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"instability principle" may give rise to a chaotic motion (specifically a Sil'nikov sce- 
nario) around two equilibrium points: a steady-state unstable equilibrium, whose value 
depends on parameters defining the technical-progress dynamics, and a stationary state 
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theories of economic growth and endogenous business cycle. 
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1 Introduct ion 

In recent years Har rod ' s  dynamics  have been reinterpreted as a theory 

a imed at the joint explanation of  economic  growth and the business cy- 
cle. This stimulating new interpretation emerges  f rom the epis temological  

works by Besomi  (1995; 1996; 1998a, b), Pugno (1992), Kregel  (1980), 

and f rom the pioneering analytical contributions by Goodwin  (1951) and 
Glombowski  and Krfiger (1982). Nevertheless,  the wel l -known "knife- 
edge p rob lem"  introduced by Harrod is still perceived as a burden in Key- 
nesian macrodynamic  models  (e.g., Flaschel et al., 1997, chap. 1). Differ- 
ent approaches are often used in these models  to overcome (or to avoid) 
the "knife edge"  (e.g., Goodwin ' s ,  1967, class struggle, Kaldor 's ,  1940, 
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interaction between savings and investments, or Rose's, 1967, nonlineari- 
ties). 1 

Our paper develops a Keynesian-type macrodynamic model aimed at 
demonstrating that the "instability principle" (which was always empha- 
sized by Harrod himself) may give rise to a chaotic motion, through the 
dynamic interaction between Harrod's three famous rates of growth (i.e., 
the actual, warranted, and natural rates of growth). Specifically it yields 
a Sil'nikov scenario around two equilibrium points: a steady-state unsta- 
ble equilibrium, whose value depends on parameters defining technical 
progress, and a stationary state of zero growth. Furthermore, the presence 
of a variable rate of labor-productivity growth and the key role played by 
expectations bring Harrod's macrodynamics closer to modern theories of 
economic growth and endogenous business cycle. 

The paper is organized as follows. Section 2 restates a new analytical 
formalization of Harrod's basic model. The resulting system turns out to be 
under-determined, and Sect. 3 considers one possible way (the simplest) of 
completing the model. Then, a qualitative analysis of the resulting three- 
dimensional system is provided. Section 4 concludes. 

2 A New View on Harrod's Macrodynamies 

It is well-known that Harrod's dynamic theory is a result of many works 
written over the period of his whole intellectual life. 2 Some of them are 
replies to criticisms and additional explanations, often stimulated by for- 
mal models which misinterpreted his central and crucial idea about an 
"unstable" growth path which characterizes capitalist economies. Unfor- 
tunately, the results which emerge from inferential restatements of his basic 
"model" never successfully broadened the conclusions met by Harrod and 
the full-employment steady-state equilibrium theories prevailed) 

If we concentrate our attention on Harrod's (1948) book "Towards a Dy- 
namic Economics," which is unanimously seen as the first complete and 

1 For further details, see: Franke and Asada (1994), Choi (1995), Chiarella and 
Flaschel (1996). 

2 See Pugno (1998, p. 152). 
3 We include in this set of theories both the so-called post-Keynesian and neo- 

classical growth theories. As we know, the former bases the equilibrium on a variable 
average propensity to save depending on the distribution of income (e.g., Kaldor, 1955); 
the latter, on a flexible capital/product ratio deriving from a neo-classical production 
function (e.g., Solow, 1956; Swan, 1956). 
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refined exposition of his theory, we find two fundamental peculiarities. 

The considerable literature which followed from Harrod's contributions, 

starting with Baumol (1948, 1949, 1952), were never formalized in a sat- 

isfactory fashion. 4 The peculiarities are: the instability principle and the 
dynamic role of technical progress. 

To set out our exposition schematically, we begin by denoting the actual 

income rate of growth as G, the warranted rate as Gw, and the natural 
rate as Gn. Although Harrod's symbols are used, we would emphasize 

that here Gw will be interpreted as a variable rate of growth defined on 
the basis of entrepreneur's (rational) expectationsS; and Gn as a variable 

and endogenous technical-progress rate of growth. Furthermore, let us 

remember that, in Harrod, G = 2 / C  and Gw - -  ~/Cr, where ~; is "the 
fraction of income saved" 6; C "the increase in the volume of goods of all 

kinds outstanding at the end over that outstanding at the beginning of the 

period divided by the increment of production in that same period" (Harrod, 

1948, p. 78); Cr "the requirement for new capital divided by the increment 
of output to sustain which the new capital is required" (Harrod, 1948, p. 82). 

2.1 The Instability Principle 

On pages 85-87 of his book, Harrod clearly explains his "instability prin- 

ciple," comparing a given Gw with the current G. Harrod writes " . . .  if the 

value G is above that of Gw, the value of C must be below that of Cr; there 
will be insufficient goods in the pipe-line and/or insufficient equipment, 

and order will be increased." On the contrary, if G < Gw it must be that 

C > Cr and there will be an excess supply of goods in the pipeline and/or 

over productive capacity in the economic system. Here it is crucial to avoid 

the mistake of considering C (or Cr) as a traditional technical-accelerator 
coefficient] As we said above, C denotes the ratio of additional goods 

"of  all kinds" to the production increase carried out at a given time. This 
means that C (in its numerator) includes both new equipment and addi- 

4 See the famous Hahn and Matthews (1964) survey. 
5 A similar interpretation has been already adopted by Hahn (1990, p. 23), to char- 

acterize Gw as a perfect-foresight equilibrium, and, incidentally, by King and Robson 
(1992, p. 44). 

6 We do not use the usual s to avoid the impression that the share of income saved 
is assumed constant. 

7 Explicitly, on page 84 Harrod points out that "Cr ... may not be equal to the 
capital coefficient in the economy as a whole." 
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tional stocks. The definition of Cr is similar. In fact, Harrod himself states 
that capital means in his treatment "both equipment and stock-in-trade" 

(p. 85), Unlike C, Cr is the ratio of desired additional goods to the ex- 
pected production increase based on entrepreneurs' previous expectations. 

Therefore, assuming that total output (Y) carried out at a given period de- 
rives from a given expected demand (ye),8 let us denote the increase in the 

volume of goods (ex post investment) as I ,  the increase in production 9 as I ), 

the requirement for new capital as / j  (justified investment) and, finally, the 
expected production (demand) increase as 1 )e. Thus, we can simply write 
C = I / Y ;  Cr = Ij /~ "e. Now according to Harrod's reasoning we can state 

the following implications and inequalities: 

G > Gw )" C < Cr =::::~ or 

> 

(R. H.) 

Noting that all the inequalities will be reversed when G < Gw and 

that the implications' sequence seems to be reversible in any case, we can 

see that if Cr were a constant, centrifugal forces working around the ex- 
pected line of advance should reduce (increase) C further and further in 

comparison with Cr, when the inequality G <> Gw is assumed to persist 
along a given sequence of periods. 1~ Since C (unlike Cr) is an observable 

and measurable quantity, clearly this conclusion contrasts with Romer 's  

(1989) view based on empirical data: in the long run the capital/output 

ratio shows a tendency to remain constant.lJ If  a "tendency" to be con- 
stant means that this ratio may change inside a bounded interval (which 

can be arbitrarily small), the theoretical inconsistency of a continuously 
decreasing (increasing) C can be demonstrated simply. 12 

Let K be the capital stock in the Harrod sense and v = K / Y  the capital/ 
output ratio. Differentiation of v with respect to time yields (after some 

8 In other words, we assume an economy governed by the effective-demand prin- 
ciple. 

9 From now on, a dot over the variable will indicate the operator d/dt and continuous 
time will be assumed. 

10 In fact, when G 7~ Gw, there will not be any tendency to adapt production to- 
wards Gw, but a tendency to adapt production still further away from it (Harrod, 1939, 
1948, respectively, p. 14 and p. 87). 

