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1 Introduction

There is now a large literature on testing for the presence of unit roots in economic and
financial variables employing a variety of time series and panel tests . The growth in that
area is mainly due to empirical applications on, for example, Purchasing Power Parity
(PPP) and Growth (see [ 1, [2006] amongst
others).

A weakness of the existing univariate and panel unit root tests is that they are based on
the assumption that the underlying variable follows a linear process. However economic
theory suggests that generally financial economic variables exhibit nonlinear behaviour.
For example, a number of theoretical models in international macroeconomics formalise
the notion of nonlinear exchange rate behaviour due to transaction costs (e.g.

[1992], [1995], [1998], [2002]) 2, while others
describe currency and financial crises as nonlinear processes (e.g.
[2000], [2001]). In growth economics, a number of theoretical models
suggest that economic growth is a nonlinear process with the economy bouncing back and
forth between different regimes (e.g. [ ], [ 1, [ ],
[ ]) . Theoretical models in finance highlight heterogeneous expecta-
tions (e.g. [1998], [2005]), heterogeneity in
investors’ objectives (e.g. [1994]), and herd behaviour (e.g. [1995]) as some
of the sources of nonlinearity in asset prices.

If economic and financial variables exhibit nonlinear behaviour, the standard unit root
tests that are based on a linear AR process will have low power. Two recent papers,

[2002] and [2003], address this issue by developing formal unit
root tests against the alternative of nonlinear mean reversion. Both papers examine the
unit root hypothesis against the nonlinear STAR (Smooth Transition AutoRegressive)
alternative and show that, under the null hypothesis, the distribution of the respective
tests is not normal. As a result the two papers employ Monte Carlo simulations to obtain
critical values. The main difference between the two tests is that [ | use
a logistic transition function (LSTAR) while [2003] use an exponential
transition function (ESTAR).

However both these nonlinear unit root tests are univariate and, consequently, will still
suffer from low power in the case of small samples. In this paper we extend the

[ | nonlinear unit root test to a panel context in order to address the low power
problem of univariate tests. Since heterogeneous cross section dependence tends to be
important in most empirical applications, we employ the [ | panel unit root
framework that enables us to account for heterogeneous cross section dependence in a
novel way. [2007] shows that the individual CADF (Cross Augmented Dickey
Fuller) and the panel statistic (CIPS) have non-normal distributions, so their critical
values (for different N and T") are obtained by Monte Carlo simulations. The panel unit
root test proposed by [2007] differs from other tests such as [2001] and
[ | in that the latter all assume that individual time series are independent, and thus,
cross section dependence is not considered. [ ] shows that cross sectional

IFor a review of the various unit root tests see, for example, [ ] and
[ J
2For empirical studies on nonlinear exchange rate models, see [ 1, [ I,
[ 1, [ | among others.
3 A number of authors have also undertaken empirical investigations of nonlinear growth models; see,
for example, [2007), [1999], [1995].



dependence can be accounted for by augmenting the standard DF regression with the
cross section averages of lagged levels and first differences of the individual series. *

In this paper we propose a novel nonlinear panel unit root test that extends both the
univariate nonlinear tests and the linear panel unit root tests, thus filling an important
gap in the existing literature. Our test also allows for cross section dependence, and can be
computed using basic OLS linear regression, and thus does not require any programming.
® Since the panel nonlinear statistic has a non-normal distribution, we use Monte Carlo
simulations to analyse the size and power of the test under different scenarios, and we
calculate critical values which can be used in future applications of the test. Theorems
1 and 2 show that the distribution of the proposed test statistics is free of nuisance
parameters. We finally illustrate the applicability of our test.

The rest of the paper is organised as follows. Section 2 specifies the nonlinear dy-
namic panel model with cross section dependence. Section 3 derives the individual and
panel nonlinear unit root tests, and then uses stochastic simulations to obtain the dis-
tributions of these statistics and critical values. Section 4 analyses the size and power of
the panel nonlinear unit root test under alternative scenarios and compares the results
to the performance of the linear [ ] test. Section 5 reports the results from
an application to real exchange rates, while section 6 concludes.

2 A Nonlinear Dynamic Panel with Cross Section
Dependence

Suppose the observation y;; on the ¢*™ cross section unit at time ¢ is generated according
to the dynamic nonlinear heterogeneous panel ESTAR model below:

Yit = Biis—1 + Viie12 (05 Yiu—a) + Wit t=1,...,T, i=1,...,N, (1a)
where the initial value, 0, is given, and the error term, u;, has the one-factor structure:
uig = Yift + €, (1b)

(eit), ~ 4.i.d.(0,07), (1c)

in which f; is the unobserved common effect, (v;); are i.i.d. random variables and ¢; is
the individual-specific (idiosyncratic) error. Following the literature on STAR models,
the transition function adopted here is of the exponential form, i.e.,

Z (0;; yi,t—d) =1—exp (_Qiy?,t—d) ) (1d)

where we assume that 6; > 0, and d > 1 is the delay parameter. To begin with we assume
that y;; is a mean zero stochastic process. We discuss processes with non-zero mean later.
To simplify the model and following the existing literature, the delay parameter d is set
to be equal to one and Equation la—Equation 1d are rewritten in first difference form as:

AYit = QilYit—1 + Vildii—1 [1 — exp (—eiyth)} + i fe + €it, (2)

4 Another way to account for cross section dependence can be found in Ng [2003]. However, Ng [2008]
simply estimates the proportion of the panel that has a unit root and does not provide any information
about the whole panel, conversely to the other tests. In addition, it is not a nonlinear test.

5 [ ] also proposes a nonlinear panel unit root test, but this test is based on an
extension of the IPS test ( [ ]) and, therefore, does not account for cross section dependence
which is so crucial in empirical applications.



where ¢; = —(1 — 3;). Assuming ¢; = 0 %, Equation 2 can be rewritten as:

Ay = viyig—1 [1 —exp (=07 _1)] +vifi + €ar- (3)

Using Equation 3, we are interested in testing the hypothesis:

Hy : 0, = OVi, (4)

against the possibly heterogeneous alternatives:

. 0; >0 forizl,...,Nl,
Hl'{e,:o fori=N,+1,... N (5)

Remark 1: The alternative hypothesis above implies that some units are generated by
a stationary ESTAR model but it also allows a proportion of units being a unit root
process.

The following assumptions are introduced:

Assumption 1: % — qas N — oo, with 0 < ¢ < 1 under the alternative
hypothesis 5 .

Assumption 2: (g;) are independently distributed for all i = 1,..., N and t =

1,...,T, with zero mean, constant variance o2, and finite moments at least up to

7
order 8.

Assumption 3: f; is serially uncorrelated with zero mean, constant variance crj%,
and finite fourth moment. (Without loss of generality UJ% will be set equal to unity.)

Assumption 4: ¢;, f;, and v; are independently distributed for all 7.

Assumption 5: Following [2006], we define the weights (w;) having the
following properties: wy = O (N71);
N N N N
sz‘zl; Z|wi]<K<oo; wa:O(N_l), wa:O(N_S).
i=1 i=1 i=1 i=1

Assumption 6: The distribution of v; has nonzero expectation and finite moments
at least up to order 8.

Assumption 7: For all 7, —2 < r; <0.

Assumption 8: Under the alternative hypothesis, as N — oo,

N
V_QEN_lzl/iei—)CQ#O.

=1
Assumption 9: As N — oo, N} ‘Zf\il (vi6; — ﬁ)ﬂ — c3 # 0.

Assumption 10: As N — oo, v; converges in distribution to zero.

Assumption 11: As N;T — oo, T/N — 0.

6Tt follows the practice in the literature (e.g. [ ], in the context of TAR models
and [ ] in the context of ESTAR models). See also [ ]

7As noted in [ ], this condition is necessary for the consistency of the panel unit root
tests.



3 Nonlinear Unit Root Tests with Serially Uncorre-
lated Errors

Assumptions 1 and 2 together imply that the composite error, w;, is serially uncorre-
lated. This restriction will be relaxed in subsection 3.3. Assumption 7-11 are technical
assumptions.

3.1 Individual NCADF Test

Testing the null hypothesis 4 directly is not feasible, since v; is not identified under the
null. ® To overcome this problem, we follow [1988], and derive a t
type test statistic. Using Taylor expansion on Equation 3, under the null hypothesis, the
following auxiliary regression is obtained:

Ay = biyit_l +ifi + €. (6)

However, at first we need the following lemma:

Lemma 1: Under assumptions 2-9 and 11, then as N, T — oo,

fi = %Ayw,t = Lm0, o) (7)

w w

where Ay, = Zfil wiAYit, yi,tfl = Zf\; wiy?,tfla and 7, = Zz]\il w;vi- The
0p (1) term tends to zero as N, T — oo.

Proof: see Appendix A.1.

