt = w
l
t=® where wlt is the wage for unskilled workers and the subscript i

is dropped due to symmetry. We assume that the government taxes pro…ts at the rate of

0 < ¿ < 1 to …nance public SR. Moreover, monopoly …rms invest a fraction 0 < ·i < 1

of after-tax pro…ts in SR. Under these assumptions, their net pro…ts arising from each

variety is

¼jit = ¼it =
·i (1¡ ¿ ) (1¡ ®)

Nt
; Nt =

Z 1

0
nitdi: (2)

3An example he cites is Bell Labs’ search for a substitute for the vacuum tube which eventually led

to the invention of transistors. SPRU (1996) cites several other forms of bene…ts of scienti…c research to

private …rms.
4He also refers to the fact that a large number of small …rms conduct basic research, especially in the

realm of biotechnology. But he notes that they seem to be engaged in basic research which is close to the

commercialisaton stage.
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For a monopolist in the ith industry, total pro…ts are nit¼it:

Now suppose that an “outside” …rm successfully generates an innovation by means of

TR in the ith industry. Its impact on the incumbent’s pro…ts is approximated by a “small”

increase in Nt in the denominator of (2). But it can avoid this loss, i.e. @(nit¼it)=@Nt < 0;

if he innovates by himself. Thus, he takes ¡@(nit¼it)=@Nt as rewards for innovation.5 As

we will see, the equilibrium is characterised by symmetry of all industries, so that

nit = nt = Nt: (3)

Thus, we have

¡@ (nit¼it)
@Nt

=
·i (1¡ ¿ ) (1¡ ®)

Nt

nit
Nt
= ¼it (4)

On the other hand, “outside” …rms can attain pro…ts (1¡ ¿ ) (1¡ ®) =Nt if they succeed

in TR and do not invest in SR. Pro…ts are greater than ¼it. But we assume that incumbent

…rms’ TR productivity is su¢ciently greater than that of “outside” …rms to the extent

that the latter do not have an incentive for TR in equilibrium.6

In order to …nance its TR, the ith …rm issues shares, which are freely traded in the

stock market. All net pro…ts generated by its di¤erentiated inputs are distributed as

dividends. We use vit to denote the discounted value of ‡ow pro…ts ¼it. It obeys the

following asset equation

E
·
_vit
vit

¸
+
¼it
vit
= ½: (5)

5This explanation is based on the so-called e¢ciency e¤ect: since competition destroys pro…ts, an

incumbent has an incentive to deter entry of new …rms.
6Grossman and Helpman (1991, p.564) note that incumbent …rms are likely to have acquired sub-

stantial industry-speci…c information as a result of their successful innovation. Such information may be

valuable in inventing newer variety, and it may not be readily apparent to “outside” …rms.
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From the viewpoint of investors, on the left-hand side is the return to equity of monopoly

…rms which consists of an expected capital gain and a dividend rate. It is equated to the

return on safe bonds.

Technological innovations increase the number of variety according to

_nit = ±RitKt; ± > 0 (6)

where Rit is the number of technologists used and Kt is the stock of general knowledge in

the economy. Since …rms can generate _nit of new varieties through TR in each instance,

they solve maxRit vit±RitKt ¡ whtRit; which yields

vit =
wht
±Kt

for Rit > 0 (7)

where wht is a wage of skilled workers. This implies that vit and E [ _vit=vit] in (5) are the

same for all industries. It follows that ¼it should also be the same for all i’s in equilibrium

with Rit > 0; con…rming (3).

1.3 Knowledge Production

We assume that the general knowledge is produced with technological knowledge created

by industrial TR and scienti…c knowledge generated by public and private SR:

Kt = N
"
tQ

º
t ; 1 > "; º > 0; "+ º < 1; (8)

where technological knowledge is equated to Nt and scienti…c knowledge is denoted by

Qt. In (8) Kt exhibits decreasing returns to scale to Nt, given Qt. That is, dynamic

learning-by-doing through TR is limited, since the marginal contribution of technological

knowledge to TR is decreasing over time, i.e., limNt!1 @(vit±RitN
"
tQ

º
t )=@Nt = 0. This
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fact causes diminishing returns to TR which plays a crucial role in generating long-waves.

