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Abstract

Robust decision making implies welfare costs or robustness premia
when the approximating model is the true data generating process.
To examine the importance of these premia at the aggregate level we
employ a simple two-sector dynamic general equilibrium model with
human capital and introduce an additional form of precautionary be-
havior. The latter arises from the robust decision maker’s ability to
reduce the effects of model misspecification through allocating time
and existing human capital to this end. We find that the extent of the
robustness premia critically depends on the productivity of time rela-
tive to that of human capital. When the relative effi ciency of time is
low, despite transitory welfare costs, there are gains from following ro-
bust policies in the long-run. In contrast, high relative productivity of
time implies misallocation costs that remain even in the long-run. Fi-
nally, depending on the technology used to reduce model uncertainty,
we find that while increasing the fear of model misspecification leads
to a net increase in precautionary behavior, investment and output
can fall.
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University of Nottingham, Dec. 2009 and seminar participants at the Athens University
of Economics and Business Dec. 2009 and University of Zurich, Aug. 2010 for helpful
comments and suggestions. The usual disclaimer applies.
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I hope for nothing. I fear nothing. I am free. [N. Kazantzakis, epitaph]

1 Introduction

The path breaking research of Hansen and Sargent (e.g. 2001, 2008) and
Hansen et al. (2006) on robust control theory has focused the attention
of the economics profession on the importance of model uncertainty and
its effects on decision making. This approach starts by acknowledging that
economic agents make choices in an environment where they must rely on ap-
proximations to the true model generating the observed data. These choices,
depending on the extent of the gap between the correct and approximat-
ing models ex post, in turn imply that resources will be less than optimally
allocated. Hence, a robust decision maker aims to make choices that will
guarantee a minimum level of effi ciency or welfare conditional on the degree
to which he fears that his approximating model is misspecified. To hedge
against the fact that his model might not be correct, he engages in precau-
tionary behavior by increasing his buffer stocks of non-human and human
wealth (see Hansen and Sargent (2008) and Hansen, Sargent and Tallarini
(1999)). These actions and their associated opportunity costs are obviously
increasing in the degree to which the agent is uncertain about his model.
Since robust choices come at a cost, when fears of model misspecification

do not materialize ex post, the decision maker has to decide, ex ante, how
conservative to be. If he is not conservative enough, he risks being exposed
to big misspecification errors. On the other hand, if he is too conservative,
he risks paying unnecessary costs or "robustness premia". Understanding the
implications of making more conservative robust choices is highly relevant for
many important decisions that a society must take, for instance in designing
how to react to climate change or the potential spread of disease or banking
crises. In fact, the main argument usually raised against (more conservative)
robust policies is that the opportunity costs associated with these are too
high.
In the robustness literature to date, fear of model misspecification or

model uncertainty is generally determined exogenously. In particular, it is
defined as the discounted life-time sum of the conditional relative entropy
of the true (but unknown) model relative to the approximating model that
the economic agent must use.1 The two models (true and approximating)
are typically restricted to be close in the statistical sense that the life-time

1Conditional relative entropy in this context is defined as the expected log-likelihood
ratio of the true relative to the approximating model, evaluated with respect to the true
model.
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conditional relative entropy cannot be larger than an exogenous constant.
This constant can be calibrated so that given a finite amount of data, a de-
cision maker would find it diffi cult to statistically distinguish members of a
set of alternative models. In contrast to this approach, we endogenize the
entropy constraint and allow the robust decision maker to protect himself
against model uncertainty by earmarking resources to mitigate the poten-
tial negative effects of model misspecification. This allows us to obtain a
balanced assessment of the premia associated with following robust policies
since buffer stocks of productive resources, although not "optimal" when
the approximating is close to the true model, are nevertheless useful for the
economy and can, under the right circumstances, increase productivity in the
long-run.
To implement our ideas in a parsimonious and transparent framework, we

extend a simple two-sector dynamic general equilibrium model with human
capital. The model is a variant of the two-sector real business cycle models
in e.g. Mankiw et al. (1992), Perli and Sakellaris (1998) and DeJong and
Ingram (2001). We augment this model by adding model uncertainty and
a technology using existing human capital and time to create knowledge to
reduce the effects of model misspecification. Time in this context comple-
ments human capital and is employed at the expense of its alternative uses.
The complementarity between these two inputs implies that more educated
individuals (or societies) will understand more about their economic envi-
ronment if they put the same effort time as less educated individuals (or
societies).
To obtain the robustness premium, we compare outcomes obtained from

making robust decisions, to those from making optimal choices when the
approximating model governs the data, i.e. when fears of model misspeci-
fication are unfounded. Hence, in this scenario, effort time to restrict the
effects of model misspecification implies a misallocation of resources. On
the other hand, efforts to mitigate model misspecification by accumulating
human capital will have a productive effect on the economy.
Our main findings are as follows: (i) Despite more conservative robust

decisions leading to higher robustness premia, when the mitigation of model
misspecification depends on a low productivity of time relative to human
capital, robust choices increase welfare in the long-run; (ii) If the technology
used to mitigate the effects of model misspecification relies on a low produc-
tivity of human capital relative to time then the misallocation of resources
under the approximating model is so strong that more conservative robust
policies imply welfare costs which remain even in the long-run; and (iii)
Increasing the fear of model misspecification leads to a net increase in pre-
cautionary behavior, however, depending on the technology used to reduce
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model uncertainty, investment and output can fall.