11 This "stylized fact" was already described by Kaldor (1961). 
12 Note that the assumption of a constant Cis equally inconsistent. Cr shouldmove 

away from C indefinitely, thus losing its economic meaning. 



Dynamic Complexity in a Keynesian Growth-Cycle Model 171 

rearrangement): 

This result does not need any particular comment, but it allows us to 
realize the remarkable difference between Harrod's own time scale and 

the usual notion of "long run," characterizing growth models. Harrod's 
approach to dynamic theory is founded on the concept of  "long period" 

which pertains to the typical industrial trade cycle. The "long period" is 

much less than the "long run" and, according to the particular phase of 

the cycle, substantial differences between I/Y and K~ Y may be observed. 

Sudden increases or cuts in inventories with respect to the slower change 
in productive capacity may have some influence on these differences) 3 

Therefore, given G # 0, only alternate changes in the sign of (C - v) over 
time will be consistent with an average v, whose value tends to be stable. 

Having rejected the implications of a constant Cr, we can now explain 
those centrifugal forces working in a disequilibrium condition on the basis 
of firms' rational reactions to a difference G - Gw > 0.14 

In every period t entrepreneurs' investment decisions are made on the 

basis of an expected change in demand 1 ?e. Therefore, ex ante investment 
Ij (justified by I )e) will be: 

[j = Cr ~e . (1) 

I f e x  post it turns out that I ) > I >e, then effective investment ( I )  will be 

less than ex ante Ij, because stocks are below the desired level. This is equiv- 

alent to saying that the actual desired capital coefficient Cr (in Harrod's 
sense) has become greater than the actual C. So that if capacity utilization 

is near full levels, each firm will decide on new investments, first to restore 
stock levels and, secondly, to increase, if necessary and profitable, its pro- 

ductive capacity to make it consistent with new levels of production. This 
implies an increase in I (at least in inventories only), which will work in 

its turn for a new I~ according to the monotonic multiplier effect. It follows 
that a new C will be progressively attained in the course of the period. 15 

13 Further details are in Harrod (1936, chap. 2). 
14 On p. 89 of his 1948 book, Harrod himself affirms that Gw may change in the 

"trade cycle". Given his own definition of Gw, this implies both I2 and Cr cannot be 
constants. 

15 Let us note that the new value of C exactly reflects Harrod's definition quoted 
above. 
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According to our reasoning, nothing leads us to predict changes in the 
aggregate levels of I and Y such as to generate a constant value of C, in the 
system. Our reasoning instead points out that an increase in Cr may drag 
slowly (or, alternatively, with a lag) C on the rise. 16 Now, if we assume that 
in each period firms are careful to acquire any new information generated 
by the system to forecast future demand, then the new (the current) ye will 

surely differ from its past value. This happens because agents' rational be- 
havior requires that an erroneous expectation must be changed. Compared 
with the perceived current level of demand, the new ye enables firms to 
define the actual I)e. If this value is positive, as will be the case in a period 
of rising business activity, a new amount of investments will be justified, 
according to Eq. (1). 

It should be noticed here that there are points of similarity between 
our approach and Fazzari's (1985), and Pugno's (1998, pp. 162-166) mi- 
croeconomic assumptions regarding a firm's behavior in disequilibrium 
conditions. Both these authors critically discuss the strong hypothesis of 
the Rational-Expectation Theory17 in a Keynesian perspective. They show 
that non-market-clearing assumptions and a decentralized decision pro- 
cess, interwoven with standard rational-expectation arguments, reinforce 
instability in the system, rather than the convergence to equilibrium. This 
result is founded on firms' reactions, to the inequality I;" ~ I ;'e, similar 
to the ones we assume. Nevertheless, our reasoning is more general for at 
least two reasons. First, no constant parameter (like C, Cr, or Z)  constrains 
our arguments and therefore no explosive divergence between I;" and I ;'e 

can be perceived a priori. Secondly, here firms' behavior and their reac- 
tions to disequilibrium are developed in continuous time, which allows us 
to emphasize some peculiarities of the motion often lost by formalizations 
in discrete time. 

Let I ;'e > 0 be the actual expected change in demand and assume it to 
be greater than its previous value. Under these hypotheses the new Ij in 
Eq. (1) will be more than its previous value. In other words, by assuming 
a positive 1 >e, justified investments will evolve according to the following 
derivative: 

]j = Cr I)e -F- Cr ~)e , (2) 

16 Time lags in Harrod's trade-cycle theory are well discussed by Besomi 
(1998a, b). 

17 Agents know the "model", so that incorrect expectations will be modified sys- 
tematically and stable equilibria will be reached or restored. 
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where the first term on the right-hand side can be interpreted as stock in- 
vestments filling existing storehouse gaps and the latter term, as additional 
goods, aimed at restoring actual stock levels to sustain the new I ?e and, if 
necessary and profitable, the new equipment required by the change in I ~e. 
When a sequence of positive (nondecreasing) f-e persists along a given time 
path, the lj dynamics will be accelerated and the distance between I and Ij 
itself may be increased. This is due to the fact that I follows lj, but, real- 
istically with a sticky motion, since investments involving the productive 
capacity cannot be carried out instantaneously. 

Now it is crucial to point out that when Ij is pushed forward to I,  Cr is 
pushed ahead of C and if Ij accelerates, there will be a large gap between 
Cr and C. Recalling our initial assumption I;" > I ~e, we can infer that the 
run for Cr is path dependent on the gap I? - 1 ?e and that the greater this 
difference is, the more violent the thrust forward of Cr will be. 

We may interpret the Cr path dependence as an intrinsic component of 
Harrod's instability principle. Furthermore, we are able to state that the Cr 
motion does not lead the difference between C and Cr itself to be inevitably 
explosive. Looking at Eq. (2), it is plain that, if ~e becomes negative, as will 
certainly happen sooner or later, the sign of ij may change. Consequently, 
the growth of Cr will slow down initially, and its value may decrease as soon 
as I exceeds/j.18 Hence, changes in the value of C (which follows Cr), 
will be bounded over time, according to Romer's empirical result. 

2.2 An Important Implication of the Dynamic Process 

We noted that I < lj implies an increase in I,  which will entail, during 
the given period, a new Y. If we assume a sequence of periods such that 
Ij - I > 0 always holds, then, according to our reasoning, a sequence 
of positive 1 ) will ensue. Furthermore, if the distance between Ij and I 
increases in every period, then a sequence of rising 1 ~ may drive G on the 
rise. This is because increasing inventory gaps together with additional 
equipment orders lead all the firms to accelerate their production rates. 19 

Looking at the wide variety of literature inspired by Harrod's theory, our 
conclusion seems to be similar to Alexander's (1950) explanation of the 
instability principle. We would notice here that the Alexander approach 

18 Sooner or later, productive-capacity increases resulting from firms' optimistic 
foresights will exceed the desired levels. 