Following Lemma 1, it follows that Equation 6 can be approximated by the following
nonlinear cross sectionally augmented DF (NCADF) regression: °

Ayit = qo; + biyf”t,l -+ CZ'A’gt + diyf’,l + €it, (8)
where y; = ZZ]\LI yir and yp | = sz\il y3,_1. The idea is, given the framework above, to
develop a unit root test in the heterogeneous panel model based on Equation 8. Extending
the idea in [ ], we suggest using Equation 8 and the t-statistic on
b;, that is denoted by:

ti(N,T) = —— (9)

where I;Z is the OLS estimate of b;, and s.e. (l%) its associated standard error. Denote

the student statistic on the ratio of b; in Equation 8 as:
y?,fl/MiAyi

L (10)
(A?J;MiAyi)Q (?Ji,—l Mz’yz‘,—l) :

t,(N.T) =

where Ay; = (Ayir, Ayig, ., Ayir), iy = W20, Y3 1o - - ¥Pp_1)'s M; the projection ma-
trix onto §(X;), the orthogonal complement of the span of X;, M; = Iy — X;(X]X;) ™1 X,

8See for example [1987].
9In the following analysis we include an intercept in the model.



Xi = (1,Ay,9%1), 7 = (L1,...,1), Ay = (Ayy, Ays, .., Ayr)'s v20 = (BP0, ¥i1s -+
Y2 r_y). The critical values of the NCADF test can be computed by stochastic simulation
for any fixed T > 3, and for given distributional assumptions for the random variables
(¢, ).

It should be noted that, as in [2007], the exact null distribution of the individ-
ual test statistic ¢;(N,T') defined in Equation 10 is affected by the nuisance parameters.
However, this distribution depends on the nuisance parameters only through their ef-
fects on the matrix M;. The following theorem shows that this dependence vanishes as
N — o0.

Theorem 1 Suppose the cross-section mean of the initial observations yo is
set to zero. Then,

1 & 1 &
E(N,T):NZ _NZ
=1 =1

where, under Assumptions 1-10, as N — oo and T is fived, 7;(N,T) con-
verges to a distribution which is free of nuisance parameters, and where R
converges to zero.

See proof in Appendix A.2.

Theorem 2 Suppose that Assumptions 1-10 hold. Then 7,(N,T) converges

n distribution to
f Wf’dVVZ- — ¢V 'h

JIWe—ww-n

where
1w

v (fW;?’ IW?>’ 3
= () = ()

using the short-hand notation

[weaw, = [ WL aw ),
/Wf = /Olm-(t)ﬁdt

etcetera, where W; and Wy are standard Wiener processes that are independent
of each other.

See proof in Appendix A.3.
Figure 1 displays the simulated cumulative distribution function of the individual
NCADF statistic under the null hypothesis using 50,000 replications for N = 100 and

1076 accommodate stochastic processes with non-zero means we follow [2003]. In the
case when the process has non-zero mean, we use demeaned and detrended data, i.e. when z; = p+ot+y;,
we use Yy = & — fi + 64, where i and & are the OLS estimators of x4 and o (see [ ]
for further details).



T = 500. For comparison the simulated cumulative distribution function of the Pesaran
CADF statistic is also provided. The series y;x = y;1—1 + fi + uit, for i = 1,2,...,100,
and t = —50,—-49,...,1,2,...,500 were first generated from y; 50 = 0, with f; and wu;
as 1.i.d. N(0,1). Then 50,000 NCADF regressions of Ay;; on g7, |, Afy, and 37 ;. Ay,
and 2, were computed over the sample ¢ = 1,2,...,500. Figure 1 plots the ordered
values of the OLS t-ratios of 37, | in these regressions.

Figure 1: Cumulative Distribution Function of Pesaran’s Cross Sectionally Augmented
DF and Nonlinear Cross Sectionally Augmented DF Statistics
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Not surprisingly the nonlinear CADF distribution, as the Pesaran’s CADF distribu-
tion, is more skewed to the left as compared to the standard DF distribution. This is
clearly reflected in the critical values of the distributions summarized in Table 1. Critical
values of the individual nonlinear CADF distribution for values of 7" and N in the range
of 10 to 200 are given Table 13 in Appendix B.1.

Table 1: Critical Values of the DF, Pesaran’s CADF, and nonlinear CADF Distributions
(N =100, T'= 500, 50,000 replications)

| 1% 25% 5%  10%
DF -2.60 -2.23 -1.94 -1.61
Pesaran’s CADF | -3.80 -3.49 -3.22 -2091
Nonlinear CADF | -3.72 -3.41 -3.15 -2.85

The nonlinear CADF distribution, like the Pesaran’s CADF distribution and the
standard DF distribution, departs from standard normality in two important respects: it
has a substantially negative mean and its standard deviation is less than unity, although
not by a large amount. The simulated density functions of the standardized NCADF,
computed with N = 100, T' = 500, and 50,000 replications are displayed in Figure 2. The
mean, standard deviation, skewness and Kurtosis -3 coefficients of the NCADF and the

7



Figure 2: Simulated Density Function of the Standardized NCADF; and the Standardized
Pesaran’s CADF; Distributions as Compared to the Normal Density
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Pesaran’s CADF distributions are reported in Table 2. They are quite small, although

Table 2: Moments of the CADF distributions

Pesaran’s CADF NCADF
Mean -1.80 -1.83
Standard deviation 0.90 0.83
Skewness 0.20 0.28
Kurtosis -3 0.19 0.77

statistically highly significant.

Since cross sectional dependence in panel data is widely known now to be a serious
problem, in the next sections we shall be using Equation 8 to develop a unit root test to
test for the null hypothesis of unit root against an ESTAR stationary alternative.

3.2 Panel Nonlinear CADF Test

Following [ ], we suggest using the t-statistic in Equation 10 to construct a
panel unit root test by averaging the individual test statistics:

{N,T) = %Zti(N, T) (11)

This is a nonlinear cross sectionally augmented version of the IPS test (NCIPS). The test
statistic defined in Equation 11 can also be extended to the case where serial correlation

8



is present in the data. In this particular case, one may include, in the model, lags of the
left hand side variable after using an information criteria to select the lag order.

We simulated the distribution of NCIPS setting N = 100, T' = 500, and using 50,000
replications. The simulated density functions of the NCIPS and the Pesaran’s CIPS
Statistics are displayed in Figure 3. Both the densities show marked departures from

Figure 3: Simulated Density Function of the NCIPS Statistic and the Pesaran’s CIPS
Distributions

3.5 7

_ _ _ Pesaran’s CIPS
NCIPS

3.0

2.5

2.0+

1.5+

1.0+

0.5

0.0 — I I T I \
—24 —2.2 —2.0 —1.8 —1.6 —-14 —1.2

normality. The skewness and Kurtosis -3 coefficients of the NCIPS and the Pesaran’s
CIPS distributions are reported in Table 3. The critical values of the nonlinear CIPS test
are given in Table 14 in Appendix B.2.

Table 3: Moments of the CIPS distributions

Pesaran’s CIPS NCIPS
Mean -1.80 -1.83
Standard deviation 0.17 0.12
Skewness -0.10 -0.068
Kurtosis -3 -1.67 -1.45

3.3 The Serially Correlated Errors Case

Serial correlation can be incorporated in the model in a variety of different ways. In what
follows, we use the model Ay; = biyf’tfl + e;; and specify the serial correlation structure
as:

€it = PiCit—1 T Nit, (12)
and thereafter cross section dependence as:
Nit = Yift + €t (13)

9



Using the model jointly with Equation 12 above we obtain:

Ayir = a;(1 — pi) + bi(1 — m)yf’,tfl + piAyis—1 + bipiA (Z/itq) + Nit- (14)
And substituting Equation 13 into Equation 14
Ayir = a;(1 — pi) + bi(1 — Pi)y{g’,tq + piAyis—1 + bipiA (yf,tq) + vift + €t (15)

Using Equation 15 and the same approach as in Appendix A.1; one can obtain a proxy
for f; using the following set of variables:

{yffl, Ayf’fl}

By generalizing this to an AR(p) error terms framework, we suggest using the following
general nonlinear CADF regression:

p p
Ayiv = a; + by}, + dioyi 1 + Y digAyd ;+ > 658y + eqr. (16)

Jj=0 Jj=1

Information criteria can be used to choose the length of p.