The assumption (8) is empirically supported by Jones (1995) who rejects the TR-based

endogenous growth models with "+º = 1 on the basis of his time-series evidence in favour

of "+ º < 1.

We assume that one scienti…c breakthrough raises scienti…c knowledge by a factor

¸ > 1 :

Qt = ¸
mt ; mt = 0; 1; 2; :::: (9)

wheremt is the cumulative number of scienti…c discoveries up to time t: Note that scienti…c

discoveries discontinuously expand Qt, and hence Kt: The assumption (9) captures the

radical nature of scienti…c discoveries.7 To stress uncertainty, it is assumed that one

scientist brings about a discovery with the Poisson arrival rate of

q (Qt; Nt) = '
N1¡"
t

Qºt
; ' > 0: (10)

As a scienti…c discovery occurs, the next one will be more di¢cult to be brought about

due to the presence of Qt in the denominator. But technological innovations will generate

positive externalities on science (due to Nt in the numerator), improving the productivity

of SR. This speci…cation is consistent with the observation of many writers that science

and technology interact in shaping the paths of their progress, rejecting a simple “linear

function” in which in‡uence is unidirectional from science to technology.8 Thus, a Poisson
7It takes several years and even decades before major scienti…c breakthroughs have any impact on

an economy. Thus, we could assume that following a scienti…c discovery at t; the scienti…c knowledge

stock rises at t + ¢; ¢ > 0; by a factor ¸. Alternatively, we could assume that as new scienti…c ideas

di¤use throughout the economy, the scienti…c knowledge stock gradually rises, following an equation like

_Qt = bQt(¸
mt ¡Qt); b > 0: However, these modi…cations do not substantially change results to be derived.

8For example, the problems addressed by scientists often originate in their links with industry, and
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arrival rate of a scienti…c breakthrough in the economy as a whole is given by q(:)St where

St is the total number of scientists in the economy.

1.4 Scienti…c Research

The total corporation tax revenue is
R 1
0

R nit
0 ¿ (1 ¡ ®)=Ntdjdi: Since the government pays

scientists a wage prevailing the labour market, the total number of scientists in the public

sector SGt is

SGt =
¿ (1¡ ®)
wht

; (11)

using (3).

In the private sector, each monopolist devotes a fraction ·i of pro…ts to SR, so that

the total expenditure on private SR is
R 1
0

R nit
0 (1 ¡ ·i)(1 ¡ ¿ )(1 ¡ ®)=Ntdjdi: Thus, the

number of scientists in the private sector SPt is

SPt =
1

wht

Z 1

0
(1¡ ·i) (1¡ ¿ ) (1¡ ®) dj; (12)

using (3). By investing in science, …rms can stochastically expand the scienti…c knowl-

edge which ultimately raises TR productivity. Given scienti…c knowledge ¸mt ; the ith

…rm’s gain from TR is £im = vit _nit = vit±RitN
"
t ¸

ºmt ; and it increases to £im+1 with

a Poisson arrival rate of '(SGt + S
P
t ): It follows that the expected bene…t from SR is

'(SGt + S
P
t )(£im+1 ¡£im): The ith …rm maximises the expected bene…t by choosing ·i.

Denoting vit = ·ievit (where evit is the present value of after-tax pro…ts before investment

instrumentation invented in technological research proves to be extremely important in bringing about

scienti…c discovery (Rosenberg (1982)).
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funds in SR is deducted), this maximisation problem is equivalent to

max
·i

'
·
¿ (1¡ ®) +

Z 1

0
(1¡ ·i) (1¡ ¿ ) (1¡ ®) dj

¸
·i¡ (13)

where ¡ = evit±RitN "
t ¸

ºmt(¸º ¡ 1)=wht : The maximand is concave and the …rst-order con-

dition is

·i = · =
1

2 (1¡ ¿) : (14)

Note that · is always larger than 1=2 for ¿ > 0. It is also increasing in ¿ . This is because

of free-riding of private …rms on public SR. As ¿ rises, the probability of an extra scienti…c

discovery does not decrease even if · is slightly raised.9 This arises, because public and

private SR are substitutes.10

1.5 Labour Markets

The combined expenditures on public and private SR is denoted by ³ = ¿ (1¡ ®) + (1¡

·)(1 ¡ ¿ )(1 ¡ ®) = (1 ¡ ®)=2 where the second equality uses (14). Thus, skilled and

unskilled labourers are all employed if

H =
_Nt
±Kt

+
³

wht
; L =

®

wlt
; (15)

On the right-hand side of the …rst equation are the demand for technologists and scientists

in the public and private sectors.