19 This confirms that implications (R. H.) are reversible. 
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was unique and received, though with some criticism, an explicit approval 
by Harrod (1951, p. 263). So, in accordance with Alexander, if we define 
as U the difference between Ij and I (i.e., U = lj - I),  given Eq. (1), and 
the ex post identity I -- aggregate saving, we can write: 

i .e.,  

U = Cr1~ e -  Z Y ,  

V I ~e 
u - c r  x .  (3 )  

Y Y 

As we explained above, unlike Harrod, we define Gw = l~e/Y. There- 
fore we can state the following: 

Postulate 1: Let T be a time interval. If, Vt E T, I j /Y  exceeds I / Y ,  then 
along T, the growth of produced income will undergo acceleration. On the 
contrary, if I / Y  exceeds I j /Y ,  then along T, the growth of income will 

undergo deceleration. 

Given that (by definition) G -- ~ ' /Y and given u ~ O, Postulate 1 can 

be stated in equation form as 2~ 

0 = f ( u ) ,  
> > 

such that G ~ 0 if u ~ 0. Furthermore, we shall assume 0 < f /  < 1 as 
an additional consequence of the stickiness affecting the investment com- 
ponent which involves changes in the level of the productive capacity. 

For simplicity, if the function f (u) is assumed to be linear, we can write 

= oe(CrGw - ~ ) ,  (4) 

where 0 < ~ < 1 denotes the sensitivity of G with respect to changes in the 
gap ( I j /Y  - I / Y ) .  Since here, according to our reasoning, Cr is a variable 
whose value increases when the difference (I > - I~ e) increases, we can 
set, without altering the relationship structure, Cr = qb(G -- Gw). This is 

> 
possible because, given the inequalities (R. H.), the inequality I# - I ~e # 0 

> 
is a consequence (and a cause) of G - Gw # 0. 

The function (I) will be subject to the following formal and logical as- 
sumptions: i) ~ '  > 0; ii) ~ ( 0 )  = C*, because G = Gw (or I# = I #e) 
implies Ij = I and thus Cr will be equal to its equilibrium value C* when 
the actual demand change is exactly that, on average, what firms expected. 

20 This equation can be found in Alexander (p. 728) where discrete time is assumed. 
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Given the function qb, Eq. (4) becomes 

d = ~ [ ~ ( G  - a w ) G w  - r q .  (5)  

Equation (5) confirms that growth will be in a steady state if and only if 
l i l y  = I / Y  = E, i.e., when G ---- Gw. In this case there is no acceleration 
in Y and, therefore, d = 0. It follows that 

�9 (0)Gw - E = 0 ',, Gw - 

according to Harrod's conclusions. 
It is now interesting to note that: 

E 
m G ,  

C* 

i�9 since G (i.e., I / Y )  is an unknown quantity in this equation, the value 
of E making G consistent with Gw is not unique�9 In other words, this 
means that (transient) multiple equilibria may exist between realized 
production and foreseen demand levels; 

ii. unlike Alexander's approach, our Eq. (5) may imply G = 0 also when 

G r  
In both cases, of course, additional assumptions about Gw and E would 
be necessary to describe the dynamics of G. 

Furthermore, we have to point out that Harrod's definition of Gw -- E /  
Cr is inconsistent with our Eq. (4), since G would always be equal to zero. 
Nevertheless, Alexander's own instability formalization reflects Harrod's 
notion of the warranted rate of growth�9 In fact, Harrod defines Gw as 
the growth rate of production equating, at a given time, savings and ex 
ante investments (Harrod, 1939, p. 19). When inequalities between these 
quantities subsist, G will change as Alexander (1950, p. 728) postulated, 
according to Harrod's reasoning. 

The problem of inconsistency in our version of Alexander's equation 
arises from the difference between Harrod's and our definition of Gw. As 
shown by Besomi (1998, pp. 51-53), several ambiguities are contained in 
Harrod's warranted rate of growth�9 Mainly they concern the improper use 
of the term ex ante attached to investments together with the attempt to 
solve the problem of the consistency between a single-agent equilibrium 
and a macroeconomic notion of equilibrium. 21 

Our Eq. (4) gives rise to none of these problems: ex ante investment 
is justified by expected demand change (t;'e); Gw is the expected rate of 

21 This problem had been already posed by Harrod in The Trade Cycle (1936, 
chap. 2). 



176 M.C. Sportelli 

change of aggregate demand. Unlike Harrod, who defines ex ante (or jus- 
tified) the equilibrium amount of investments, the former assumption is 
conformable to the conventional usage because it is concerned with in- 
vestment decisions. The latter is the result of underlying processes in the 
expectation formation. Nonetheless, according to Harrod, our I, C, Y, I ~, 
and, therefore, G are all interlocked quantities and, in Harrod's words, 
"determined from time to time by trial and error, by the collective trial 
and error of vast numbers of people" (Harrod, 1948, p. 86). When firms' 
expectations are satisfied G = Gw, but this "equilibrium" (which may not 
be unique) has nothing to do with the dynamic equilibrium of the economy. 

2.3 The Key Role of the "Natural Rate of Growth" and the 
Saving-Rate Dynamics 

As we know steady-state equilibrium is independent of full employment 
in the system. It only ensures the consistency between expected and actual 
demand changes (i.e., ~e and I~). Employment-level changes are strictly 
connected with the labor force and technical-progress dynamics. In other 
words, over time employment levels yielded by the system deals with 
Harrod's "natural rate of growth" Gn, i.e., "the rate of advance which the 
increase of population and technological improvements allow" (Harrod, 
1948, p. 87). 

Here, unlike Harrod, our Gn neglects the contribution resulting from pop- 
ulation growth. This is because Harrod's long period is a time scale where 
population changes scarcely affect the labor force and, we add, taking into 
account modern growth theories, the human-capital formation slightly en- 
hances available labor input. Thus, our Gn will be interpreted exclusively 
as a rate of growth in the average productivity of labor. As we shall see 
later, the generality of Harrod's theory is not affected by this assumption. 

Beginning on page 87, Harrod (1948) considered the effects on growth 
coming from a divergence between Gn and Gw. In the first place Harrod 
observes that "Gn sets a limit to the maximum average value of G over 
a long period"; secondly, he states that "the relation of Gn and Gw is 
... of crucial importance in determining whether the economy" will be 
prevalently "lively or depressed." If Gn > Gw "there is no reason why 
G should not exceed Gw" (Harrod, 1948, p. 88). Therefore, an expansion 
process can be started. Conversely, "since the average value of G over a 
period cannot exceed that of Gn," if Gn < Gw, the value of G will be 
prevalently below Gw and consequently the economy will be depressed. 
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This latter conclusion seems a paradox because, at first sight, "one would 

suppose it to be a good thing that the line of  entrepreneurial contentment 

should be one implying an attempt to push forward always at a greater rate 

than fundamental conditions allow" (Harrod, 1948, p. 88), i.e., than the 

rate of growth Gn allows. But, Harrod says, "analysis reveals the opposite 
to be the case." 

This is an obscure passage in Harrod's account, and one that growth 
theorists usually interpreted in a simplistic fashion. In fact, as we know, 

given an exogenous Gn, either variability in E - due to changes in income 
distribution (Kaldor, 1955, 1956) - or variability in C - derived from a 

neo-classical production function (Solow, 1956; Swan, 1956) - make the 

steady-state equilibrium stable. With regard to these results, we would point 

out that in successive stages Harrod contested the neo-classical approach 

and the term "knife-edge" attached to his equilibrium condition by Solow 
(1956, p. 65), 22 but he did not even sympathize with the post-Keynes- 

ian approach. This is because Kaldor's assumption on flexible prices with 
respect to money wages eliminated the instability problem completely, 

making the full-employment steady-state path a natural condition which 
economies tend towards. 