4 Small Sample Analysis

In this section we assess the size and power of the nonlinear panel test defined in Equa-
tion 11 under different scenarios. About the power of the test, we firstly look at it in the
case of weak and strong cross sectional dependence, but no autocorrelation structure for
the error term. In the next section, we generalise this scenario by allowing an autocor-
relation specification for the error term and weak-strong cross sectional dependence. For
comparison, in all the experiments we also report the size and power of [ ]
test when a nonlinear DGP is considered.
The data generating process (DGP) considered is the following Panel ESTAR:

—_
-
&

Ay = viyig—1 [1—exp (=07, 1)) +7ife + €t (17a)
fi ~ ii.d.N(0,1), (17b)
eq ~ i.4.d.N(0,07), (17¢)

o} ~ i.i.d.U[0.5,1.5]. (17d)

(2

with ¢ = 1,2,...,N and t = —51,-50,...,1,2,...,7T. We fix v = —1 for all i. The
choice of the cross sectional dependence parameters 7; depends on whether we wish to
impose Assumption 7 or not.

We consider two scenarios for cross sectional dependence, namely weak cross sectional
dependence 7; ~ i.1.d.U|0,0.20], and strong cross sectional dependence ~; ~ i.i.d.U[1, 3].
11

4.1 Size Distortion Analysis

In our size analysis below, we generate data by setting # = 0 for all 7. Size is computed
at the 5% nominal significance level. The number of replications is set to 5,000. The
standard error of the computed size is 0.0031. Results for the size are reported in Table 4.
The test statistics seems to be correctly sized.

1'We have also computed the size for the case when v; — 0. While for moderate N/T, results are

10



Table 4: Size: Case of no serial correlation

Sizes Weak Cross Section Dependence Strong Cross Section Dependence
N T |CIPS; NCIPS; CIPS NCIPS|CIPS; NCIPS; CIPS NCIPS
10 10| 0.0482  0.0448 0.0554 0.0478 | 0.0456  0.0434  0.0594 0.0524
10 20| 0.0502  0.0432  0.0488 0.0420 | 0.0470  0.0474  0.0650 0.0480
10 30| 0.0544  0.0490 0.0544 0.0418 | 0.0504  0.0560  0.0622 0.0488
10 50| 0.0562  0.0446  0.0476 0.0446 | 0.0446  0.0456  0.0630 0.0520
10 100 | 0.0456  0.0486  0.0492 0.0428 | 0.0486  0.0458  0.0670 0.0506
20 10| 0.0502  0.0538  0.0476 0.0446 | 0.0468  0.0476  0.0544 0.0482
20 20| 0.0462  0.0496  0.0504 0.0398 | 0.0428  0.0406  0.0558 0.0494
20 30| 0.0542  0.0498  0.0548 0.0432 | 0.0504  0.0470  0.0592 0.0456
20 50 | 0.0480  0.0556  0.0524 0.0446 | 0.0474  0.0446  0.0612 0.0418
20 100 | 0.0448  0.0470  0.0572 0.0464 | 0.0510  0.0482  0.0554 0.0394
30 10| 0.0440  0.0482  0.0512 0.0444 | 0.0554  0.0514  0.0568 0.0448
30 20| 0.0524  0.0478 0.0486 0.0446 | 0.0454  0.0448  0.0530 0.0420
30 30| 0.05642  0.0534 0.0608 0.0454 | 0.0508  0.0476  0.0616 0.0368
30 50| 0.0480  0.0484 0.0554 0.0412 | 0.0510  0.0476  0.0612 0.0426
30 100 | 0.0486  0.0456  0.0646 0.0462 | 0.0474  0.0466  0.0620 0.0384
50 10 | 0.0478  0.0548  0.0488 0.0482 | 0.0530  0.0490  0.0524 0.0414
50 20| 0.0516  0.0502  0.0438 0.0394 | 0.0460  0.0476  0.0554 0.0414
50 30| 0.0602  0.0494  0.0530 0.0460 | 0.0492  0.0444  0.0530 0.0406
50 50 | 0.0502  0.0536  0.0486 0.0422 | 0.0484  0.0462  0.0570 0.0386
50 100 | 0.0506  0.0512  0.0506 0.0466 | 0.0476  0.0534  0.0538 0.0364

100 10 | 0.0464  0.0468  0.0520 0.0490 | 0.0474  0.0452  0.0480 0.0456

100 20| 0.0512  0.0440  0.0558 0.0456 | 0.0532  0.0494  0.0470 0.0420

100 30 | 0.0548  0.0500  0.0474 0.0454 | 0.0444  0.0432  0.0532 0.0424

100 50 | 0.0500  0.0508  0.0430 0.0444 | 0.0478  0.0480 0.0598 0.0396

100 100 | 0.0592  0.0556  0.0472 0.0512 | 0.0486  0.0516  0.0564 0.0352

11




4.2 Power Analysis

In this section we assess the power of the test defined in Equation 11 under the same
DGP as above but we consider the cases of weak and strong alternatives, namely we
assume for the weak alternative:

[0 for i=1,...,N/2,
bi = { 0.01 for i=N/2+1,...,N, (18a)
while for the strong alternative:
_J o for i=1,...,N/2,
b = { 0.05 for i=N/2+1,...,N. (18D)

The power is computed at the 5% nominal significance level. Results are reported in
Table 5 (weak alternative) and Table 6 (strong alternative). The test we propose seems

to have stronger power than the [2007] test when the true DGP is nonlinear.
Finally, we assess the power of our test and the [ ] test when the DGP is
linear :
Yie = i+ 0l + QiYir—1 + Vift + wa, (19)
¢ = lfori=1,...,N/2 (20)
~ U[0,1] fori = N/2+1,...,N. (21)

To save space we only report the case of strong cross-sectional dependence. '? Figure 4
shows the power results in the cases of N = 10, T' = 50, and in several situations for the
serial correlation.

The proposed test seems to have an acceptable good power, even when the true DGP
is linear.

4.3 Serial Correlated Errors Case

In this section we analyze size and power of the proposed test when serial correlation is
incorporated into the DGP. We consider positive serial correlation. The error terms (g4)
were generated as:

€it = pPi€it—1+ Gt (22a)
¢e ~ i.i.d.N(0,07), (22b)
o? ~ 4.4.d.U[0.5;1.5], (22¢)
pi ~ 1..d.U[0.2;0.4] in the case of positive correlation, (22d)
pi ~ 1.3.d.U[—0.4;—-0.2] in the case of negative correlation. (22e)

We only consider here the power analysis for the case of strong alternative:

g _ [0 for i=1.. N/2
70005 for i=N/2+1,...,N.

qualitatively the same as the ones reported in Table 4, for very large N size distortion appears to be a
relevant issue.
12 Additional empirical results are avaialbe upon request.

12



Table 5: Power: Case of no serial correlation and weak alternative

Sizes Weak Cross Section Dependence Strong Cross Section Dependence
N T |CIPS; NCIPS; CIPS NCIPS|CIPS; NCIPS; CIPS NCIPS
10 10| 0.0430  0.0454  0.0592 0.0662 | 0.3100  0.1396  0.5042 0.5278
10 20| 0.0556  0.0456  0.0770 0.0870 | 0.7326 ~ 0.3546  0.8980 0.8884
10 30| 0.0586  0.0586  0.1158 0.1370 | 0.8102  0.5646  0.9424 0.9354
10 50| 0.0702  0.0482 0.2324 0.2702 | 0.8354  0.7240  0.9554 0.9498
10 100 | 0.1096  0.0704 0.6450 0.7514 | 0.8716  0.8210  0.9662 0.9650
20 10| 0.0540  0.0490 0.0672 0.0680 | 0.1446  0.1280  0.2784  0.3992
20 20| 0.0476  0.0478  0.0994 0.1180 | 0.5956  0.3064 0.8014 0.8222
20 30| 0.0502  0.0502  0.1510 0.1868 | 0.7472  0.4798  0.9384 0.9528
20 50 | 0.0602 0.0514 0.2558 0.3584 | 0.8394  0.6780  0.9812 0.9844
20 100 | 0.0958  0.0678  0.7548 0.8972 | 0.8840  0.8286  0.9870 0.9872
30 10| 0.0502  0.0490 0.0708 0.0734 | 0.0808  0.0932  0.1480 0.2496
30 20| 0.0472  0.0398  0.0938 0.1348 | 0.3962  0.2250  0.6066 0.6760
30 30| 0.05642  0.0434 0.1486 0.2128 | 0.6366 ~ 0.3870  0.8640 0.8960
30 50| 0.05630  0.0508 0.3236 0.5038 | 0.7846  0.5968  0.9798 0.9860
30 100 | 0.0718  0.0504 0.8318 0.9704 | 0.8742  0.7802  0.9930 0.9938
50 10 | 0.0468  0.0450  0.0700 0.0808 | 0.0582  0.0602  0.0864 0.1228
50 20 | 0.0490  0.0484 0.1098 0.1700 | 0.1968  0.1268  0.3360 0.3974
50 30| 0.0536  0.0472  0.1842 0.3010 | 0.4092  0.2448  0.6444 0.7162
50 50 | 0.0616  0.0528  0.3594 0.6578 | 0.6456  0.4162  0.9216 0.9642
50 100 | 0.0742  0.0632  0.9204 0.9970 | 0.8138  0.6646  0.9990 0.9992