9If we assume i 2 [0; z]; z > 1; in (1), then 2 in the denominator of (14) is replaced with 1+1=z and ·

would be increasing in z: This is again a free-rider problem. With an increase in the number of “other”

…rms which can take advantage of public scienti…c knowledge, each …rm devotes less resources to SR.
10Lichtenberg (1984) empirically supports a hypothesis that public-…nanced R&D and private R&D

are substitutes.
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2 Equilibrium Dynamics

To facilitate the following analysis, we de…ne

!t ´ 1

wht
; Ât ´ Nt

¸
º
1¡"mt

; »t ´
_Nt
Nt
=
_Ât
Ât

for a constant mt. (16)

Given these de…nitions, the growth rate of output for a given mt is written as

_yt
yt

´ gt =
1¡ ®
®

»t; (17)

since the production function (1) can be reduced to yt = LN
1¡®
®

t :

2.1 When Qt is Constant

First suppose that mt is held …xed to analyse the transitional dynamics when scienti…c

knowledge is constant. We can re-express the asset market equilibrium condition (5) and

the skilled labour market condition in (15) as

_!t
!t

=
±

Â1¡"t

[(1 + ") ³!t ¡ "H]¡ º (ln¸)'³Â1¡"t !t ¡ ½; (A)

_Ât
Ât

=
±

Â1¡"t

(H ¡ ³!t) ; (H)

respectively:11 Note that ¿ does not a¤ect the both equations because the e¤ect of ¿ is

fully accommodated in the determination of ·: Hence, in this paper we do not consider

11In deriving (A), we used (i) E[ _vit=vit] = _wh
t =wh

t ¡ "»t ¡E[ _Qt=Qt] from (7) and (ii) the expected rate

of growth of scienti…c knowledge is governed by E[ _Qt=Qt] = (ln¸) q(Qt; Nt)St: (ii) can be veri…ed by

noting that the expected stock of scienti…c knowledge at t is given by

E [lnQt] = E [mt] ln¸ = (ln¸)
1X

m=0

f (m; t)m = (ln¸)

Z t

0

q (Qs; Ns)Ssds

where f(m; t) =
hR t

0
q (Qs;Ns)Ssds

im

e
R t

0
q(Qs;Ns)Ssds

=m! is the Poisson density function.
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Figure 1: Transitional dynamics.

the optimal determination of ¿ :

The two conditions are depicted in Figure 1 where the shaded area is an infeasible

region. The _Ât = 0 line is independent of Nt; since all skilled workers are devoted to SR in

a steady state. The _!t = 0 schedule is upward-sloping, because more di¤erentiated inputs

are created with a lower wht (i.e. a lower TR cost) in a steady state. The …gure shows

that a steady state is unique and the economy is saddle-path stable, taking m as given.12

Note that output stops growing in the steady state A¤, since no technological innovation

occurs. This is the same feature as found in the neo-classical growth model, where no

growth is sustained in the long-run in the absence of exogenous technical progress.

Note that di¤erential equations (A) and (H) determine the values of Ât and !t in the

(Â; !) plane, and those values are identi…ed by a single point like Am or Am+1 on the

saddle path in Figure 1. Furthermore, given the equilibrium values determined, equations

12The existence of a unique non-trivial steady state requires Â¤ > n0=¸
º

1¡" m0 where Â¤ is implicitly

de…ned by (A) with _!t = 0:
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(A) and (H) give the proportionate rate of changes of Ât and !t at time t: With this

interpretation, we establish the following.

Proposition 1 Given the scienti…c knowledge stock Qt;

1. @»t=@t < 0 and @gt=@t < 0 along the equilibrium transitional path, and

2. @»t=@t = @gt=@t = 0 in the steady state.