In order to explain the "paradox", aggregate savings are considered by 
Harrod. He states: "saving is a virtue and beneficial so long as Gw is be- 

low Gn. While it is disastrous to have Gw above Gn, it is not good to have it 

too far below . . . .  "because  "plenty of booms and a frequent tendency to ap- 

proach full employment . . ,  will be of an inflationary and thereby unhealthy 
character. In these circumstances saving is a virtue since, by raising Gw, it 

enables us to have good employment without inflation. But if Gw is above 

Gn, saving is a force making for depression" (Harrod, 1948, pp. 88 f.). 

These reflections by Harrod lead us to distinguish explicitly between 
the level of saving (S) and the saving/income ratio (I2 = S/Y). Some- 

what confused in the Harrod statement quoted above, this distinction has a 
crucial importance in understanding how saving may fit into a dynamical 
framework while remaining consistent with Harrod's view. 23 

Preliminarily, we must point out that changes in the level of savings may 

22 See Harrod (1973, p. 33). We have to notice here that Solow adopted the term 
"knife-edge" in referring to the divergence between Gw and Gn. Instead, it was inter- 
preted by Harrod as referred to the divergence between G and Gw. Further details on 
this problem are in Besomi (1998, pp. 58-61). 

23 "Dynamics ... deals ... with the effects of continuing changes and with rates of 
change in the values that have to be determined" (Harrod, 1948, p. 8). 
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imply a different rate of saving if either a constant value of income is a 

priori assumed, or if it happens that S is rising (reducing) quicker than Y 
during a given time interval. Furthermore, without any reference to Cr or C, 

a value of S that increases Z may increase both Gw and G, in accordance 
with Harrod's own definitions of these two variables. 24 Therefore, at the 

height of an expansion, although the distance between Gn and Gw may be 

altered, the distance between Gw and G might not be. Thus, an inflationary 
process should be sharpened rather than slackened. 

To deal correctly with this question, we have to consider the speed at 

which S is rising (falling) when the income level is changing. 
Let us begin by looking at the level of aggregate saving at a given time t. 

We have no way to cut off the desired level of S and concentrate our atten- 

tion on the undesired component. According to agents' rational behavior, 
we are only able: i) to know that the desired component is a fraction of the 

income level people hold as normal, or at least satisfactory, to sustain the 

current welfare level subjectively chosen; ii) to predict that an expected 
income increase may drive the desired level of S upwards, without altering 

the value of Z;  while an unexpected income increase raises, at least in the 

short run, prevalently the undesired component of S. Hence, the I] value 

may show the tendency to increase, iii) Finally, we know that both expected 

and unexpected income reductions will primarily give rise to a saving drop 
rather than a cut in consumption. However, unexpected income reductions 

may be such as to reduce the ~ value. 

From a macroeconomic point of view, taking into account that uncer- 
tainty prevails in the world, all these considerations suggest that when 

income is changing, the elasticity of aggregate saving with respect to in- 

come shows the tendency to be, for the most part and surely whenever 
G # Gw, more than one, rather than equal to one. 25 It follows that the 

rate of change of saving will be prevalently higher than the rate of change 
of income and, therefore, the savings rate will be inclined "to vary with 

a change in the size of  income, but" - as Harrod states (1939, p. 25) - 
"a change in the rate of growth at a given point of time has no effect on 

24 Here we refer to the Harrod definitions quoted in the 1939 paper and in the 1948 
book. Harrod explicitly considers a desired rate of saving (s d) to define G w, in the 1973 
book. There, the treatment of discrepancies between actual and desired saving rate is 
very similar to the one concerned with deviations between C and Cr. Reasons dealing 
with changes in the current saving ratio, however, remain unclear. 

25 in this latter case, Z should be a constant, because of ~'/S = Y~ g. Furthermore, 
marginal and average propensity to save should have an equal value. 
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its size." If this conclusion is true, we need an explanation able to make 
clear why, in the different phases of the cycle, Y~ varies independently of 

the changes G may undergo. 
Given agents' rational decisions on saving, we can postulate, according 

to Harrod's intuitions (1939, p. 21), that the elasticity of aggregate saving is 
inclined: i) to rise above one whenever the level of unexpected profits (and, 
in general, of income) show the tendency to become abnormally large; ii) to 
decline (approaching one) whenever profits (or incomes) show the tendency 
to move around the level firms (people) perceive as satisfactory; iii) to rise 
again, moving away from one, when profits (or incomes) fall under the 
level perceived as satisfactory. The former case implies an increasing P,, 
because S increases quicker than Y; the latter case implies a falling ~,  
because S decreases more quickly than Y; the middle case implies a fairly 
steady value of Ig. All this enables us to suppose a dependence of N changes 
on the difference Gn - Gw. If, for simplicity, this dependence is assumed 

to be linear, we can write: 

:~ = e ( G ~  - G w ) ,  (6)  

where E > 0 is a parameter denoting the sensitivity of ~2 to the divergence 
between productivity and the dynamics of expectations. 

This is because swifter productivity increases, with respect to changes 
in expected income, yield higher firms' profit margins, and consequently 
(independently of Kaldor's distribution theory) tend to increase either the 
saving firms' use of self-finance investments, or the dividend distributed to 
shareholders or both. The result will be a rise of E. In contrast, a slower pro- 
ductivity change, with respect to changes in expected income, reduces E. 

Now, if we consider Eq. (5) again and assume Gn > Gw, we can see that 
Eq. (6) implies ~ > 0, so that the rise of the actual growth rate will tend 

to slow down. Even though this result is consistent with the "effective-de- 
mand principle", it seems to be in contrast with Harrod's viewpoint, which 
considered increases in ~ as beneficial to the system when Gn > Gw. Near 
full-employment conditions, Harrod's viewpoint is certainly correct, be- 
cause a decelerated growth depresses the rate of inflation, but what happens 

when this is not the case? 
This question would remain a puzzle without some further brief details 

provided by Harrod himself. He writes: "Even if saving as a fraction of 
income is fairly steady in the long run, it is not likely to be so in the short 
run. There is some tendency for saving in the short period to be a residual 
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between earnings and normal habits of consumption . . . .  Thus even if Gw 
is normally below Gn, it may rise above it in the later stages of an advance, 
and, if it does so, a vicious spiral of depression is inevitable when full 
employment is reached" (Harrod, 1948, p. 89). 

Clearly the property "fairly steady" ascribed to I2 should be a logical 
contradiction if it were interpreted as "absolutely steady". 26 In the first 

place, Harrod (1948, p. 79) himself stated that "saving as a fraction of in- 
come might not be constant." Secondly, as formally expressed by Eq. (5) 
(approved by Harrod), the "instability principle" should be simply an alge- 
braic tool aimed at checking the discrepancies between Ij/Y and ~ and so 
to predict changes in G. In fact, if ~ were a constant, Harrod's instability 
would simply coincide with the mathematical notion of dynamic instabil- 
ity. Notice that Alexander (1950, p. 729) was the first who gave prominence 
to this point. However, as his reasoning was bound to the constancy 27 of 
Ig and Cr, he contradicts himself by interpreting the instability in the sense 
meant by Harrod with the mathematical notion of instability. That is why 
we choose here to interpret "fairly steady" in a more correct and consistent 
way with Harrod's ideas as "moderately variable in the long run." 