100 10 | 0.0502  0.0428  0.0606 0.0838 | 0.0454  0.0512  0.0568 0.0782

100 20| 0.0484  0.0446  0.1156 0.2338 | 0.0780  0.0662  0.1596 0.2064

100 30 | 0.0550  0.0518  0.1970 0.4484 | 0.1734  0.1174  0.3314 0.4312

100 50| 0.0544  0.0534  0.4418 0.8510 | 0.3486  0.1864  0.7108 0.8500

100 100 | 0.0642  0.0534 0.9734 1.000 | 0.6278  0.3768  0.9990 0.9998
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Table 6: Power: Case of no serial correlation and strong alternative

Sizes Weak Cross Section Dependence Strong Cross Section Dependence
N T |CIPS; NCIPS; CIPS NCIPS|CIPS; NCIPS; CIPS NCIPS
10 10| 0.0548  0.0464 0.0818 0.0958 | 0.5288  0.1278  0.7820 0.6412
10 20| 0.0640 0.0514 0.1904 0.2632 | 0.8148  0.3736  0.9510 0.9176
10 30| 0.0948  0.0660  0.3760 0.4736 | 0.8492  0.5960  0.9608 0.9434
10 50| 0.1410 0.0778 0.7734 0.8674 | 0.8730  0.7624  0.9628 0.9544
10 100 | 0.2028  0.1152  0.9968 0.9994 | 0.8768  0.8330  0.9632 0.9604
20 10| 0.0458  0.0466  0.0896 0.1136 | 0.3960  0.1382  0.6510 0.6352
20 20| 0.0578  0.0506  0.2270 0.3548 | 0.7926  0.3612  0.9722 0.9582
20 30| 0.0778  0.0558  0.4306 0.6358 | 0.8542  0.5506  0.9832 0.9772
20 50 | 0.0912 0.0646  0.8684 0.9668 | 0.8860  0.7716  0.9870 0.9858
20 100 | 0.1312  0.0766 1.000  1.000 | 0.8950  0.8484  0.9882 0.9886
30 10| 0.0572  0.0542 0.1018 0.1292 | 0.2792  0.1252  0.4846 0.5494
30 20| 0.0552  0.0472  0.2492 0.4422 | 0.7350  0.3070  0.9576 0.9612
30 30| 0.0606  0.0528  0.4874 0.7946 | 0.8402  0.5186  0.9916 0.9910
30 50| 0.0788  0.0584  0.9250 0.9956 | 0.8764  0.7326  0.9946 0.9948
30 100 | 0.1276  0.0774 1.000  1.000 | 0.8986  0.8426  0.9966 0.9976
50 10 | 0.0504  0.0490 0.0998 0.1626 | 0.1428  0.0970  0.2610 0.3744
50 20| 0.0576  0.0438  0.2712 0.5928 | 0.5546  0.2518  0.8492 0.9088
50 30| 0.0640  0.0508  0.5684 0.9134 | 0.7440  0.4104 0.9872 0.9944
50 50 | 0.0760  0.0624  0.9714 1.000 | 0.8380  0.6052  0.9980 0.9988
50 100 | 0.1102  0.0742 1.000  1.000 | 0.8830  0.7830  0.9992 0.9994

100 10| 0.0534  0.0502  0.1130 0.2044 | 0.0728  0.0632  0.1334 0.2124

100 20| 0.0524  0.0538  0.3248 0.7712 | 0.2772  0.1256  0.5744 0.7972

100 30| 0.0616  0.0538  0.6592 0.9916 | 0.4774  0.2256  0.9172 0.9912

100 50 | 0.0680  0.0614  0.9962 1.000 | 0.6750  0.3754 1.000  1.000

100 100 | 0.0962  0.0668 1.000  1.000 | 0.8050  0.6154 1.000  1.000
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Figure 4: Power: Case of linear DGP and strong alternative

and strong cross sectional dependence v; ~ i.i.d.U[1, 3]. The size and power are computed
at 5% nominal significance level and they are based on the following nonlinear CADF
regression:

Ay = a; + bi,o?/it_1 + dioyi ; + d; Ay} + 0 jAYi 11 + €, (23)

N
. _ 1
z:1,2,...,N;t:1,2,...,T;yt:N;yit.
The test is computed as:
N

_ 1

t(N,T) = — tinp (N, T 24

(1) = 5 3 tan(N.T) (24)

where t(N, T is the OLS t-ratio of b; in the above nonlinear ADF regression. The number
of simulations is set equal to 50,000. Table 7 shows the results for the size of the tests.
Both tests have a good size with the Pesaran’s test being consistently oversized.

In Table 8 we show results on the power of the test in the case when positive as well
as negative serial correlation is present in the DGP. For panels of a moderate size, the
gain in power from using the nonlinear panel unit root test with respect to the Pesaran’s
test is evident.
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Table 7: Size: Case of serial correlation

Sizes Weak Cross Section Dependence Strong Cross Section Dependence
N T |CIPS; NCIPS; CIPS NCIPS|CIPS; NCIPS; CIPS NCIPS
10 10| 0.0482  0.0448 0.0554 0.0378 | 0.0456  0.0434  0.0594 0.0524
10 20| 0.0502  0.0432  0.0488 0.0420 | 0.0470  0.0474  0.0650 0.0480
10 30| 0.0544  0.0490 0.0544 0.0418 | 0.0504  0.0560  0.0622 0.0488
10 50| 0.0562  0.0446  0.0476 0.0446 | 0.0446  0.0456  0.0630 0.0520
10 100 | 0.0456  0.0486  0.0492 0.0428 | 0.0486  0.0458  0.0670 0.0506
20 10| 0.0502  0.0538  0.0476 0.0446 | 0.0468  0.0476  0.0544 0.0482
20 20| 0.0462  0.0496  0.0504 0.0398 | 0.0428  0.0406  0.0558 0.0494
20 30| 0.0542  0.0498  0.0548 0.0432 | 0.0504  0.0470  0.0592 0.0456
20 50 | 0.0480  0.0556  0.0524 0.0446 | 0.0474  0.0446  0.0612 0.0418
20 100 | 0.0448  0.0470  0.0572 0.0464 | 0.0510  0.0482  0.0554 0.0394
30 10| 0.0440  0.0482  0.0512 0.0444 | 0.0554  0.0514  0.0568 0.0448
30 20| 0.0524  0.0478 0.0486 0.0446 | 0.0454  0.0448  0.0530 0.0420
30 30| 0.05642  0.0534 0.0608 0.0454 | 0.0508  0.0476  0.0616 0.0368
30 50| 0.0480  0.0484 0.0554 0.0412 | 0.0510  0.0476  0.0612 0.0426
30 100 | 0.0486  0.0456  0.0646 0.0462 | 0.0474  0.0466  0.0620 0.0384
50 10 | 0.0478  0.0548  0.0488 0.0482 | 0.0530  0.0490  0.0524 0.0414
50 20| 0.0516  0.0502  0.0438 0.0394 | 0.0460  0.0476  0.0554 0.0414
50 30| 0.0602  0.0494  0.0530 0.0460 | 0.0492  0.0444  0.0530 0.0406
50 50 | 0.0502  0.0536  0.0486 0.0422 | 0.0484  0.0462  0.0570 0.0386
50 100 | 0.0506  0.0512  0.0506 0.0466 | 0.0476  0.0534  0.0538 0.0364

100 10 | 0.0464  0.0468  0.0520 0.0490 | 0.0474  0.0452 0.048  0.0456

100 20| 0.0512  0.0440  0.0558 0.0456 | 0.0532  0.0494  0.047 0.0420

100 30 | 0.0548  0.0500  0.0474 0.0454 | 0.0444  0.0432  0.0532 0.0424

100 50 | 0.0500  0.0508  0.0430 0.0444 | 0.0478  0.0480 0.0598 0.0396

100 100 | 0.0592  0.0556  0.0472 0.0512 | 0.0486  0.0516  0.0564 0.0352
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Table 8: Power: Case of serial correlation and strong alternative