2 A misspecified human capital model

To illustrate the main ideas in this paper we use a standard two-sector RBC
model with human capital in the presence of model uncertainty. In contrast
to approaches which study optimal choices under the correct model specifi-
cation, following Hansen and Sargent (2001, 2008), we allow for particular
types of misspecification in the dynamic processes of the model.
The general equilibrium solution we derive in this environment consists of

a system of dynamic relations specifying the paths of output, Yt, consump-
tion, Ct, investment in physical capital, It, investment in human capital, Iht ,
physical capital stock, Kt+1, human capital stock, Ht+1, knowledge to miti-
gate model misspecification, hit, and the fractions of time allocated to work,
nt, education, et and reducing misspecification, qt. The model’s stochastic ex-
ogenous processes include total factor productivity, ãt, human capital-specific
productivity, ϕt and investment-specific productivity, τ t.
In this section we first discuss the non-linear setup for the stationary

model, under model misspecification, followed by the linear-quadratic (LQ)
approximation of the latter. We then solve the stationary LQ representation
to obtain decision or policy rules which are robust to model misspecification.

2.1 Model setup

Taking the stationary paths of the stochastic exogenous processes, {ãt, τ t,
ϕt}∞t=0, as given, the representative agent chooses the stationary variables
{yt, ct, it, iht , nt, et, qt, kt+1, ht+1}∞t=0 to maximize expected discounted lifetime
utility:

max
{yt,ct,it,iht ,nt,et,qt,kt+1,ht+1}∞t=0

E0

∞∑
t=0

β̌
t

[
(ct)

µ (lt)
(1−µ)

]1−ς
1− ς (1a)

subject to:
lt = 1− nt − et − qt (1b)

ct + it + iht = yt (1c)

ght+1 = (1− δh)ht + κ (etht)
γ (iht )1−γ + ϕt, h0 > 0 (1d)

gkt+1 = (1− δk)kt + it + τ t, k0 > 0 (1e)

yt = exp (ãt) (kt)
α (ht)

ζ (nt)
1−α−ζ (1f)
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where, E0 is the conditional expectations operator; 0 <
(
β̌ ≡ βgµ(1−ς)

)
< 1

is the time discount factor; g is the gross growth rate of exogenous labor
augmenting technical progress;2 ς > 1 is the relative risk aversion parameter;
0 < µ < 1 is the weight given to consumption relative to leisure, lt, in
the utility function; 0 < δk, δh < 1 are the physical and human capital
depreciation rates; κ > 0 and 0 < γ < 1 capture respectively, the level
and productivity of knowledge in new human capital production; and 0 <
α, ζ < 1, α + ζ < 1 measure the productivity of physical and human capital
respectively in the Cobb-Douglas production function.
There are three stochastic exogenous technology processes in the model.

The first is total factor productivity (TFP), and is given by

ãt+1 = (1− ρa)ã+ ρaãt + σa(εat+1 + wat+1) (1g)

where, ãt = log(At); A0 > 0; 0 < ρa < 1 is a first order autocorrelation
coeffi cient; ã is a constant; and εat+1 is a Gaussian random variable distrib-
uted identically and independently through time, with zero mean and unit
variance. In addition, human capital- and investment-specific productivity
processes are given by

ϕt+1 = ρϕϕt + σϕ(εϕt+1 + wϕt+1) (1h)

τ t+1 = ρττ t + στ (ετt+1 + wτt+1) (1i)

where again 0 < ρϕ, ρτ < 1 are first order autocorrelation coeffi cients; and
εϕt+1, ε

τ
t+1are Gaussian random variables distributed identically and indepen-

dently through time, with zero means and unit variances.
Model uncertainty in this setup is captured by the unknown stochastic

perturbations, wat+1, w
ϕ
t+1 and w

τ
t+1, to the exogenous processes (1g − 1i). In

particular, these may be non-linear time dependent functions, ϑt, of the past
states, i.e.

wjt+1 = ϑjt(xt, xt−1, ...) (2)

for j = a, ϕ, τ , where {ϑjt} are sequences of measurable functions; xt is
a vector including the state variables of the model (defined below); and
σa, σϕ, στ > 0 scale the variances of the εjt+1 and w

j
t+1 shocks.

2Following the standard RBC literature, labour augmenting technical progress Zt, is
deterministic and grows according to the gross rate g, such that Zt+1Zt

= g and Z0 > 0. The
lower case stationary magnitudes for {yt, ct, it, iht , kt, ht} denote that their non-stationary
values have been detrended by Zt.
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2.1.1 Model misspecification

As pointed out above, the decision maker cannot use the correct represen-
tation for the exogenous processes given by (1g − 1i) since the wjt+1 are
unknown. Instead, a misspecified approximating model for these must be
employed, i.e.