Let us note that our Eq. (6) reflects this interpretation properly; given 
e, discrepancies between Gn and Gw might be so wide as to generate 
some major changes in Z only by coincidence. Normally, both Gn and Gw 
change in the different phases of the cycle, and the sign of their algebraic 
difference may vary, even though in itself this difference might be very 
small. This allows us to state that our Eq. (6) is able to describe long-run 
motion of the savings rate, because its effective value is inclined to change 
over time in the neighborhood of its mean value. 

Now we only need to look for an explanation of benefits linked with the 
savings-rate behavior when Gn > Gw, but an inflationary process is not in 
progress. Next, we shall face the question raised by the different behavior 
of saving in the short and long run. 

We feel that empirical evidence on growth and business-cycle theories 
can be of assistance in understanding the savings-rate puzzle. 

Empirical evidence shows that average labor productivity is somewhat 
procyclical and leads the cycle (Kydland, 1995, p. 128), i.e., productivity 

26 Up to now this seems to have been the interpretation prevailing in the literature. 
27 In fact, constancy of ~ is sufficient to make mathematically instable G dynamics. 

As it will be possible to verify, our model would be able to exhibit only a saddle point 
as a steady-state equilibrium if ~ were a constant. 
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shows a tendency to rise (to decrease) early and faster with respect to real 
income. 28 Therefore, if in Eq. (6) we think of a decelerating Gn near the 

height of an expansion so that it goes down relatively to a rising Gw, then the 
expansion will be sustained with a reduction of ~E. However, according to 
Harrod, when Gw exceeds Gn, independently of the reached employment 
level, sooner or later G will fall below Gw and a slump will be inevitable. 29 

Finally, in regard to the fairly different behavior of N in the short run 
relative to the long run, we think that our Eq. (6) needs to be modified to 
make the dynamics of N more consistent with the tendency of saving to be 
a residual between income and consumption in the short run. A possible 
way to explain this phenomenon is by means of the hysteresis which affects 
the level of saving in the short run. In fact, positive (negative) effects on 
savings levels deriving from high increases (reductions) of income along 
a given period may not be suddenly reversed in subsequent periods. Some 
memory of past shocks is likely to remain in every period. For this reason, 
Eq. (6) has been extended by adding a hysteresis effect. So that, a further 
element dealing with the particular phase of the cycle in the economy is 
taken account of. Therefore we shall write: 

f~  = 8 ( G n  - Gw) q- 8 d w ,  (7) 

where 8 > 0 is a hysteresis parameter whose value will be assumed to 
be large enough for Gw to have a meaningful direct effect on ~.  This is 
because the value of Gw will never be too high in any single period. 

The hysteresis in the savings-rate dynamics may be justified as follows. 
Firms (people) show the tendency to increase their desired fraction of in- 
come saved more quickly in a period of rising business activity, in line with 
optimistic expectations on the future demand (income) level. Conversely, 
in a period of falling business activity, in line with pessimistic expectations, 
firms (people) are less inclined to save. Now, if we assume a value of e 
inside a not too large neighborhood of one, the level of N will never be 
excessively affected by changes deriving from the evolving (Gn - Gw), 
but it will be suddenly modified according to the sign and the size of Gw. 
Therefore, as expressed by Eq. (7), the ~2 dynamics enable us to distinguish 

28 Details about this argument can be found in econometric works by Bean (1990), 
Stadler (1990), Saint-Paul (1993), Malley and Muscatelli (1995). 

29 Note that at the end of his 1939 paper (p. 33), Harrod himself mentions the pos- 
sibility that the economic system may "relapse into depression before full employment 
is reached in the boom." But, unlike Harrod, we ascribe the slump to a slowing down 
Gn and not exclusively to a rising Gw. 
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a long-run sluggish motion from different short-run shocks dealing with 
agents' changeable expectations. 

There is no other Harrodian or, in general, Keynesian macrodynamic 
model using this type of dynamic equation to formalize the cyclical motions 
of the savings rate. 

Works by Glombowski and Krtiger (1982, pp. 137 f.) and, more recently, 
by Pugno (1998, p. 160) perceive the importance of a variable ~.  Their 
models improved many old formalizations of Harrod's dynamics, because 
they overcome the instability concept meant as explosive motion. In fact, 
by means of a variable average propensity to save, the former gives rise 
to a Li6nard equation able to display (as it is well-known) a stable limit 
cycle, i.e., regular cycles around the steady-state equilibrium. 3~ By consid- 
ering discrete time dynamics, the latter follows the Harrod outline of the 
1973 book (p. 36), and distinguishes normal from abnormal business con- 
ditions. When normal business conditions prevail, the system evolves with 
a constant savings rate and fixed capital/output ratio. Conversely, when 
abnormal business conditions are in progress, the savings rate and the cap- 
ital/output ratio change quickly. As a result, the economy will experience 
a nearly steady growth phase under normal business conditions, while the 
cycle will replace growth, when business conditions become abnormal. 31 

Our approach further improves the results reached by these models. In 
the first place, it is to be observed that our equation for the savings rate is 
theoretically founded, unlike the Glombowski and Krtiger function. Fur- 
thermore, although Harrod (1939, pp. 24f.) explicitly said that the average 
propensity to save is independent of the values of G and G, these authors 
(p. 138) consider Z as exclusively dependent on G and G. In addition, the 
savings-rate variability is explained by our Eq. (7) without invoking the 
Kaldor distribution theory. On the contrary, the adjustment process sug- 
gested by Pugno (p. 160) is founded on this assumption. We should remind 
the reader that Harrod never shared Kaldor's conclusions. 

3 Completion of the Model and Qualitative Analysis 

Taking Eqs. (5) and (7) together, we can see that our view on Harrod's 
macrodynamics leads to a basic model, which is more complex than the 

30 Note that the flexible-accelerator model by Goodwin (1951) already used the 
Lidnard equation to describe the Harrodian trade cycle. 

3I Analytically, the dynamics in this model m'e described by using an "unconven- 
tional" R6ssler type attractor. 
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ones which Keynesian and neo-classical growth theorists have suggested 

to date. Furthermore we have to point out that our basic model is only an 
under-determined dynamical system. 32 It might be considered as a starting 

point to build a general mathematical model able to describe the cyclical 

growth mechanism of an economic system. 
Here we choose the simplest way to complete the model by making 

reference to a closed economy without a public sector. Then we carry out 

a formal study of its dynamic properties. 