Sizes Weak Cross Section Dependence Strong Cross Section Dependence
N T |CIPS; NCIPS; CIPS NCIPS|CIPS; NCIPS; CIPS NCIPS
10 10| 0.0548  0.0464 0.0818 0.0958 | 0.5288  0.1278  0.7820 0.6412
10 20| 0.0640 0.0514 0.1904 0.2632 | 0.8148  0.3736  0.9510 0.9176
10 30| 0.0948  0.0660  0.3760 0.4736 | 0.8492  0.5960  0.9608 0.9434
10 50| 0.1410 0.0778 0.7734 0.8674 | 0.8730  0.7624  0.9628 0.9544
10 100 | 0.2028  0.1152  0.9968 0.9994 | 0.8768  0.8330  0.9632 0.9604
20 10| 0.0458  0.0466  0.0896 0.1136 | 0.3960  0.1382  0.6510 0.6352
20 20| 0.0578  0.0506  0.2270 0.3548 | 0.7926  0.3612  0.9722 0.9582
20 30| 0.0778  0.0558  0.4306 0.6358 | 0.8542  0.5506  0.9832 0.9772
20 50 | 0.0912 0.0646  0.8684 0.9668 | 0.8860  0.7716  0.9870 0.9858
20 100 | 0.1312  0.0766 1.000  1.000 | 0.8950  0.8484  0.9882 0.9886
30 10| 0.0572  0.0542 0.1018 0.1292 | 0.2792  0.1252  0.4846 0.5494
30 20| 0.0552  0.0472  0.2492 0.4422 | 0.7350  0.3070  0.9576 0.9612
30 30| 0.0606  0.0528  0.4874 0.7946 | 0.8402  0.5186  0.9916 0.9910
30 50| 0.0788  0.0584  0.9250 0.9956 | 0.8764  0.7326  0.9946 0.9948
30 100 | 0.1276  0.0774 1.000  1.000 | 0.8986  0.8426  0.9966 0.9976
50 10 | 0.0504  0.0490 0.0998 0.1626 | 0.1428  0.0970  0.2610 0.3744
50 20| 0.0576  0.0438  0.2712 0.5928 | 0.5546  0.2518  0.8492 0.9088
50 30| 0.0640  0.0508  0.5684 0.9134 | 0.7440  0.4104 0.9872 0.9944
50 50 | 0.0760  0.0624  0.9714 1.000 | 0.8380  0.6052  0.9980 0.9988
50 100 | 0.1102  0.0742 1.000  1.000 | 0.8830  0.7830  0.9992 0.9994

100 10| 0.0534  0.0502  0.1130 0.2044 | 0.0728  0.0632  0.1334 0.2124

100 20| 0.0524  0.0538  0.3248 0.7712 | 0.2772  0.1256  0.5744 0.7972

100 30| 0.0616  0.0538  0.6592 0.9916 | 0.4774  0.2256  0.9172 0.9912

100 50 | 0.0680  0.0614  0.9962 1.000 | 0.6750  0.3754 1.000  1.000

100 100 | 0.0962  0.0668 1.000  1.000 | 0.8050  0.6154 1.000  1.000
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Finally, the power of our test is assessed using different autoregressive orders. An
additional lag is included in Equation 22a: €; = pjgi—1 + pingir—2 + Cir (AR(2) error
terms). Figure 5 shows the power results in the case of linear DGP with half unit root
series and half stationary series with random AR coefficient, and in the case of strong
cross sectional dependence. We choose N = 10, T' = 50, and p;; = 0.4 for all 4, p;s = 0.2
for all 2. Our test has a good power, regardless of the number of lags in Equation 22a. '3
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7
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t
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This plot uses the graphical technique of [ ].

Figure 5: Power: Case of serial correlation of order 2

13 Additional empirical results are available upon request.
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5 Empirical Applications

5.1 Real Exchange Rates

In this section we apply our test to two different real exchange rates data sets against
the US dollar for twenty OECD countries over the period 1973Q1-1998Q2, and 20 black
market exchange rates. The first data set is the same used by [ ,

]. The second data set consists of 20 black market exchange rates. Data are obtained
from [2004] and span the period 1973M1-1998M12.

Since the long run Purchasing Power Parity (PPP) relationship is one of the main
components of theoretical international macroeconomic models, a large number of studies
have tested this relationship by applying unit root tests to real exchange rates. Most of
these studies show evidence of unit root behaviour in real exchange rates, which has
become a puzzle in international finance. The growing literature on nonlinear exchange
rates argues that transaction costs and frictions in financial markets may lead to nonlinear
convergence in real exchange rates. Consequently, the non-mean reversion reported by
linear unit root tests may be due to the fact that these tests are based on a mis-specified
stochastic process.

We start with the first data set. The individual statistics for our unit root test are
shown in Table 9.

For comparison purposes, we also report the statistics for the [ | test
which accounts for cross section dependence but not for nonlinearity.
The [ | test rejects the unit root null hypothesis in only 1 out of 20 cases

at all levels of significance. By contrast, the nonlinear test rejects the null in 2 cases at
the 1% significance level, and in 5 cases at the 5% and 10% level. Hence our test rejects
the unit root null more frequently and therefore yields stronger support for the long-run
PPP.

As we argued above, univariate tests have low power and this problem is overcome by
employing panel unit root tests. The results for our panel unit root test and the Pesaran
panel unit root test are shown in Table 10.

The contrast between the two panel statistics is rather strong. The [ ]
test fails to reject the unit root null at all levels of significance, thus implying non-mean
reversion. On the other hand, our nonlinear panel test rejects the unit root null for the

panel of real exchange rates at all levels of significance, giving support to the long-run
PPP.

5.2 Black market exchange rates

We now consider the second data set. Table 11 shows the results. The frequency of
rejections using our test is higher than the [ | test. Our panel unit root
test finds evidence supporting PPP, while the [ ] does not. This evidence of
nonlinear mean reversion in the real exchange rates may suggest that previous evidence
of non-mean reversion in real exchange rates might be due to using linear unit root tests.

5.3 Nominal interest rates stationarity

The dataset used is taken from [2007]. The dataset consists of (monthly)
interest rates of different maturity and risk for Canada and US over the period 1985:01
until 2004:04. The Canadian rates are 1, 3 and 6 month T-bills, federal government
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Table 9: Individual Unit Root Tests for Real Dollar Exchange Rates

Country Lag NCADF CADF
Australia 3  -2.1765 -1.6501
Austria 4  -2.2085 -2.1432
Belgium 4 -2.4220 -1.2380
Canada 6 -1.1528 -1.3575
Denmark 3 -3.3390%*  -2.8699
Finland 7 -1.7015 -2.4148
France 4 -0.9386 -2.1170
Germany 4 -3.3166™*  -2.6044
Greece 4 -0.1449 -2.1730
Ireland 6 -0.1855 -1.0970
Italy 4 -2.6717 -2.0218
Japan 3 -2.5943 -1.9477
Netherlands | 4  -2.7076 -1.9930
N Zealand 3 -3.7296**  -3.875H8%**
Norway 7 -2.2595 -1.8869
Portugal 8 -1.9120 -0.6359
Spain 8 -1.6911 -2.1622
Sweden 8  -3.8830*** _-1.5888
Switzerland | 4  -5.1263*%** -2.7768
UK 7  -2.5354 -2.0689
Critical Values (N = 20, T' = 100):

1% -3.74 -3.87
5% -3.09 -3.24
10% -2.80 -2.92

** Statistics significant at 5% level.
Ak Statistics significant at 1% level.
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Table 10: Panel Unit Root Tests for Real Dollar Exchange Rates

Country | NCADF CADF
Panel -2.3348***  -2.0311
Critical Values (N =20, T' = 100):

1% -2.24 -2.36
5% -2.11 -2.20
10% -2.03 -2.11

** Statistic significant at 1% level.

bonds with maturity 1, 2, 3, 4, 7 and 10 years, commercial paper with maturity 1 month
and 3 months, and Scotia indices of yields on corporate bonds (short-medium and long
term). The US dataset consists of 3, 6 months Treasury securities and Treasury bonds
with maturities 1, 2, 3, 5, 7, 10 years. 1 month commercial paper, and Moody’s indices
of yields on corporate bonds with AAA and BAA ratings.

Testing for the stationarity of nominal interest rates is an important issue since tests
for term structure relationships, generally use cointegration. Therefore, they assume that
nominal interest rates are integrated processes (see for example
[1987] and [2001], amongst the others.) [2007] use
the dataset cited above and after decomposing the data into common and idiosyncratic
components, they report the presence of a single nonstationary factor in the panel and
with the presence of a stationary idiosyncratic component, they conclude that the time
series are cointegrated.

Table 12 report the individual CADF and NCADF as well as panel statistics for US
and Canada. The CADF test rejects the null hypothesis of a unit root more often than the
NCDEF. The bottom of the table reports the panel CADF and NCADF. The panel tests
show evidence that nominal interest rates are stationary, with the exception of the panel
NCADF in the case of US. This empirical result may invalidate the use of cointegration
tests when testing for the Fisher effect or also term structure relationships.

6 Conclusion

A number of panel unit root tests allowing for cross section dependence have been pro-
posed in the literature. In this paper we propose a nonlinear heterogeneous panel unit
root test for testing the null hypothesis of unit-root processes against the alternative that
allows a proportion of units to be generated by globally stationary ESTAR processes and
a remaining non-zero proportion to be generated by unit root processes. The proposed
test is simple to apply and accommodates both nonlinearity and cross sectional depen-
dence. Our test is compared to the [2007] linear test via Monte Carlo simulation
exercises, and it is found that our test holds correct size and under the hypothesis that
data are generated by globally stationary ESTAR processes has a better power than
the Pesaran test. We also calculate critical values for varying cross section and time
dimensions which can be used in future applications of our test.