ãt+1 = (1− ρa)ã+ ρaãt + σaε̆at+1 (3a)

ϕt+1 = ρϕϕt + σϕε̆φt+1 (3b)

τ t+1 = ρττ t + στ ε̆τt+1 (3c)

where ε̆jt+1 ∼ iid N(0, 1). Following Hansen and Sargent (2008), by introduc-
ing model uncertainty in this manner, we essentially bound the model the
decision maker employs, i.e. (1a−1f) and (3a−3c), with a set of alternative
models of the form given by (1a − 1i). The latter clearly allow for more
general forms of the approximation errors than those implied by ε̆jt+1. The
correct model in this context can then be viewed as a distorted or perturbed
version of the approximating model since the conditional means of wjt+1 are
non-zero and as suggested above can influence the evolution of the states.
To operationalize the notion that the approximating model using (3a−3c)

provides good predictions when (1g − 1i) actually generates the data, we
follow Hansen and Sargent (2008) and restrict wjt+1 as follows. First, write
the perturbed model in matrix form as:

z̃t+1 = z̃0 + ρz̃t + σ(εt+1 + wt+1), where (4)

z̃t =
[
ãt ϕt τ t

]′
; z̃0 = [(1− ρa)ã] ;

wt+1 =
[
wat+1 wϕt+1 wτt+1

]′
; εt+1 =

[
εat+1 εϕt+1 ετt+1

]′
;

ρ =

 ρa 0 0
0 ρϕ 0
0 0 ρτ

 ; σ =

 σa 0 0
0 σϕ 0
0 0 στ

 .

Second, let fa denote the one-step transition density associated with the
approximating model and f the one-step transition density associated with
the correct or perturbed model. In the present setting, the assumptions
employed imply that the transition density for the approximating model is:

fa(z̃t+1 | z̃t) ∼ N(z̃0 + ρz̃t, σσ
′) (5a)
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while, the transition density for the perturbed model is:3

f(z̃t+1 | z̃t) ∼ N(z̃0 + ρz̃t + σwt+1, σσ
′). (5b)

However, the approximating and perturbed models are assumed not to be too
different statistically. To measure the discrepancy between the two models
in terms of the transition from z̃t to z̃t+1, we use the notion of conditional
relative entropy defined as the expected log-likelihood ratio of the two models,
evaluated with respect to the perturbed model:

I(fa, f)(z̃) =

∫
log

(
f(z̃t+1 | z̃t)
fa(z̃t+1 | z̃t

)
f(z̃t+1 | z̃t)dz̃t+1. (6a)

It can be shown that (see Appendix A):

I(fa, f)(z̃) = I(wt+1) = 0.5w′t+1wt+1 (6b)

Therefore, the total size of model misspecification in each time period is given
by I(fa, f)(z̃). Model misspecification is typically restricted by requiring that
the discounted lifetime sum of (6b) is a constant, e.g.

2E0

∞∑
t=0

β̌
t+1
I(fa, f)(z̃) ≤ η̃

E0

∞∑
t=0

β̌
t+1
[(
wat+1

)2
+
(
wϕt+1

)2
+
(
wτt+1

)2] ≤ η̃.

(6c)

In reality, the potential effects of model misspecification on economic out-
comes can depend on the actions of the economic agent. In particular, the
potential negative effects of model misspecification can be reduced by pur-
poseful economic activity which seeks to understand the form of the unknown
exogenous processes and their potential effects on the economy. For example
resources are diverted to learning about the channels through which disease
is spread, the existence of terrorist networks and their targets, risks associ-
ated with defaults on loans, etc.. Here, in the context of our business cycle
model with human capital, we examine the case where knowledge creation
can reduce the potential negative effects of model misspecification. In par-
ticular, one way in which economic agents might reduce the effects of model
misspecification is to spend time informing themselves about the economic

3Note that (5b) allows for misspecifications that occur only as a perturbation to the
conditional mean of the innovation to the state, z̃t+1 (and hence xt+1 as well) in (5a)
and leaves the conditional volatility of the shock, as parametrized by σ, unchanged. We
provide further information on this point in Appendix A.
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environment. In practice, a part of effort and leisure time is spent by eco-
nomic agents in such information-acquiring activities. This includes, for ex-
ample, reading newspapers and books in leisure time, going to meetings and
catching up with developments and news during work and education time.
These activities do not increase the productivity of future labor per se but,
instead, help the individual have a better understanding of the economic and
sociopolitical system and thus create knowledge that can be useful in mit-
igating the potential effects of model misspecification. In other words, the
extent of model misspecification, I(fa, f)(z̃), depends on knowledge creation
for this purpose. To capture this, we can write the within-period entropy
constraint as (

wat+1
)2

+
(
wϕt+1

)2
+
(
wτt+1

)2
=
η0
hit
− η1 (7a)

where knowledge to mitigate model misspecification hit implies an information
technology such that

hit = q
η2
t h

(1−η2)
t (7b)

and η0, η1 > 0 and 0 < η2 < 1.
In other words, the creation of knowledge about the economic environ-

ment, or else information acquisition, is a constant returns to scale production
function, which, analogous to human capital creation, has existing human
capital, ht, and effort time (in this case qt) as inputs. This setup encapsu-
lates the idea that knowledge for model misspecification requires time, which
comes at the expense of other uses of time, but also depends positively on
existing human capital in a society. The complementarity between qt and ht
implies that more educated individuals (or societies) will understand more
about their economic environment if they put the same effort time as less
educated individuals (or societies). The parameter 0 < η2 < 1 determines
the relative importance of information time. Similar to using education time
et for the creation of human capital, using qt implies a trade-off: more knowl-
edge is created, at the expense of less time available for leisure, work and
education.
It is important to note that in (7a), the agent chooses how much to

restrict model misspecification, in the sense that by choosing hit he chooses the
constraint on model misspecification I(fa, f)(z̃).4 A key assumption made in