Proof. Note that _Ât=Ât = »t for a given mt: Thus, (H) and (17) imply

@»t
@t

= ¡ (1¡ ")
Ã
_Ât
Ât

!2
¡ ±

Â1¡"t

1¡ ®
2

_!t < 0;
@gt
@t
=
1¡ ®
®

@»t
@t

< 0: (18)

They are zero when _Ât = _!t = 0:

This proposition indicates that less and less innovation is occurring in transition, and

as a result the growth of output gradually evaporates. This is precisely because of the

diminishing returns to technological TR. More speci…cally, we rewrite the asset equation

(5) as

¡ _!t
!t

¡ " _Ât
Ât

¡ º (ln¸)'³Â1¡"t !t + ±³
!t
Â1¡"t

= ½: (19)

The …rst three terms on the left-hand side represent the expected depreciation of the stock

market value of an innovative …rm. The fourth term is an earning-price ratio, which is

the rate of return from monopoly pro…ts distributed as dividends to investors. Since _!t;

_Ât > 0 in transition, the dividend rate exceeds the rate of interest ½: The earning-price

ratio falls and eventually drops to e½ = ½+º (ln¸)'³(Â¤)1¡"!¤, as the economy approaches

the steady state A¤ in Figure 1. When this happens, consumers stop investing in new TR

projects, since they are unwilling to postpone consumption to the future. This explanation
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of the diminishing returns to TR is analogous to that of the “convergence” property of

the Ramsey-type neo-classical growth model. The dividend rate in (19) plays exactly

the same role as the marginal productivity of capital in that model. However, a crucial

di¤erence is that a long-run growth can be sustained due to scienti…c discoveries in our

model, as we will see. This is re‡ected in the fact that the dividend rate is always greater

than the interest rate even in the steady state, i.e. e½ > ½ for all t:

As regards scientists, their number rises along the transitional path, because wht is

falling. The likelihood of a next scienti…c discovery gradually increases along the transi-

tional path, and it is maximised at 'H(Â¤)1¡" in a steady state A¤.

2.2 When Qt Expands

Next we consider the instantaneous adjustment when scienti…c knowledge expands by

using Figure 1. A step-up increase in Qt leaves the both _! = 0 and _Â = 0 schedules and

the saddle path intact. What it changes is the location of the economy on the saddle

path. Suppose that the scienti…c knowledge stock ¸m rises to ¸m+1 when the economy is

at Am where Nt = Nm, Âm = Nm=¸
º
1¡"m and !m: Note that Âm and !m can be equal to Â¤

and !¤: Following a scienti…c discovery, the economy jumps to Am+1 which is associated

with Âm+1 = Nm=¸
º
1¡" (m+1) and !m+1: Observe that Am+1 is always located southwest

of Am: An instantaneous jump from Am to Am+1 involves drops in Ât and !t: Also note

that changes of the endogenous variables, i.e. Âm ¡ Âm+1 and !m ¡ !m+1 depend not

only on parameter values but also on the stochastic time interval between two scienti…c

discoveries.
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Proposition 2 When a scienti…c breakthrough occurs, »t and gt increase.

Proof. Denote the rate of technological change and the growth rate at Am and Am+1 in

Figure 1 as »m, »m+1; gm and gm+1: From (H) and (17), we obtain

»m+1 ¡ »m =
±

Â1¡"m

"
(¸º ¡ 1)

µ
H ¡ 1¡ ®

2
!m

¶
+
¸º (1¡ ®)

2
(!m ¡ !m+1)

#
> 0; (20)

gm+1 ¡ gm =
1¡ ®
®

³
»m+1 ¡ »m

´
> 0: (21)