We provide empirical applications to a panel of bilateral real exchange rate series
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Table 11: Individual and panel unit root tests for black market exchange rates

Country Lag NCADF CADF
Algeria 5 -1.24 -1.25
Argentina | 4 -3.74%* - -1.43
Bolivia 7 -2.09 -1.75
Chile 5 S3.31FF _3.49%*
Colombia | 6 -3.75%*  _3.6%F
C. Rica 6 -0.89 -0.66
D.Republic | 6 -4.25% -4.18%*
Equador 4 -3.8% -3.58%*
Egypt 5) -2.1 -1.75
Ethyopia 4 -1.48 -0.91
Salvador 1 -3.11%% -3.09
Hungary 6 -1.57 -1.69
Ghana 6 -3.2%* -3.38%*
India 0 -1.19 -1.21
Indonesia | 5 -1.17 -0.9
Kenya 7 -2.71 -2.87
Korea 7 -1.75 -3.83**
Kuwait 4 -1.16 -1.22
Malaysia 7 -0.95 -0.51
Mexico 6 -2.93 -1.67
Critical Values (N = 20, T' = 30):

1% -3.77 -3.84
5% -3.14 -3.23
10% -2.84 -2.91
Country NCADF CADF

Panel -2.3195%*F*  _2.1485

Critical Values (N =20, T' = 30):

1% -2.26 -2.36

5% -2.13 -2.2

10% -2.06 -2.11

** Statistics significant at 5% level.
*** Statistics significant at 1% level.
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Table 12: Individual and panel CADF and NCADF statistics for US and Canada

Canada
Interest rates Lags CADF NCADF
1 month 9 -2.89 -2.86 *
3 month 9 -4.09 * -2.46
6 month 9 -0.69 -2.37
1 year 8 -3.54  ** -2.89 *
2 years 4 -4.83 * -3.65 **
3 years 0 -4.19 * -2.42
5 years 7 -3.43  ** -2.06
7 years 0 -3.17  * -1.52
10 years 0 -2.87 -2.05
1-month com. paper 11 -3.24  FF -3 X
3-month com. paper 9 -2.15 -2.37
1-month bank acc. 9 3.2 * -1.38
Long-corporate 7 -2.75 -3.41  **
Mid.-corporate 7 -1.27 -2.49
panel - | -3.022142857 * -2.495 *

Us

Interest rates Lags CADF NCADF
3 month 2 -3.21 % -0.68
6 month 2 -2.67 -1.08
1 year 12 -1.52 -3.21  Fk
2 years 2 -2.85 -2.32 *
3 years 12 -0.67 -1.43
5 years 12 -2.94 kX -0.31
7 years 3 -5.17 * -1.54
10 years 9 -4.29 * -3.16  **
1-m com. Paper 12 -4.31 % -1.06
AAA 3 -3.48  ** -2.83  HHE
BAA 12 -3.74 KX -1.13
panel - -3.168181818 * | -1.704545455

*. 1% significance
. 5% significance
F* 10% significance
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with the US dollar from the 20 major OECD countries, and a panel of black market
exchange rates. In contrast to the evidence obtained by linear tests, we find evidence of
nonlinear mean-reversion in the real exchange rates for the whole panel that gives support
to the long run PPP hypothesis. Given the importance of the PPP in international
macroeconomic models, our evidence suggests that the employment of nonlinear panel
unit root tests may provide a solution to the PPP puzzle.

We also provide a further empirical application on testing for interest rate stationar-
ity. We report strong evidence suggesting that interest rates in Canada are stationary,
whilst in the case of the US the evidence is mixed. Given the growing literature of non-
linear models, we believe that the development of panel nonlinear unit root tests has
large potential in macroeconomic and financial applications. Evidence indicates that dif-
ferent time series may follow different nonlinear specifications. Consequently, one could
consider unit root tests with different types of transition functions that allow for asym-
metric dynamic adjustment. Another extension would be to allow for different transition
variables.

Appendix
A Proofs

A.1 Lemmal
Proof. By Equation 3,

Ay = ViYfiz— [eiyitfl + {1 — €Xp <_9iyi2,t71) - eiyitfl}] +vife + €t
= Vieiy?,t—l +ift + €, (A.1.25)

where

€it = Villiz—1€it + Eit,

en = l—exp (_eiyiz,tfl) - eiyiz,tfl'
Here, because ¢;; is independent of y; 1,
Var (ey) = viVar (yis_16i) + 07 (A.1.26)

Now, because of the inequality 1 > exp(—z) > 1 — z for z > 0, we have —x < 1 —
exp (—z) —x < 0 ie. |6 < 657, ;. Hence, by the Cauchy-Schwarz inequality,

Var (yii—1€i) < E ylt 1ezt \/E y . 1 eh) < 912\/E (yﬁt_l) E (yﬁt_l). (A.1.27)
Next, following Donauer et al (2010), p.21, rewrite Equation 3 as
Y = {1+ vi —viexp (=i 1) } vig—1 + Vit + €ar.
Here, because for 6; > 0, 0 < exp (—Hiyz?’tfl) < 1, and by assumption 7, we obtain

—1<1+y; <14y, —v;exp (—Qiyit,l) <1
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Consequently, for k£ = 1,2, ..., since all cross moments vanish,

2k ok

E(y%) = E[{l‘l‘Vi_VieXp(_eiyz‘Qt—l)} v 1}+E(z )+ E ()
< E(?/zz,ltfq)"‘E(z )+E( )

and it follows by recursion that

Jj=1

E (y2F) <y + B () Z E () + Z E (2). (A.1.28)

Now, taking weighted averages in (A.1.25), we have

Agw,t = (Vey:s)w,tfl + ﬁwft + Ew,t, (A129)

where

N
Aﬂw,t = ZwiAyitv

Hence, if 7, # 0 (which holds with probability 1), (A.1.29) yields

1 ] ——
fi= —_Ayw,t — —W0y?) 1 —

1_
—_ ew,t
Ve Ve ’ Ve

But
Var (€,4) Zw Var (e;)

where, via (A.1.26) and (A.1.27)

Var (e;) <y292\/E ylt 1 ylt 1) + o2,
and since by (A.1.28), E (yZ¥) is at most O (t), and we have
Var(ex) < O(t),

implying

t
Var(e,:) <O <N) — 0

as N,T — oo and T/N — 0. We also have

N
(V9y3)w,t—1 = Z (Viei - E) Wiy?,t—l + (v0) (?/3)W,t—1v (A.1.30)
i=1

where

N
vl = N71§ Vﬂi,
i=1
N
3
g Willit—1-
=1
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By assumption 8, v is O, (1). Moreover, since £ (?J?,t—1) is constant over 1, it is clear

that N N
E{ S (- o} = 3 - ) ) 0

i=1 i=1

and furthermore,
N N
Var {Z (vi6; — 1) w,yzt 1} Z (vib; — 1/9 wVar (yit_l) : (A.1.31)
i=1 =1

where by (A.1.28), Var (y},_1) < O (t). Further, by the Cauchy-Schwarz inequality,

N 2 N N
(Z (Viei_y—e)%g) <3 (vt —v8)" Y Wt

i=1 =1 i=1

which by assumptions 5 and 9 is O (N~2). This shows that as N,T — oo and T/N — 0,
the r.h.s. of (A.1.31) tends to zero, and so, we may neglect the first term on the r.h.s. of
(A.1.30), which completes the proof of Lemma 1. m

A.2 Theorem 1

Consider the auxiliary regression:

Ayit = a;+ biyit,1 + CiA_yt —+ dz'yffl + €1
= by i+ €, (A.2.32)

where
Yi = (@z’,Ci,di)/>
Ty = (1,A_yit,ﬁ)/,
and €; is an error term. Then, in matrix formulation, (A.2.32) is

Ay; = biy; _y + Xivi + €,

where
Ay = (Ayin, Ayia, .. AyiT>,7
X; = (7’ Ay, _1)
r = (1,1,..,1),
Ay, = (Ayn, Ayﬂ, e AyiT)la
?/?,—1 = y_zof 7sz 1>/7
& = (€1, €, 1)

The t-statistic for testing that b; = 0 is
Vi MiDy;
(AyéMz’Ayi)l/Q (Z/i,iny?,q)

t;(N,T) =T"? (A.2.33)

1/2°
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where (from now on suppressing the index i on M and X)
M=I,— X (X'X)""X".
To find an expression of (A.2.33) in terms of nuisance parameters, we may assume that
Ay =it + €, (A.2.34)

where ;; are 7id (0, 0?). In matrix formulation, this is

Ay; = i+ &, (A.2.35)
where
f = (fla f27 (XD fT)/a
Asin 2007], with & = &; — 67, 6 = 7i/7,
Ay = frite= <¥7f+ %E) + (61- - %E)
Y Y y

where

gz =& — (Szg

Hence, because M Ay = 0,

where w? = Var(§;) and v; is standard normal. Similarly, defining

Sf,t = Zfsa

s=1
¢
Sit = Zgisa
s=1
we have
Yit—1 = YiSfi—1 T Sig—1 + Yio
= (¥7<S‘f,t—1 + ¥§t—1> + (Si,t—l — %@—1) + Yi0
v 7 v
= 01 + Mit—1 + Yio,
where

Nit = Sit — 0i5¢.