3.1 The Expected (Warranted) Rate of Growth Gw 

Earlier we defined Gw = l~e/Y. Now we need to specify its dynamics 

formally. Noting that Harrod himself (1948, p. 89) explicitly states that 

"Gw fluctuates in the trade cycle," from a general point of view, we might 

define the Gw over-time behavior either by means of a backward:looking 
or forward-looking variable, or a combination of them (e.g., Turnovsky, 

1995, chap. 1). Yet, our choice of a simple laissez-faire economy does 
not allow us to opt here for a more realistic and general hypothesis. 33 

Therefore, we assume that the expected rate of change of demand is a 
continuous function defined as a weighted average of all past rates of 

change of effective demand, i.e., 

f t 1 e_(l_r)/T G Gw = --  d r .  (8) 
o c T  

T is the mean time lag, which assigns more or less weight to past values of 

G. By periodic checks of  their stocks (at least once in a period), firms are 

able to infer the actual level changes of demand. Therefore, we suppose a 

reaction lag for Gw such that T < 1. 
Differentiation of Eq. (8) yields: 

r(~w + Gw = a .  (9) 

32 Two equations include four unknowns. 
33 In this version of the model there are typically no forward-looking economic 

variables. These are treated, in modern macrodynamic theories, as jump variables be- 
cause of their instantaneous response to new information. For details, see Turnovsky 
(1995). 
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3.2 The Desired Capital Coefficient Cr (in the Sense of Harrod) 

In Sect. 2.2 we defined the function Cr = qb(G - Gw) such that ~i > 0, 
(0) = C*. Now, for simplicity, we shall assume a linear approximation 

of ~.  Therefore, we write: 

Cr = C* @ ~o(G - Gw),  (10) 

where C* is the equilibrium value of Cr and q) > 0 is a parameter measuring 
the sensitivity of Cr to the difference (G - Gw). 

We shall assume that q) is sufficiently large to ensure meaningful changes 
in Cr for any given change in (G - Gw) whose (absolute) value cannot be 
realistically too high in a single period. Furthermore, since the Cr dynamics 
cannot be independent of Gw, we assume that the smaller T is (i.e., the 
greater 1 /T  is), the higher will the sensitivity of Cr be. In other words, 
the parameter q) will be considered the higher the greater the speed of Gw 
adjustment to past levels of G (i.e., 1/T). 

3.3 The Natural Rate of Growth Gn 

Following King and Robson (1992, 1993), we shall assume that the techni- 
cal progress takes the form of "learning by watching". This is because new 
ideas are embodied in investment projects realized by one firm (or indus- 
try) and these generate externalities for other firms (or industries), which 
are able to learn from these ideas and adapt them for their own business. 
In other words, the learning-by-watching hypothesis is an extension of the 
Arrow (1962) learning by doing, where technological knowledge is treated 
as a public good. Although this last assumption raised some criticism (e.g., 
Romer, 1986, 1990), because knowledge is often lacking in complete non- 
rivah'y and nonexcludability characteristics, Cohen and Levinthal (1989), 
and recently Offerman and Sonnemans (1998) have shown empirically that 
many innovations in one firm or industry have originated in developments 
in other firms or industries. Therefore, assuming that investments create 
a spillover effect, we consider a technical-progress function relating "the 
rate of growth of productivity to the proportion of economic activity that 
takes the form of new investment projects" (King and Robson, 1993, p. 59), 
i.e., the rate of investment. The qualitative nature of the technical-progress 
function remains unchanged when its argument is aggregate net investment 
or gross investmentY here, according to Harrod's investment concept, we 

34 See King and Robson (1993, p. 61) for details. 
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have no difficulty in assuming our effective (ex post) rate of investment as 

an argument of the technical-progress function. So that, given the equality 
I/Y = ~;, we can write: 

Gn = F ( Z ) .  

According to King and Robson's theoretical considerations, we can think 
of the function F as nonlinear. Nevertheless, we do not adopt their assump- 
tion that F should be a logistic curve. Although it is truncated at the origin of 
the axes, the logistic function exhibits an asymptote as the least upper bound 
of its codomain. If this property of the function is realistically justifiable 
by the existence of an upper bound of the growth rate Gn, we cannot ignore 
that unity is the least upper bound of the investment (savings) rate. Further- 
more, it is logically inadmissible to think that Gn may be still rising when 
I/g (i.e., I2) is near to one, i.e., when the consumption rate is close to zero. 

For these reasons we shall suppose the function F has the following 
formal property: 3~  < 1, i.e., I/Y < 1, such that F ( ~ )  is a local maxi- 
mum. This means that the productivity rate of growth will rise only when 
the investment rate, i.e., the savings rate, is below ~2. But if ~2 exceeds ~,  
the productivity rate of growth will decline because accelerated decreasing 
returns and an insufficient expansion of consumption are forces making for 
slackening productivity dynamics. ~2 may be interpreted as an optimum 
savings rate (investment rate) from a social-welfare point of view. 

To allow our model to be mathematically tractable, the function F has 
been specified as a one-hump type function, i.e., 

Gn = fl(rr - ~2)}2, (11) 

where/3 and 7r > 0 are parameters which reflect the level of technical 
knowledge. Unfortunately Eq. (11) sacrifices the assumption of a technical- 
progress function which has first increasing and then decreasing returns, 35 

but it is a practical compromise: it enables us to capture the broad feature 
of "learning by watching" in the Gn dynamics and, above all, it leads to a 
differential system which can be analyzed qualitatively. 

35 Details are in the quoted King and Robson papers. 
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3.4 The Qualitative Analysis 

By substituting Eq. (10) in to  Eq. (5), and Eq. (11) in to  Eq. (7), taking into 
account Eq. (9), we find the following nonlinear three-dimensional  system: 

d = o d [ c *  + r  - Ow)]Gw - r~}, 

Gw = F ( G  - O w ) ,  

I~ = e [ / 3 ( : r  - I ; ) I 3  - G w ]  + 3 v ( G  - G w ) ,  

(12) 

where, as it has been said above, g = 1/T > 1 is the speed of  Gw adjust- 

ment  to past  G levels. 
The system (12) has two singular points36: the origin, i.e., a zero- 

growth equilibrium, p(O) = (0, 0, 0) and a steady-state equil ibrium P(*) = 

(G*, G * ,  E*) such that: 

Z* 1 
m �9 ~ : r  _ I 

G* = G* w --  C * '  = n" t iC* 

Let  us note that G*, G* ,  Z* > 0 if  and only if C* > 1//3rr. Further- 

more,  since E = ~ / 2  is the saving rate which assures the local m a x i m u m  of  

Gn, we consider Y,* _< E,  because in the long run firms'  rational behavior  

cannot imply an investment rate such that Gn should be decreasing. 
The usual l inearization in a neighborhood of  the two critical points yields 

the following Jacobian matrices: 

j (o )  = 
0 uC* - a  

?' - g  0 

Sy - ( e  + Sy) E~Tr 

j(*) = 
oe~oG* o~(C* - ~oG*) -ce  

g - g  0 

Sy -(e + ST) e[ /3( r r  - 2 2 * ) ]  

Expanding h j(0) _ ZI  [ and J(*) - ZI  I the following characteristic equa- 
tions can be obtained: 

36 It might be interesting to notice here that, making a comment on Harrod's growth 
theory, Kalecki (1962) developed a mathematical model by means of quite a different 
approach, but in a way that two singular points similar to our model are exhibited. 
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;.3 + o~0X2 + bo)v + co = 0 ,  

ao = - tr j(o) = g - e f l J r ,  

bo = 7[0L(3 - C*) - cflJr] 
= sum of  the pr incipal  minors  of  j ( o ) ,  

co = - d e t J  (~ = o e y e ( C * f i J r  - 1) " 

)v 3 + oL1)v 2 + b~X + Cl = 0 ,  

a l  = - t r J  (*) = ? / -  o e g G *  - e f t ( J r  - 2 Z * ) ,  

b l  = V o e ( 8  - C * )  - ( g  - o e ~ o G * ) e f i ( r c  - 2N*) 

= sum of  the pr incipal  minors  of  J (*) ,  

Cl = - d e t J  (*) = oege[C*fi(Jr - 2N*)  - 1] . 
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(13) 

(14) 

Assuming  3 > C* and o~(8 - C*) >_ ?/, it can be shown that these two 

character is t ic  equat ions exhibi t  a cubic  d iscr iminant  zX 3 > 0 i f  b > a.  In 

that case, they possess  one real and two complex  conjugate  eigenvalues.  Ac-  

cording to the Rou th -Hurwi t z  cr i ter ion the equi l ibr ia  wil l  be local ly  stable 

i f  the fo l lowing inequal i t ies  are jo in t ly  fulfilled: a ,  b, c > 0; a b  - c > O. 