An intuition for this proposition and the discrete jumps in Ât and !t following a

scienti…c discovery is the opposite of Proposition 1. With a discontinuous rise in Qt;

the dividend rate in (19) increases, and it makes consumers willing to postpone more

consumption to the future, since investment becomes more attractive. In other words,

the diminishing returns to TR is overcome due to a scienti…c breakthrough. From the

viewpoint of entrepreneurs, they …nd it pro…table to employ more technologists for TR,

since TR productivity has improved. This results in a rise in the demand for technologists

with the result of a discrete upward jump in the skilled workers’ wage. It also causes the

number of scientists to decline. This explanation accords with Rosenberg’s (1974, p.107)

view that “as scienti…c knowledge grows, the cost of successfully undertaking any given,

science-based invention declines – from in…nitely high , in the case of an invention which

is totally unattainable within the present state of knowledge, down to progressively lower

and lower levels.”
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Figure 2: A time-pro…le of »t:

2.3 Cyclical Growth

Thus far, we have established that (i) given the scienti…c knowledge stock, Ât and !t

gradually rise along the saddle path until a steady state A¤ is attained or another scienti…c

discovery takes place, and (ii) Ât and !t discontinuously fall following a rise in Qt. This

process repeats itself for good, sustaining long-run growth.

Propositions 1 and 2 imply that »t repeats the process of monotonous decrease after

a discontinuous rise with each expansion of scienti…c knowledge, as shown in Figure 2.

Declining TR intensity is due to the diminishing returns to technological innovations, and

its discrete rises are caused by the expansion of scienti…c knowledge at ts; s = 1; 2; :::; 6:::

with the stochastic time intervals ts ¡ ts¡1. Note that when »t is high, a greater number

of innovations are occurring in the economy. In other words, technological innovations

tend to cluster after each scienti…c breakthrough. This is the feature that resembles the

Schumpeterian long-waves. Equation (17) implies that a time pro…le of gt is basically the

same as »t.

A possible time-pro…le of ln yt = lnL + 1¡®
®
lnNt is shown in Figure 3. Since gt (and
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Figure 3: Time pro…les of ln yt and ln y¤t :

»t) peaks in each cycle at a time when a scienti…c discovery takes place, the slope of the

ln yt schedule is steepest at ts; s = 1; 2; :::6: As the economy approaches a steady state, gt

(and »t) falls and hence the slope of ln yt (and lnNt) becomes ‡atter and ‡atter over time

due to the diminishing returns.13 A schedule with discrete rises in the …gure represents

steady-state output, to which yt converges over time, given ¸mt : It is de…ned as

ln y¤t = lnL+
1¡ ®
®

lnN¤
t where lnN¤

t = lnÂ
¤ +

º

1¡ "mt ln¸: (22)

Note that the steady-state levels of output y¤t and technology N¤
t are crucially determined

by the stock of scienti…c knowledge. Since y¤t and N¤
t expand only when a scienti…c

breakthrough occurs, this result highlights the importance of SR in determining the stan-

dard of living in the long run. When the two schedules coincide, the economy stagnates

temporarily.

13This explanation accords with studies in which diminishing returns to technology are attributed to

productivity slowdown since the 1960s. See Nordhaus (1972) for example.
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2.4 Key Economic Indicators

It can be easily veri…ed that relative wages are given by wht =w
l
t = L=®!t: They rise dis-

cretely when a scienti…c discovery occurs, and gradually decreases for a given scienti…c

knowledge stock. Thus, relative wages increase when TR intensity is high. This is con-

sistent with one of the explanations for widening wage inequality in recent years, namely

that the impact of technological innovations on the labour demand is biased towards

skilled workers.

GDP at factor cost consists of real labour incomes and aggregate after-tax pro…ts:

Gt =
h
H
!t
+ 1+®

2

i
LN

1¡®
®

t . It initially rises with a scienti…c breakthrough. This is due to a

rise in skilled wages. Its steady state value, G¤ = L(Â¤)
1¡®
® ¸

1¡®
®

º
1¡"m; also increases. But,

whether Gt monotonically rises in transition is ambiguous.