In the following, we will neglect the term v, o, since it is clear that it only induces terms
of negligible order.
The corresponding expression for ?/?,t—1 is

_ 3
Yirr = (01 + M)
03Ty + 3020 M1 + 3T 1 + 01 (A.2.37)
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Hence, stacking the y{H in vectors y{_l, for j = 1,2,3, we have, because M7, =0,
My?,—l = 351‘2M @2—1 © 77z‘,—1) + 30; M @71 © 771‘2,—1) + Mnf’,_l,
where ® is the Hadamard (elementwise) product. Moreover, because
Ypq1 = VSfi—1 + Si—1, (A.2.38)
the tth element of 72 | is
Ui = T°854m1 + 278 f-150-1 + 5y,
and it follows that
Myf’_1 = 364°M (sf L OMi—1) +65AM (sp,1 ©5_1 ©n; 1)
+3(52-2 (S,l ®© 7]@',71) + 30yM (Sf,fl ® 7]1-7,1)

+36:M (5_1 @07 _y) + Mn} _,
= w/Ms}_, + R + R, (A.2.39)

where

Rﬂ = 371-2wiM (3307—1 ©O) 51'7_1) + S%'CUZ-ZM (Sf,_l ® 522’_1) ,

Ry = 677 'wiM (55,1 ©5_1 O 8 1) + 377 “wiM (5%, ©5;1)

+307 Wi M (5.1 @57 )

with s, 1 = 7, _1/w;. (Observe that in the corresponding proof in Pesaran, 2007, no
rest terms arise when pre-multiplying y; _; with M. Having yi_l in place of y; 1, in

order for our Taylor series expansion below to work, we need Assumption 10.) Hence,
via Equation A.2.36, the nominator of Equation A.2.33 is

y; ¥  MAy; = cu4v']\45Z 1+ wiviRi1 + wivi Ryg (A.2.40)
Similarly, via Equation A.2.39,
Y, —1Myz -1 = (My§—1)l M?J?—1
= W f’,lMs i+ wf’s?',lMRﬂ +w; Ry Ms; _,
+ (Rle + Rz-g)’ (Rii + Rip) . (A.2.41)

As in Pesaran [2007], the terms involving S_;, which are collected in R;s, will tend to zero
as N — oo. Hence, as N — oo, using Equation A.2.36-Equation A.2.41, Equation A.2.33
is asymptotically equivalent to

£ (N,T)
fUiMs? | + wivi Ry
M Jwfsd_ Ms?_y +w? (59, MRy + R Ms?_y) + R\ R
Ung 1w U/Rzl
UMy [s¥  Ms? | +w® (s MRy + Ry Ms? ) +w "Ry Ry

Tl/2

_ Tl/2
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and by Taylor expansion,

"M g3
£ (N, T) = TV/? il it (1+R,),
viMu;y /87 Ms]
where -3 -3 3/ MR R/ M 3
R, = w; “U; Ry B lwi (52‘,—1 i1 T 1ty 51',_1) L0 (”Rle) '

/ 3 3 3
U¢M5i,—1 2 51-7_1M5i7_1

Now, as N — o0, the mean statistic

1
t(N,T)=— tz N,T s
(N.T) = 3 (N.T)
is asymptotically equivalent to
N N
T1/2 viMs3
F(NT) ==Y tH(NT)=—> — +R, (A.2.42)
=1 N I viMu;y/s)  Ms}
where
T2 Y viMs?
RSy
N =1 U;M'Ul 5,?7/_1M5?7_1
=3,/ =3 (3! / 3
w; iRy 1w, (ﬁi,—lMRi1+RilM5i,—1> 9
{UQME?,_l —3 M5t +O(|R4]) ¢ - (A2.43)
Here,
A N EUT S
N i1 /’U;MUZ‘ 5?’/_1]\/[5?7_1 UéMﬁi_l N i1
where oy ) )

Y
/ 3/ 3
VuiMuviy /s Ms;

which, by Assumption 10, tends to zero as N — oo. The same argument may be applied
to all terms composing Equation A.2.43, and so, Equation A.2.42 implies that as N — oo,
t (N, T) is asymptotically equivalent to

N
T1/2 UéMﬁ?},l

N S VUiMuy /53  Ms?

Following the lines of proof as in Pesaran [2007], we have

T2Ms}_, = T~ *ujs}_, — (XD)(DX'XD)"" (TDX's?_,)

where
T2 0 0
D = 0 T 0
0 0 T2
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Moreover,

T2y,
DX'v; = | T7V2Ayy,
T—2_3/ .

Y- v
T-527's3
T>DX's? | = T-52Ay's | |,

bl J— ?

T3 s},

1 T-'7"Ay T_5/27"y_§
DX'XD = | T-%wAy T 'AyAy T572Ay 7 |,
T‘5/2T’y_§ T‘5/2A_y/y_§ T‘4y_§,y_§

)

where, because from Equation A.2.35 and Equation A.2.37, with obvious notation,

= 7f+E
= 8P, +3070n_ ) +3(0 02T, + 1%,

= &
<

we have
T 'Y7Ay = T f+T7 7z,
T Ay Ay = FPT V' f+29T ' 2+ T2,
TR = BTlrE 436 0 )T
+3(8 @2y T 7'y + T3,
TPAY Y = AT PP, + 378 0 )T 15,
+37(8 @2 y) T2 f g+ 7T
+OVTEGE 4 3(02 O n )T
+3(6 02 )T *Pey, + T2,
—_—— _2 —
T = TR + 685 )T T,
+60% (0 © 12) TG\ 7, + 28T 5% 1%,
—2 _—
+9(02 O 1) T79272, + 18(0° ©n-1) (0 00y ) T 5217,
- I [—
+6(02 O n-)T ™7’ +9(0 0 n?y) T7747
————————————— A — _ _/_
+6(0 @2 )T gLl + T2 0.
As in Pesaran [2007], as N — oo, terms involving averages over ¢ may be neglected. In
particular, it follows from (A.2.38) that §_, asymptotically behaves like 7s;_;. Hence,
denoting asymptotic equivalence by ~, and cancelling out lower order terms we have,

~1
because s; _1 ~ 0; "S; _1,

—-2,/.3 —3m—2__3
T U2517_1 ~ O—,L' T 57:87:7_1,
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and moreover,
T '7Ay ~ FT7f,
T'AyAy ~ FTfS,
T_B/QT/y_i ~ 73ET_5/27'/S?¢7_1,
T_5/2A_y/y_§ N 74ﬁT—5/2f18?}771’
TEGE ~ AT
and so, denoting the limits of 7 and 83 by 7, and 6.,
DX'XD ~ TU,T,

where
10 0
r =10 0 |,
N 1 T TS
Ur = T f T TR s

T*5/2T's§’c’71 T*‘r’/zf’si:’fl T*4s?f713‘:}771
Similarly, because v; ~ o; Les,
DXv; ~ o, 'Tqr,
T?DX's} | ~ o7 *Thy,

where
T-127¢, T-5127's3
~ —1/2 g1 T —5/2 £1.3
qr = T /fgi , hr = T /fsi,_l )
—2 .37 —4 3/ 3
T8y & T sy 187 4

and so, as N — oo,
-2 7 3 —4 -27.3 ~ T —17
In the same fashion,
-1, -2 —1_1 —1~ J,—1~
T v;Mv; ~ 0; (T g&i— T qp¥, qT> ,

and L
implying that for all 7, as N — oo,

T; (N> T)
véMsi_l

viMuiy /s Ms]

—2.7.3 ~ 5-17
T %eis; = qp¥p hr

\/T*1€;€i - TflaT(ff;quT \/T748?,/713?,71 - %/T(fj;lET

= T2

Note that the r.h.s. of this expression does not depend on any nuisance parameters

completes the proof of Theorem 1.
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A.3 Theorem 2

Without loss of generality, set 0; = 1. As in [ |, as T'— oo (we use short-
hand notation for the integrals so that e.g. [W2dW,; = fol W, (t)> dW; (t) and [ W9 =

fol W; (t)* dt, and from now on, — denotes convergence in distribution)

213 W3dW.
T s — / i AW,
~1_/
T g — 1

b
—4 3/ 3 6
T Si—15,-1 /VV”

_ L0 W
Uy — 0o 1 0 =,
Jwi o fwi
Wi (1) N Jw? -
aT — Wfi(l) ECY, hT—> 0 Eh,
JwEaw; Jwiwg

where W;,W; and Wy, are standard Brownian motions. (Moreover, W; and W} are mutu-
ally independent.) Hence, it follows that T‘lq’T\IfflhT may be neglected, and moreover,

GV hy — U =W,
e WO WU,
where
o (1 W
Jwi o fwg )
. - < Wi (1) ) h_( Jw? )
[wiaw, ) [wiwg )

and we find the sequential limit result

M s 3V, — o/ =1
TV/? Vil i1 WA — g (A.3.44)
MU [sY MsE [ [WE— eth
Along the lines of [ |, it may be proved that this is also the joint limit result as

N, T — oo simultaneously such that N/T — k, where k is a finite and positive constant.