4Note that (7a) implies that when η0 = η1 = 0, the true or perturbed model given
by (1a − 1i) is equivalent to the approximating model, (1a − 1f) and (3a − 3c) and
thus robust and optimal policies are the same. When qt → 0, model misspecification

is effectively unrestricted, while when qt =

(
1

η1h
(1−η2)
t

)1/η2
, model misspecification is

eliminated. Finally, if 1
hit
= 1 and η1 = 0 then the per period entropy constraint would be

exogenous.
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(7b) is that knowledge used to reduce the effects of model misspecification,
hit, depends both on a time input, qt, and the stock of existing human capital,
ht. As will be discussed below, when the approximating model governs the
data, efforts to mitigate model misspecification by acquiring information hit
via increases in qt imply an unproductive use of time. Hence, when fears of
model misspecification are unfounded, effort time qt is not associated with
a trade-off, but instead implies a misallocation of resources. On the other
hand, efforts to increase information acquisition hit by accumulating human
capital, will have a positive productive effect on the economy, even if fears
of model misspecification are unfounded.
To summarize, the decision maker believes that the exogenous processes

follow (1g)− (1i). However, the approximating processes (3a− 3c) must be
used since the wt+1 process is unknown. Despite not being able to make opti-
mal decisions using the true model, the agent desires to make good decisions
over a set of models satisfying the entropy constraint which has been specified
to allow the agent to choose to reduce the effects of model misspecification
by using time and existing human capital to this end.5 However, the benefits
accruing to such activities have to be weighed against the opportunity costs
of reducing time spent on other utility enhancing activities. The decision
rules or policy functions arising from the solution of this model can then be
characterized as being robust to misspecification of the approximating model.

2.2 Robust policies

As discussed above, the conservative decision maker would like to obtain
decision rules that are robust against model misspecification, in the sense that
they provide good results even in the presence of unfavorable wt+1 shocks.
To ensure a lower bound of utility in the least favorable environment, the
agent makes choices as if the wt+1 process follows the worst-case scenario. In
particular, it is assumed that wt+1 is chosen by a malevolent agent with a
view to minimizing the objective of the decision maker. By planning against
such a worst-case scenario, the agent, in effect, designs a decision rule that
performs well under a set of perturbed models. In other words, the agent
uses the malevolent agent as a device to achieve robustness.

5Note that while the agent’s choices are generally good and not optimal in this frame-
work such good decisions are optimal under a particular realization of the wt+1 process,
i.e. the worst-case shock. Hence, such a good decision rule is undominated, in the sense
that it is optimal for some model. This allows a Bayesian interpretation of the decision
rule as it is optimal for a particular belief about the shocks (see Hansen and Sargent (2008,
pp. 37, 142 and 158 for more details)).
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The problem for the decision maker can be now be stated as:

max
{yt,ct,it,iht ,nt,et,qt,kt+1,ht+1}∞t=0

min
{wat+1,w

ϕ
t+1,w

τ
t+1}∞t=0

E0

∞∑
t=0

β̌
t

[
(ct)

µ (lt)
(1−µ)

]1−ς
1− ς (8)

subject to (1b)-(1i) and (7a)-(7b). We will solve this problem by using dy-
namic programming methods in a linear quadratic approximation around
the non-stochastic steady state of the solution to the non-linear problem (see
Appendix B for details).

2.2.1 LQ representation

The first step is to eliminate non-linearities from the constraints of the above
problem. To this end, we start by defining a new variable:

mt = κ (etht)
γ (iht )1−γ (9a)

which implies

iht =

(
mt

κ (etht)
γ

) 1
1−γ

. (9b)

We next substitute (9b) and (1f) into (1c) for iht and yt respectively and the
resulting expression for ct into the objective function (8). Then we substitute
(7a) and (7b) in (1b) for qt and the resulting expression for lt into equation
(8). These steps result in the following objective function:

max
{ut}∞t=0

min
{wt+1}∞t=0

E0

∞∑
t=0

β̌
t{ 1

1− ς [

(
at (kt)

α (ht)
ζ (nt)

1−α−ζ − it − Ω
1

1−γ
t

)µ

×

1− nt − et −

 η0(
Ω̃t+1

)
h
(1−η2)
t

 1
η2


(1−µ)

]1−ς} (10)

where at = exp (ãt), Ωt = mt
κ(etht)

γ and Ω̃t+1 =
(
wat+1

)2
+
(
wϕt+1

)2
+
(
wτt+1

)2
+η1.