An aggregate stock market value is Ntvt = Â1¡"t =±!t: From the explanation of the

diminishing returns using equation (19), we know that !t=Â1¡"t expands with a scienti…c

breakthrough followed by a steady decrease. Thus, the time-pro…le of Ntvt is exactly the

opposite of this. Aggregate real after-tax pro…ts in terms of output are ·(1 ¡ ®)LN
1¡®
®

t ;

which mirrors yt:

2.5 Growth and Cycles

In Figure 3, yt always converges to its steady state values y¤t , and the former cannot expand

beyond the latter. That is, y¤t determines the possibility or potential of output at time t

that the economy can achieve with the current scienti…c knowledge stock. Furthermore,

the long-run trend of sustained output level can be recovered by tracing the schedules
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representing ln y¤t . Using (22), we can derive the straight line through the schedule of

ln y¤t :

E [ln y¤t ] = lnL (Â
¤)

1¡®
® +

1¡ ®
®

E [lnN¤
t ] ; E [lnN¤

t ] =
º ln¸

1¡ "# (t) t (23)

where # (t) = (1=t)
R t
0 '³Â

1¡"
s !sds which is the average arrival rate of a scienti…c discovery

up to time t: That is, the average SR intensity decides the long-run trend of output.

Di¤erentiating (23) gives

g¤t =
1¡ ®
®

»¤t ; »¤t =
º ln¸

1¡ "'³Â
1¡"
t !t; (24)

which implies that the expected growth rates of trend output depend on the current

SR intensity. This contrasts with the fact that the actual growth rate of output gt is

determined by the current TR intensity »t.

We are now in a position to examine the relation between growth and cycles. This

will be done by comparing two hypothetical time-pro…les of output, given y0 and y¤0.

One is shown in Figure 3. Suppose that the other has a higher trend growth rate, i.e. a

straight line through ln y¤t is steeper. Such a time-pro…le is obtained if scienti…c discoveries

occur more often or if the size of scienti…c breakthroughs, ¸; is larger. In other words, a

higher trend growth rate is associated with more frequent cycles or a higher “amplitude”

of ‡uctuations. Thus, the present model predicts a positive correlation between cycles

and long-run growth. This is in line with the …nding of Aghion and St.Paul (1991) and

Caballero and Hammour (1994), who draw a conclusion that exogenous ‡uctuations may

be bene…cial for growth, although their underlying mechanisms are quite di¤erent.
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Figure 4: A subsidy to R&D.

2.6 Subsidy to Technological Research

Using the distinction between the actual and trend growth rates drawn above, we examine

the e¤ect of a subsidy to TR, which drew much attention in the Schumpeterian growth

literature. We start by assuming that the fraction 0 · Ã < 1 of TR costs is subsidised

through lump-sum transfer. Figure 4 shows that following a “small” increase in Ã from

zero, the _! = 0 schedule shifts upward but the _Â = 0 schedule is not a¤ected.

Proposition 3 Following a subsidy to TR, (i) !t falls, (ii) gt and »t increase, but (iii)

g¤t and »¤t decrease.

Proof. See Appendix A.

To explain this proposition, consider the economy at A1 on the before-policy saddle

path in Figure 4 (of course A1 can be A¤). If the policy is applied, the entire saddle

path shifts upwards with the steady state A¤ moving to A¤¤: Since Ât cannot jump im-

mediately, !t falls instead. An intuition is that a TR subsidy reduces TR costs borne by
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entrepreneurs, inducing them to hire more technologists. This results in an increase in

wht , i.e. a fall in !t (result (i)).

Result (ii) of the proposition is familiar in the TR-based growth literature. But,

recall that gt and »t monotonically converge to zero in the absence of further scienti…c

breakthroughs. Thus, unlike the existing Schumpeterian models, a TR subsidy has merely

a temporary rather than a permanent e¤ect on the actual growth rate. More striking is

result (iii), i.e. an TR subsidy actually depresses the long-run trend growth rate. This

demonstrates that the government can bene…t from a TR subsidy in the form of rises in

gt and »t at the cost of a fall in g¤t and »¤t . If TR is taxed instead, we obtain exactly the

opposite result. The government cannot raise both the actual and trend growth rates.

Thus, whether TR is subsided or taxed in an e¤ort to improve an economic performance

depends upon the time-horizon of policy makers.

What is crucial in the above result is that SR is …nanced out of corporation tax and

pro…ts rather than saving which …nances TR projects. Since expenditure (and pro…ts)

and saving move in an opposite direction for a given income, TR and SR intensity respond

di¤erently to the policy shift in question. If, instead, private saving is taxed and …rms

use investors’ funds to …nance SR, then its intensity could move along with TR intensity.