32



B Critical Values

B.1 Individual NCADF Distribution

Table 13: Critical Values of Individual NCADF Distribution

N T| 1% 25% 5% 10% N T| 1% 25% 5% 10%
10 10 |-5.18 -4.17 -3.50 -2.87| 50 10 |-5.16 -4.17 -3.52 -291
15 1-4.19 -3.60 -3.16 -2.69 15 |-4.21 -3.57 -3.15 -2.68
20]-3.93 -344 -3.07 -2.67 20 | -4.10 -347 -3.11 -2.69

30 1-3.79 -3.38 -3.06 -2.70 30 |-3.75 -3.33 -3.00 -2.69

50 | -3.81 -3.41 -3.11 -2.78 50 | -3.68 -3.35 -3.04 -2.76

70 | -3.67 -3.39 -3.12 -2.80 70 | -3.70 -3.36 -3.07 -2.75

100 | -3.71  -3.39 -3.12 -2.80 100 | -3.59 -3.31 -3.09 -2.79

200 | -3.73  -3.40 -3.12 -2.82 200 | -3.72 -3.36 -3.10 -2.81

15 10 ]-535 -422 -352 -292| 70 10 |-5.17 -4.23 -3.52 -2.92
15 |-421 -3.64 -3.15 -2.67 15 [-432 -3.64 -3.22 -2.74

20 1-3.96 -342 -3.06 -2.68 20 1-397 -347 -3.10 -2.65

30 |-3.81 -3.36 -3.06 -2.69 30 | -3.79 -341 -3.06 -2.71

50 | -3.69 -3.32 -3.06 -2.75 o0 | -3.73 -3.41 -3.11 -2.76

70 | -3.75 -3.41 -3.11 -2.78 70 | -3.68 -3.37 -3.05 -2.76

100 | -3.70 -3.38 -3.13 -2.76 100 | -3.71 -3.40 -3.10 -2.81

200 | -3.67 -3.37 -3.09 -2.78 200 | -3.62 -3.34 -3.11 -2.83

20 10 |-5.05 -420 -347 -289 100 10|-4.89 -3.99 -3.39 -2.81
15 | -4.27 -3.63 -3.13 -2.73 15| -4.04 -353 -3.16 -2.75

20 1-3.94 -3.39 -3.04 -2.67 20 1-391 -345 -3.05 -2.66

30 |-3.71 -3.39 -3.09 -2.74 30 |-3.76 -3.36 -3.06 -2.70

50 | -3.70 -3.28 -3.04 -2.73 20 | -3.63 -3.33 -3.04 -2.75

70 | -3.66 -3.35 -3.07 -2.75 70 | -3.64 -3.31 -3.01 -2.74

100 | -3.74 -3.38 -3.09 -2.80 100 | -3.74 -3.35 -3.10 -2.79

200 | -3.77 -3.40 -3.14 -2.84 200 | -3.69 -3.40 -3.11 -2.82

30 10 |-5.62 -4.37 -3.55 -295|200 10 |-5.21 -4.17 -342 -2.84
15 | -4.22 -3.62 -3.14 -2.68 15 | -4.30 -3.67 -3.21 -2.78

20 | -3.87 -3.42 -3.09 -2.70 20 |-391 -344 -3.11 -2.70

30 |-3.86 -3.42 -3.14 -2.73 30 |-3.69 -3.34 -3.04 -2.73

50 | -3.69 -3.37 -3.06 -2.75 o0 | -3.77 -3.40 -3.10 -2.77

70 | -3.71 -3.32 -3.07 -2.75 70 | -3.66 -3.28 -3.08 -2.75

100 | -3.77 -3.32 -3.10 -2.79 100 | -3.70 -3.38 -3.11 -2.79

200 | -3.68 -3.37 -3.11 -2.84 200 | -3.64 -3.38 -3.14 -281
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B.2 Panel NCADF Distribution

Table 14: Critical values of Panel NCADF Distribution

N T 1% 2.5% 5%  10% N T 1% 2.5% 5%  10%
10 200 | -2.50 -2.40 -2.33 -2.25| 50 200 |-2.14 -2.09 -2.04 -1.99
10 100 |-2.42 -2.31 -2.22 -211] 50 100 |-2.10 -2.05 -2.01 -1.96
10 70 |-2.39 -227 -219 -210| 50 70 |-2.08 -2.03 -1.99 -1.94
10 50 |-2.36 -2.26 -2.16 -2.05| 50 50]|-2.05 -2.00 -1.96 -1.91
10 30 }-231 -220 -2.12 -2.01 | 50 30]|-2.00 -1.95 -1.90 -1.84
10 20 |-232 -220 -2.09 -197| 50 20]|-1.96 -1.90 -1.85 -1.79
10 15]-234 -219 -2.08 -194 | 50 15|-1.95 -1.88 -1.82 -1.75
10 10 |-2.53 -234 -2.17 -198 | 50 10 |-2.01 -191 -1.83 -1.75
15 200 |-2.33 -2.25 -2.18 -2.09| 70 200 |-2.11 -2.06 -2.02 -1.98
15 100 | -2.30 -2.22 -2.14 -2.06 | 70 100 |-2.07 -2.03 -1.99 -1.95
15 701(-226 -219 -213 -2.04| 70 70]|-2.05 -2.00 -1.97 -1.92
15 50 (-224 -216 -2.08 -2.00| 70 50]|-2.02 -1.98 -1.94 -1.89
15 301(-220 -211 -2.03 -195|| 70 30]|-1.96 -1.91 -1.87 -1.83
15 20 |-2.17 -2.09 -2.00 -1.90| 70 20|-192 -1.87 -1.83 -1.77
15 15 (-2.19 -208 -1.98 -188| 70 15 |-1.91 -1.84 -1.80 -1.73
15 10|-2.34 -218 -204 -1.90| 70 10]-1.95 -1.88 -1.80 -1.72
20 200 |-2.26 -2.19 -2.13 -2.06 || 100 200 |-2.08 -2.04 -2.01 -1.97
20 100 |-2.24 -2.16 -2.11 -2.03 | 100 100 |-2.05 -2.01 -1.97 -1.93
20 70 |-220 -2.13 -2.08 -2.00| 100 70 |-2.02 -1.99 -1.95 -191
20 50 |-218 -2.11 -2.05 -1.98 | 100 50 |-1.99 -1.95 -1.92 -1.88
20 30 |-2.14 -2.07 -2.00 -192] 100 30]|-1.94 -1.89 -1.86 -1.81
20 20|-211 -2.03 -195 -1.86 | 100 20 |-1.89 -1.84 -1.81 -1.76
20 15 |-2.10 -2.00 -193 -1.84| 100 15 |-1.87 -1.82 -1.77 -1.72
20 10 |-222 -209 -197 -1.84] 100 10]|-1.92 -1.85 -1.78 -1.70
30 200 |-220 -2.14 -2.09 -2.02 200 200 |-2.05 -2.01 -1.99 -1.95
30 100 | -2.18 -2.11 -2.06 -2.00 || 200 100 |-2.01 -1.98 -1.96 -1.92
30 70 |-215 -2.09 -2.03 -197 200 70 |-2.00 -1.96 -1.93 -1.89
30 50 |-211 -2.05 -2.00 -1.94 | 200 50 |-1.96 -1.93 -1.90 -1.86
30 30 |-2.07 -2.00 -1.95 -188 | 200 30|-1.90 -1.87 -1.84 -1.80
30 20 -202 -195 -190 -1.831 200 20 |-1.86 -1.81 -1.78 -1.73
30 15 -202 -194 -187 -1.79] 200 15|-1.82 -1.78 -1.74 -1.69
30 10 |-2.13 -2.00 -1.90 -1.801 200 10 |-1.87 -1.80 -1.75 -1.68
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