Thus, the representative agent now chooses ut = {it,mt, nt, et}∞t=0 to maxi-
mize (10), assuming that the malevolent agent chooses wt+1 = {wat+1, w

ϕ
t+1,

wτt+1}∞t=0 to minimize (10), subject to:

ght+1 = (1− δh)ht +mt + ϕt, h0 > 0 (11a)

gkt+1 = (1− δk)kt + it + τ t, k0 > 0 (11b)
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ãt+1 = (1− ρa)ã+ ρaãt + σa(εat+1 + wat+1) (11c)

ϕt+1 = ρϕϕt + σϕ(εϕt+1 + wϕt+1) (11d)

τ t+1 = ρττ t + στ (ετt+1 + wτt+1). (11e)

Letting h̃, nmax and nmin equal the number of states, (1, kt, ht, ãt, ϕt, τ t),
the number of controls, (it,mt, nt, et), for the maximizing agent and the
number of controls,

(
wat+1, w

ϕ
t+1, w

τ
t+1

)
, for the minimizing agent, we can now

write the linear constraints (11a)− (11e) in matrix form as:6

xt+1 = Axt +But + C(εt+1 + wt+1)

where

xt =
[

1 kt ht ãt ϕt τ t
]′

; ut =
[
it nt mt et

]′
;

wt+1 =
[
wat+1 wϕt+1 wτt+1

]′
; εt+1 =

[
εat+1 εϕt+1 ετt+1

]′
;

A(h̃xh̃) =



1 0 0 0 0 0

0 1−δk
g

0 0 0 1

0 0
(1−δh)

g
0 0 0

(1− ρa)ã 0 0 ρa 0 0
0 0 0 0 ρϕ 0
0 0 0 0 0 ρτ



B(h̃xnmax) =



0 0 0 0
1
g

0 0 0

0 0 1
g

0

0 0 0 0
0 0 0 0
0 0 0 0

 ; C(h̃xnmin) =


0 0 0
0 0 0
0 0 0
σa 0 0
0 σϕ 0
0 0 στ


We approximate the objective function in (10) to quadratic form around

the non-stochastic steady state of the true model given by (10)− (11e).7 We

6Note that we have added the coeffi cient 1 as the first component of the state vector
to capture constant terms in the law of motion as in Anderson et al. (1996).

7The non-stochastic steady state is obtained by setting σ = 0. Note that while this
removes the stochastic effects of wt in the exogenous productivity processess, wt still
remains in the entropy constraint. Thus the optimal outcomes of the game played between
the maximizing and minimizing agents are for steady-state w and q choices to be zero and
non-zero respectively implying that elimininating model uncertainty comes at a cost. See
Appendix B for details of the steady-state solution of the non-stochastic problem and
Appendix C for details on the quadratic approximation.
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can write then the linear-quadratic problem as:

max
{ut}∞t=0

min
{wt+1}∞t=0

E0

∞∑
t=0

β̌
t
{[(

ũt
xt

)′(
R W ′

W Q

)(
ũt
xt

)]}
(12a)

subject to:
xt+1 = Axt + B̃ũt + Cεt+1, (12b)

where ũt =
(
u′t w′t+1

)′
and B̃(h̃xñ) =

[
B C

]
, ñ = nmax + nmin and R, W

and Q are the appropriate partitioned matrices of the respective M matrix
that, as explained in Appendix C, defines the second-order approximation of
(10). In particular, R(ñ×ñ) = M22, W(h̃×ñ) = M12 and Q(h̃×h̃) = M11.
For the problem to be well defined, the objective function needs to be

concave with respect to ut and convex with respect to wt+1. To check that
these conditions are met, we can write the problem in (12a) as:

max
{ut}∞t=0

min
{wt+1}∞t=0

E0

∞∑
t=0

β̌
t{u′tRuut + w′t+1Rwwt+1 + 2u′tR

′
wuwt+1 + x

′

tQxt +

+ 2x
′

tWuut + 2x
′

tWwwt+1}

subject to:
xt+1 = Axt + B̃ũt + Cεt+1

where R =

(
Ru R′wu
Rwu Rw

)
and Ru is (nmax × nmax), Rw is (nmin × nmin) and

Rwu is (nmin × nmax); and W =
(
Wu Ww

)
and Wu is (h̃× nmax) and Ww

is (h̃× nmin). We require Ru to be negative definite, Q to be negative semi-
definite and Rw to be positive definite (see also Anderson et al. (1996) and
Hansen and Sargent (2008) for assumptions regarding the coeffi cient matrices
for linear quadratic problems).

2.2.2 Model Solution

We make use of a type of certainty equivalence, which applies to the class
of linear quadratic games relevant here (see e.g. Hansen and Sargent, 2008,
ch. 2). In particular, the decision rules for ut and wt+1 in the maxmin
game (12a)-(12b) are the same in a particular non-stochastic version of the
problem, i.e. where εt+1 = 0. Therefore, we focus on the problem

max
{ut}∞t=0

min
{wt+1}∞t=0

∞∑
t=0

β̌
t
{[(

ũt
xt

)′(
R W ′

W Q

)(
ũt
xt

)]}
(13a)
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subject to:
xt+1 = Axt + B̃ũt. (13b)

We will solve for a Markov-perfect equilibrium (see Hansen and Sargent,
2008, Definition 7.4.1).8 Since this is a dynamic zero-sum game the order of
optimization does not affect the solution. In other words the Bellman-Isaacs
condition holds, see e.g. Hansen and Sargent (2008, chapter 7); see also
Basar and Olsder (1999, ch. 5 and 6) for dynamic, zero-sum open-loop and
feedback Nash equilibria). Therefore, to solve the problem in (13a)-(13b),
we can stack the first order conditions of the maximizing and the minimizing
agents.
To implement this solution, we follow Hansen and Sargent (2008, ch. 2)

and note that, in (13a)-(13b), the first order conditions of the maximizing
agent with respect to ut and of the minimizing agent with respect to wt+1,
are the same with the first order conditions of an ordinary (i.e. non-robust)
optimal linear regulator (OLR) who chooses ũt. Hence, we write the extrem-
ization9 problem in (13a)-(13b) as:

ext
{ũt}∞t=0

∞∑
t=0

β̌
t
{[(

ũt
xt

)′(
R W ′

W Q

)(
ũt
xt

)]}
(14a)

subject to:
xt+1 = Axt + B̃ũt. (14b)