However, sustainable per capita growth is impossible in the long-run, since consumers do

not save in a steady state. Thus, a necessary condition for an endogenous growth in the

presence of the diminishing returns to technological innovations is that SR should be at

least partially …nanced out of output-based tax revenues or …rms’ pro…ts. Its inevitable

consequence is that the actual and trend growth rates of output di¤erently respond to

the policy shift.
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3 Conclusion

The neo-classical growth model predict “(conditional) convergence” due to diminishing

returns to capital accumulation. On the other hand, endogenous growth models predict

otherwise, because endogenous factors permanently prevent diminishing returns from aris-

ing. This fact makes diminishing returns and endogenous growth seemingly incompatible.

But the present study demonstrates that if they are combined, growth and cycles are en-

dogenously generated. A propagating mechanism is the reallocation of resources within

the research sector. Although that sector is typically very small in comparison with the

production and service sectors, ‡uctuations of employment in that sector have signi…cant

impacts on aggregate variables. Output grows in waves and its growth rate repeats the

process of rising and falling over time. One interpretation of such cycles is the Schum-

peterian version of Kondratiev’s long-waves rather than short-run ‡uctuations studied

by the real-business cycle or neo-Keynesian theory, since a “weak” form of technological

externality and scienti…c breakthroughs are the main driving force of cyclical growth.

In the present model, endogenous long-run growth is a result of the repetition of phases

in which output grows at a decreasing rate. It is scienti…c breakthroughs that make this

repetitive process possible. A consequence was that the actual and trend growth rates

of output di¤er. The former is determined by technological research, whereas the latter

is governed by scienti…c research. This dichotomy was shown to carry several important

implications. First, a higher trend growth rate is associated with more frequent cycles or

a greater “amplitude” of ‡uctuations. Second, a subsidy to technological research raises

the actual growth rate only at the expense of the trend growth rate.
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Appendix: Proof of Proposition 3
Result (i): We …rst prove by contradiction that the equilibrium saddle path entirely

shifts upward. Suppose that the new and old saddle paths intersect at least at one point.

Denote !t corresponding to the intersection point closest to !¤ as !#. Since A¤¤ is located

above A¤ in Figure 4, it implies

@

@Ã

Ã
@Â

@!

!¯̄
¯̄
¯

!=!#

> 0 (25)

where @Â=@! is the slope of the saddle path for a given m. The system of the di¤eren-

tial equations (H) and (A) implies that the slope of the saddle path is @Â=@!j!=!# =

_Ât= _!tj!=!
#

for a given m; which is

@Â

@!

¯̄
¯̄
¯

!=!#

Ã=0

=
±Â"t

³
H ¡ ³!#

´

!#
(
±

Â1¡"t

"Ã
·(1¡ ¿)(1¡ ®)

(1¡ Ã) + "³

!
!# ¡ "H

#
¡ 

) > 0 (26)

where  = º (ln¸)'³Â1¡"t !# + ½: From this, it is evident that

@

@Ã

Ã
@Â

@!

!¯̄
¯̄
¯

!=!#

Ã=0

< 0: (27)

But (25) contradicts (27). Therefore, the old and new saddle paths cannot intersect, so

that the latter is always entirely located above the former. Given this result, it is evident

from Figure 4 that @!t
@Ã

¯̄
¯
Ã=0

< 0; since Ât cannot jump.

Results (ii) and (iii): From (H) and (24), we obtain

@»t
@Ã

¯̄
¯̄
¯
Ã=0

= ¡ ±³

Â1¡"t

@!t
@Ã

¯̄
¯̄
¯
Ã=0

> 0;
@»¤t
@Ã

¯̄
¯̄
¯
Ã=0

=
º ln¸

1¡ "'³Â
1¡"
t

@!t
@Ã

¯̄
¯̄
¯
Ã=0

< 0: (28)

Besides, @gt
@Ã

¯̄
¯
Ã=0

> 0 and @g¤t
@Ã

¯̄
¯
Ã=0

< 0 are evident from gt =
1¡®
®
»t and g¤t =

1¡®
®
»¤t :
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