We can now note that Cl > 0 would  imply  ( taking into account  the Z* 

value) 
1 

C * f i ( j r - 2 N * ) - I  > 0 ~ - -  > C * ,  
~jr 

so that N* < 0 and, consequently,  G* = G *  < 0. Since no economic  

meaning  can be given to a negative s teady-state  equi l ibr ium, we shall  im- 

pose C* > 1 / f l j r .  In accordance  with this inequal i ty  it fol lows that cl < 0 

(i.e., det  J(*) > 0) impl ies  an unstable  s teady-s ta te  equi l ibr ium. If  that is 

the case, the fo l lowing  Proposi t ion  1 can be demonstra ted:  

P r o p o s i t i o n  1 :  If  Jr - 2N* >_ 0 and al  > 0, the s teady-s ta te  equi l ibr ium 

wil l  be a "saddle  focus." 

Proo f . "  As ~ = Jr /2 and ~2" < ~ ,  it fol lows that Jr - 2 1 g *  > 0. Therefore,  

i f a l  > 0, i.e., ? / -  efi(rr - 25-;,*) > o~oG*, it fol lows that bl  > a l ,  because  

we assumed 37 g > 1 and o~(8 - C*) > Y- Then, as cl < 0, the Jacobian 

matr ix  J(*) will  have one posi t ive real  e igenvalue )~1 > 0 and two complex  

37 Note that V = 1 implies 0 < a 1 < 1 and b 1 > a 1 ; so that the cubic discriminant 
will still be positive. 
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conjugate eigenvalues/91 • mli. According to Vieta's formula 

albl - Cl = - [AI  + (Pl + coil] �9 [AI + (Pl - coli)] �9 

�9 [ ( P l  + c o l i )  + ( P l  - ~ o l i ) ]  > 0 

after some algebraic rearrangement, it follows that Pl < 0. Therefore, the 
steady-state equilibrium will be a "saddle focus" (Lorenz, 1993, pp. 192- 

200; Glendinning, 1994, pp. 351-358). [] 

Conversely, in the first characteristic equation the parameter co will 

definitely be positive, because C*flzc > 1. So, by assuming eflJr < y,  it 
follows that ao > 0 and, consequently, (0 <) b0 > ao, because of ce(3 
- C*) > V- Therefore, the Jacobian j(0) will possess one real and two 

complex conjugate eigenvalues. However, if co > 0 ensures a negative 

real eigenvalue (Ao < 0), the sign of the complex conjugate eigenvalues 
will depend on the sign of the expression 

< 
aobo - co ~ 0 .  (15) 

This implies that the equations governing our model have at least one 
parameter which crucially affects the qualitative properties of the zero- 

growth equilibrium. Within the parameters used here to give a new math- 
ematical form to Harrod's model, there is one whose value is objectively 

ambiguous. This parameter is e, i.e., the sensitivity of E to the discrep- 

ancies between Gn and Gw. Our considerations led us to assume e > 0 
and specifically an e in the neighborhood of unity. However, without some 

empirical benchmark, it is very difficult to determine the boundaries of  this 

"neighborhood." For this reason we have chosen e as a critical parameter 

for our qualitative analysis. 
Therefore, let e '  be an initial value of e such that the inequality (15) is 

positive. Since an increase in e implies Oao/Oe < 0 and Oco/Oe > 0, the 

product aobo will be equal to zero at a value e = ?//flrr (because a0 = 0) 
implying that aobo - co = - c o  < 0. It follows that there must be a value 

e' < ~ < V/flzr at which aobo - c0 = 0. This means that ~ is a bifurcation 
value of our system. In fact, for values of e < 5 the conjugate pair of 
complex eigenvalues P0 • co0i will have P0 < 0; for values of e > 5 the 
same eigenvalues will exhibit a real part P0 > 0. Given this and taking 
into account the Hopf  bifurcation theorem, 38 we can state that our system 

38 Details can be found in Hale and Koqak (1991), Lorenz (1993), Glendinning 
(1994), Verhulst (1996). 
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possesses closed orbits in a neighborhood of  the zero-growth equilibrium, 

because, for c = g, it results P0 = 0. But, f rom the contributions of  Coul- 

let etal. (1979), and Arneodo etal. (1982), one can notice that, f rom a 

mathematical  point o f  view, our system may be qualitatively compatible 

with a Si l 'nikov (1970) scenario when e > ~, so that P0 > 0. 

Under this hypothesis, comparing the two critical points exhibited by our 

model,  we can point out that the sign o f  the eigenvalues at the zero-growth 

equilibrium is reversed with respect to that of  eigenvalues at the steady- 

state equilibrium. Therefore, the application of  a theorem by Si l 'nikov 39 

- as modified by Arneodo etal. (1982, p. 172) and discussed by Tresser 

(1984, p. 442 and p. 446) - allows us to state that in our system there may 

exist one orbit 1 ~, which is asymptotic to one of  the two singular points as 

t --+ -4-oo. Then, being bounded away from the other singularity, if f" exists, 

it will be a homoclinic connection and if 1)~1 > ]pJ every neighborhood of  

the unstable orbit F will contain a denumerable set of  unstable periodic 
solutions o f  saddle type. 4~ 

Next, having numerically verified the existence of  1 ~, we need to check if 

the condition 1;~[ > ]p] is satisfied at least for one of  our system singulari- 
�9 - 4 1  ties. By using the set o f  parameters reported m Appendix and considering 

e > g, the following eigenvalues have been calculated42: 

)~0 = - 0 . 7 3  and P0 4- co0i = 0.135 4- 0.799i ; 

)~1 = 0.347 and Pl 4- w~i = - 0 . 5 6 8  4- 1.03i.  

So that, according to the Sil 'nikov theorem, we can state that our com- 

plete model  possesses a denumerable set of  unstable periodic solutions of  

saddle type only near the stationary state of  zero growth, where })~0] > 

IP0 I. 43 Figure 1 shows the result of  the numerical simulation of  our sys- 

39 See, for example, Sil'nikov (1970). 
40 A full proof can be found in Tresser (1984, pp. 443,446). See also Glendinning 

and Sparrow (1984), Wiggins (1990, pp. 573 f.), Heidegger (1991, p. 58). As economic 
example, see Lorenz (1992). 

41 Note that the parameters 15 and 7r have been fixed to give a maximum Gn, and 
consequently a G* value, consistent with the observed rates of growth in the Western 
economies. 