To solve the above OLR problem, we next eliminate the cross-products
between states and controls in the objective function (see e.g. Hansen and
Sargent, 2008, ch. 7). If we define:

Q̃ = Q−WR−1W ′,

Ã = A− B̃R−1W ′,

ṽt = ũt +R−1W ′xt.

the problem can then be written as:

max
{ṽt}∞t=0

E0

∞∑
t=0

βt
(
ṽt
xt

)′(
R 0

0 Q̃

)(
ṽt
xt

)
, (15a)

subject to:
xt+1 = Ãxt + B̃ṽt. (15b)

8The definition of the Markov Perfect Equilibrium discussed here describes equilibria
that are, under certainty, consistent with memoryless feedback equilibria (see e.g. Basar
and Olsder, 1999, ch. 6).

9Following Whittle (1990), extremization denotes joint maximization and minimization.
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The problem in (15a)-(15b) can be solved as a standard OLR problem
(see e.g. Anderson et al., 1996) to give the policy functions:

ṽt = −F̃ xt

and the state evolution equation:

xt+1 = (Ã− B̃F̃ )xt (16a)

where
F̃ = β̌(R + β̌B̃′P ∗B̃)−1B̃′P ∗Ã

and P ∗ is obtained by iterating on:

P ∗ = Q̃+ β̌Ã′P ∗Ã− β̌2Ã′P ∗B̃(R + β̌B̃′P ∗B̃)−1B̃′P ∗Ã.

The stability of the solution is guaranteed if the eigenvalues of (Ã− B̃F̃ ) are
all less than one in absolute value.10 Working backwards, we can obtain the
solution for ũt as

ũt = −
(
F̃ +R−1W ′

)
xt

and then, by appropriately partitioning of the matrix
(
F̃ +R−1W ′

)
we get

the policy function for ut and the worst case scenario for wt+1:

ut = −Fxt (16b)

wt+1 = Kxt. (16c)

The value of the game or the welfare under the worst case scenario, is
given by:

v(x0) = x′0P
∗x0 + d (17)

where d = β̌(1− β̌)−1tr (P ∗CC ′) ; and P ∗ is the value of P at convergence.

3 The robustness premium and precaution-
ary behavior

The importance of the costs associated with robust decision making has been
acknowledged in the literature. Hansen and Sargent (2010, p. 13), for ex-
ample, warn against recommendations where "conservative behavior is so

10Of course, except for the one corresponding to the constant term, which will be exactly
unity.
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cautious that it makes the robust decision rule look silly". The more conser-
vative the decision maker, the higher the robustness premium he is expected
to pay if his fears of model misspecification are unfounded. However, at the
same time, the more he is protected against model misspecification.
In the model uncertainty literature, particular interest has also been paid

to whether robust policy making leads to more precautionary behavior. This
behavior in a robust context is different from the conventional form of pre-
cautionary savings which results from a convex marginal utility function and
a positive variance for the productivity process (see e.g. Leland (1968) and
Sandmo (1970)). In contrast, the precautionary behavior emerging from ro-
bust decision making is a result of fear of misspecifying the conditional means
of the model’s stochastic state variables and does not require a convex mar-
ginal utility of consumption. However, similar to the conventional case, the
precautionary behavior evolving from robust decision making is increasing in
the variance of the stochastic process.11 To assess the cost and precaution-
ary implications of robust policy rules below we follow Hansen and Sargent
(2008) and Dennis (2010) and compare robust to optimal model outcomes
when the approximating model governs the data.

3.1 Calibrating the model parameters

We next calibrate the model parameters using data and empirical evidence
from econometric studies. Where neither is available, we calibrate the re-
maining parameters so that the solution of the model in the long-run re-
produces the stylized facts regarding the U.S. data. In particular, we aim
to obtain reasonable values of the so-called "great ratios" such as the com-
ponents of expenditure as shares of output, physical and human capital to
output ratios, etc.
For the human capital model we examine here, we use standard values

in the literature for calibrating the model using U.S. data for the post-war
period (see e.g. King and Rebelo (1999)). These are reported in Table 1. We
set the value of (1− α) equal to labor’s share in income using compensation
of employees data. The value for β is set such that 1/β is equal to 1 plus the
ex-post real interest rate. The values for δh and δk are from Jorgenson and
Fraumeni (1989). The gross growth rate g is set to the average per labour
input growth rate. Following Kydland (1995, ch. 5, p. 134), we set µ to

11These findings have also been confirmed in other applications using robust control
methods. Model uncertainty has also been linked to precaution in monetary policy design
(see e.g. Brainard, 1967). However, in several recent applications in monetary policy, an
increased preference for robustness can imply more aggressive policy behavior (see e.g. the
papers and the discussion in Leitemo and Soderstrom (2008)).
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be equal to the average hours of work versus leisure time, which is obtained
using data on hours worked.12 We use a value for 1/ς that is common in
the DSGE literature (i.e. ς = 2), as micro evidence suggests (although not
conclusively) that (1/ς) is less than one.
We calibrate those parameters we cannot retrieve from the data or previ-

ous empirical studies, in particular the exponents in the production function
for human capital, i.e. (γ, ζ) and the constants in goods and human capital
production functions, i.e. ã and κ respectively, so that the solution of the
model in the long-run reproduces the stylized facts regarding the U.S. data.

Table 1: Model calibration (benchmark)
definition parameter value
productivity of capital α 0.330
constant term in ãt ã 0.820
time discount factor β 0.970
constant term in human capital production κ 0.900
productivity of human capital investment γ 0.700
depreciation rate on physical capital δk 0.049
depreciation rate on human capital δh 0.018
productivity of human capital ζ 0.300
labor augmenting technical progress g 1.025
weight on consumption in utility µ 0.350
coeffi cient of relative risk aversion ς 2.000
elasticity of hit with respect to qt η2 0.400
constant term in entropy constraint η1 0.275
standard deviation of ãt, ϕt, τ t σa, σϕ, στ 0.010
persistence of ãt, ϕt, τ t ρa, ρϕ, ρτ 0.990

Regarding the knowledge for misspecification sector, we normalize the
value of η0 to unity since increases in η0 have the same effect as decreases in
η1. We then calibrate η1 and η2 so that they imply a time for misspecification,
qt, that would be considered reasonable and at the same time make the
approximating and the distorted model diffi cult to distinguish statistically.
Given the lack of data on qt, it is obviously hard to identify a target value
for qt. We consider as a benchmark a calibration that implies values for qt
around 1%, but as we discuss later we also examine calibrations that imply
higher values for qt. Moreover, following Hansen and Sargent (2008, 2010),

12To obtain this we divide total hours worked by total hours available for work or leisure,
following e.g. Ho and Jorgenson (2000). For example, they assume that there are 14 hours
available for work or leisure on a daily basis with the remaining 10 hours accounted for
by physiological needs.
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we restrict our interest to circumstances in which the decision maker, faced
with a finite amount of data, finds it diffi cult to statistically distinguish the
approximating from the perturbed model. We achieve this by applying their
detection error probabilities approach to measure the extent of or fear of
model misspecification. In particular, if a likelihood ratio test is used to
distinguish the approximating from the worst-case perturbed model, there
would be a detection error probability, because the two models can differ due
to genuine randomness. Hansen and Sargent suggest that it is reasonable
to design robust policies that would allow for at least a 10% probability of
making such an error.13 We thus calibrate the parameters η1 and η2 so that
robust policies do not imply detection error probabilities that are lower than
10%.14

3.2 Results

To quantitatively assess the cost and precautionary implications of robust
decision making, we start by simulating the approximating model under op-
timal (see Table 2) and robust policy rules (see Table 3). We further explore
these by changing the parameters in the entropy constraint of the robust
model. In particular, we first increase, η2 i.e. the relative productivity
of time, holding the size of the entropy constraint constant (see Table 4).
Second, we decrease η1 holding the other parameters constant, so that the
entropy constraint changes (see Table 5).
In the Tables below we present (i) the model averages for the main

economic variables;15 (ii) the extent of feared model misspecification, η =
η0

qη2h
(1−η2) − η1; (iii) welfare under the optimal policy rule, vo(x0); (iv) welfare

under the robust rule, vr(x0); and (v) the robustness premium, φ calculated
as the percent difference between welfare in the robust versus the optimal
policies (see e.g. Dennis (2010)):

φ =
vr(x0)− vo(x0)

vo(x0)
.

13In the context on an exogenous entropy constraint, the smaller (larger) the model
detection error probability, the larger (smaller) the difference between the two models
and hence the greater (less) the extent of feared of model misspecification. We return to
a modified interpretation of the model detection error probability, under an endogenous
entropy constraint, below.
14Following the literature, these probabilities are calculated using 100,000 simulations.
15The time horizon for the simulations is 350 years. Later periods do not affect outcomes,

because of discounting.
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3.2.1 Optimal versus robust policies

To simulate the approximating model under optimal policy rules reported
in Table 2 we set η0 = η1 = 0 in equation (7a).16 This implies that the
decision maker designs optimal policy rules when the approximating model
is the correct one. The results in Table 2 provide the benchmark we require
to assess the cost and precautionary implications of robust decision making
in the remaining Tables.

Table 2: Optimal policies
y 2.581
c 1.761
i 0.596
i
h

0.224
k 8.059
h 33.454
e 0.110
n 0.201

vo(x0) -34.854

To simulate the approximating model under robust policy rules reported
in Table 3, we use the same initial conditions as in Table 2 and set K = 0 in
equations (16a − 16c). The latter implies that the approximating model is
the correct one and governs the evolution of the states but the agent solves
for robust decision rules (see e.g. Hansen and Sargent, 2008, p. 39). In other
words, the decision maker’s fears of model misspecification are unfounded.
Since the simulations in Table 3 are initalized as in Table 2, there is a

transition period before the stochastic steady-state is reached. The figures
in the first column of Table 3 are calculated including this transition path.
Thus they refer to the lifetime of the agent. In contrast, the transition path
is excluded in the second column so that the model averages and welfare refer
exclusively to the stochastic steady-state.