42 Our numerical parameters yield a bifurcation value g ~ 0.89362, while the 
homoclinic orbit exists for ~ ~ 1.17346. 

43 Note that at the steady-state equilibrium, where I~.ll < ]Pl], according to a 
Tresser (1984, p. 446) Theorem, there is no periodic orbit in a neighborhood of F. See 
also Glendinning (1994, pp. 359f.). 
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tern [there initial point coordinates are: G(O) = 0.01; Gw(O) = 0.008; 
E(O) = 0.03]. 44 

The three-dimensional spiral-type object allows us to deduce that every 
growth path starting from a neighborhood of the origin will move spiralling 
towards the steady state. Near this point it will be pushed back towards the 
zero-growth point. When the trajectory reaches this region, again it will 
start spiralling towards the steady growth and so on. As the trajectory 
does not pass the initial starting point, in the second round it can differ 
completely from that in the first round, The trajectory may wander through 
different points in phase space and may need a longer time before it turns 
towards a neighborhood of the steady state. As shown in Fig. 2, different 
initial points imply different trajectories, but the shape of the object remains 
unchanged. 45 

To confirm our model's chaotic behavior we have calculated the Lya- 
punov exponents following the computational method suggested by Dieci 

44 All the simulations have always been made by using the Runge-Kutta algorithm. 
In particular, Figs. 1 and 3 have been obtained by means of Matlab 5.3; Fig. 2, by using 
the Medio and Gallo (1992) DMC software; Figs. 4 and 5, by using Mathematica 3.0. 

45 Figure 2 is a projection of the three-dimensional phase portrait onto the (E, G) 
plane. Here the geometrical object is the result of 123,420 iterations. The initial point 
coordinates are: G(0) = 0.02026; Gw(0) = 0.0203; E (0) = 0.1. 
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etal. (1995, 1996). They are: L } ~ 0.049; )L ~ 0; ;~} --~ --0.574. As 
the largest characteristic Lyapunov exponent is positive, the motion is 
chaotic (Lorenz, 1993, p. 218). Furthermore, Fig. 3 shows the relationship 
between the three Lyapunov exponents and the critical parameter e. Note 
that: i) For g < g the Lyapunov exponents are ( - ,  - ,  - ) .  This implies that 
an asymptotic stability exists, ii) Near g the exponents become (0, - ,  - ) .  
This implies the presence of limit cycles, iii) For e > g -~ 1.17, one of the 
exponents becomes positive and a chaotic motion prevails. 
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-0.005 

0 ~ I  100 

b 

0.02 

0.015 

0.01 
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-0.005 I i! ~ 0 

t 

j; 100 

Fig. 4. a, Starting point: G(0) = 0.0123; W(0) = 0.0081; S(0) = 0.0305. b, starting 
point: G(0) = 0.0123; W(0) = 0.0082; S(0) = 0.0304 
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Finally Fig. 4 compares two G time series generated starting from two 

slightly different initial values. Thus the dependence on initial conditions 

is evident. 

4 Conclusions 

From a mathematical point of view, given a positive cubic discriminant, we 
have emphasized an z value greater than one in our analysis (specifically, 
e > g where the homoclinic orbit exists). The formal interest of this case 
derives from the chaotic motions involving both the steady-state solution 
(which is often seen as a"goal" by many growth theorists) and the stationary 
state of zero growth. This is the main analytical result of our model. How- 
ever, to give this result an economic interpretation, it is important to stress 
that, whatever the e > 0 value may be, the steady state always remains a 
repelling singular point. That is, the dynamic trajectories never regularly 
spiral around the steady state for a few periods, and they are always such 
that to approach the neighborhood of the steady state on the left-hand side, 
then, without any way out, they go back toward the origin. This property 
of the system seems to prevail for all variations in the parameter set consis- 
tent with our assumptions. Formally, this means that the range of parameter 
values which preserve our main economic hypotheses can never be such as 
to reverse the inequality cl < 0, because the steady-state solution would 
become negative and possibly stable if albl - cl > 0. Furthermore, the 
range of parameter values never may be such as to reverse the inequality 

I)~ll < ]Pl 1. If this were the case, according to the Sil'nikov theorem, some 
screw-type trajectory might surround the steady growth singularity and 
only near this point would the trajectory be pushed back towards the origin 
along the unstable manifold associated with the real eigenvalue )~. 

Now, if we recall Harrod's theses again, we can state that our theoretical 
result confirms that the steady-state growth equilibrium is highly unstable. 
But, at the same time, our mathematical result seems to be in contrast with 
his view on the cycle. This is regarded by Harrod as "oscillations around a 
line of steady growth" (Harrod, 1951, p. 261). Instead, looking at Fig. 5, we 
can realize that our model shows the cycle as an aperiodic motion around 
the stationary state of zero growth. 

Nevertheless, when we draw a 45 ~ line (where G = Gw) into the same 
figure, Harrod's words seem to be well suited to describe our system behav- 
ior. "As actual growth departs upwards or downwards from the warranted 
level, the warranted rate itself moves, and may chase the actual rate in 
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either direction. The maximum rate of advance or recession may be ex- 
pected to occur at the moment  when the chase is successful" (Harrod, 1939, 

pp. 28 f.). Furthermore, our model displays negative growth rates near the 

height of  a recession and the savings rate itself becomes negative. Looking 
on Fig. 2, like Harrod we can say that, the sooner this happens, "the sooner 

will the slump be arrested" (Harrod, 1996, p. 266). 46 

Are similarities between our analytical results and Harrod's intuitions 
enough to consider our complete model a faithful interpretation of his dy- 

namic theory? We do not think so, because our results crucially depend 

on the assumption that the natural rate of growth is endogenous and vari- 
able. I f  we abide by Harrod's hypothesis of an exogenous rate of technical 
progress, 47 our model will exhibit a unique singular point: the typical 
exogenous and unstable steady-state equilibrium. In this case, every Har- 
rodian intuition on the cycle would remain unproved. This confirms that 

46 This is a consequence of the assumption that there are no autonomous invest- 
ments in our model. 

47 It might be interesting to recall that Harrod refers to a technical progress meant 
as a variable in an occasional paper in 1962 (p. 73). Among other things, he writes: 
"Continuous technological development essentially depends on experience." 
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any attempt to put Harrod's theory as a whole into a mathematical frame- 

work will give rise either to an under-determined dynamical system, or to 

a set of dynamical equations able to display only unstable growth equi- 

libria, with explosive motions. To remedy this undesirable quality, Harrod 

(1973) distinguished normal from special warranted rates of growth. How- 
ever, similarly to the distinction between normal and abnormal business 

conditions recently adopted by Pugno (1998), this idea is unacceptable in 
an analytical context. This is because a model embodying this distinction 

would be founded on a highly arbitrary component: an approximate rate 

of growth which acts as discriminant. 
Taking note of this conclusion, we have to remind the reader that, in the 

last decades, the decline of Harrod's style of  research is due also to the lack 

of a true analytical foundation. By providing a new basic interpretation of 

Harrod's model, our paper sheds new light on the macrodynamic theory 
inspired by Keynes. Two important results should be stressed in conclusion: 

i) similarly to the modern growth theory, our model shows that technical- 

progress dynamics drive the growth of income; ii) discrepancies between 

the effective, expected, and technical progress-rates of growth give rise to 
the cycle, without the need for exogenous shocks. 

This last result leads us to recall another quotation from Harrod: "There 
is, in the real world, no steady advance" (Harrod, 1948, p. 59). However, 

more properly, we should say, "there is, in a laissez-faire economy, no 

steady growth." 

Parameters 

Appendix 

a = 0.5, C* = 4 ,  

~p = 15, g = l ,  
e = l . 2 ,  / 3 = 2 . 5 ,  

rr = 0.18, ~ = 6 ; 
~ 2 " = 0 . 0 8 ,  G * = G * = 0 . 0 2 ,  

= 0.09, max Gn : 0.02025. 
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