16Note that the initial values for the simulation reported in Table 2 correspond to the
non-stochastic steady-state of this model.
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Table 3: Robust policies
lifetime steady-state

y 4.285 4.518
c 2.759 2.965
i 1.017 1.069
i
h

0.509 0.484
k 13.501 14.438
h 104.699 113.534
e 0.139 0.134
n 0.197 0.197
q 0.012 0.010
η 0.133 0.132

vr(x0) -35.086 -29.770
φ 0.007 -0.146

Comparing vr(x0) in Table 3 to vo(x0) in Table 2 using φ, it can be seen
that robust policies imply a small welfare cost for the agent, if the fears of
model misspecification are unfounded. However, as indicated by φ in the
second column, this cost is temporary, since welfare is 14.6% higher than
vo(x0). In other words, an economy that chooses to pay the robustness
premium of 0.7% is guaranteed to have a higher welfare in the long-run.
Examining the effects of precautionary behavior under the robust deci-

sion rule helps to explain the welfare results described above. Compared to
the averages in Table 2, robust decisions imply precautionary increases in
investment in physical, i, and human capital, i

h
, which result in increases

in output, y, and consumption, c. These effects are more pronounced in the
long-run. Robust policies also imply an increase in education time, e, and
time to create knowledge to reduce model uncertainty, q. Hence, leisure time,
(1 − e − n − q), falls. Despite this, the net effect on welfare, due to higher
consumption, is positive in the long-run.
As is standard in the robust control literature, precautionary behavior on

the part of the robust decision maker implies that he is increasing his stocks
of physical and human capital as buffers against negative effects of model
misspecification. In the long-run, these provide a benefit, as they increase
productivity (and consumption). In the short-run, however, these increases
in investment necessitate a sharp decrease in consumption. This is captured
by an overall increase in the volatility of consumption, when the transition
path is included in evaluating outcomes and welfare. For the model in Table
3, the volatility of consumption including the transition path is 0.49, whereas
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for the model under certainty in Table 2, volatility is 0.17.17 This increase in
volatility hurts welfare and is predominantly associated with the transition
path, as the volatility of consumption in the steady-state returns to 0.20.
To summarize, there are benefits and costs from following robust policies

when the approximating model governs the data. The benefits take the form
of increased productivity due to precautionary accumulation of physical and
human capital. This effect is intensified in our model because human capital
can also be used to reduce the effects of model uncertainty. Hence, the en-
dogenous entropy constraint provides an additional motive for precautionary
accumulation of human capital. The costs include a misallocation of time
resources to reduce the effects of model misspecification and a temporary
cost of increased volatility of consumption which results from the need to
finance the increase in investment in physical and human capital along the
transition path.

3.2.2 Increasing the relative productivity of time

The welfare effects of robust decision making crucially depend on the tech-
nology used to reduce model uncertainty. We demonstrate this below, by
considering the effects of increasing the relative effi ciency of time, η2. In our
experiment, we increase the size of η2 to 0.6 and 0.8 and to hold the detection
error probability constant at p = 10% we also increase η1 to 0.625 and 1.43
respectively.
When η2 increases from 0.4 to 0.6, both q and h increase relative to their

values in Table 3 leading to robustness premia, φ, of 7.68% and -12.9% for
the lifetime and steady-state respectively.18 In contrast, when η2 increases to
0.8, while q increases, h decreases relative to their values in Table 3 leading
to robustness premia of 27.8% and 8.4% for the lifetime and steady-state
respectively.19 In other words, the misallocation of resources in this case is
dramatic and outweighs the benefits of precautionary increases in output and
consumption displayed for lower values of η2.

17The volatility for leisure does not change significantly between the different policies,
increasing from 0.009 for the solution in Table 2, to 0.014 for the solution in Table 3.
18In this case, the volatility of consumption including the transition path is 0.65, re-

turning to 0.29 when the stochastic steady state is considered only.
19In this case, the volatility of consumption including the transition path is 0.34, re-

turning to 0.22 when the stochastic steady state is considered only.
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Table 4: Robust policies
η2 = 0.6 η2 = 0.8

lifetime steady-state lifetime steady-state

y 4.668 5.025 3.420 3.708
c 2.927 3.242 2.157 2.373
i 1.107 1.187 0.810 0.877
i
h

0.634 0.597 0.454 0.458
k 14.656 16.029 10.801 11.847
h 138.569 156.588 82.720 94.728
e 0.146 0.140 0.130 0.127
n 0.184 0.186 0.158 0.160
q 0.068 0.061 0.198 0.190
η 0.126 0.126 0.123 0.123

vr(x0) -37.515 -30.360 -44.527 -37.770
φ 0.076 -0.129 0.278 0.084

To summarize, increases in η2 or the return to qt relative to ht in the
knowledge production function, leads to an increase in the robustness pre-
mium. In the extreme, this increase can even reverse the long-run gains of
robust policies, when fear of model misspecification is unfounded.

3.2.3 Increasing the fear of model misspecification

Ceteris paribus, a fall in η1 in the entropy constraint given by (7a) implies
ex ante that it is more diffi cult to mitigate the effects of model misspeci-
fication. In other words, this reflects that the economic agent fears model
misspecification more and will choose more conservative policies. In Table
5, we present the effects of a fall in η1 for low and for high values of η2, in
particular for η2 equal to 0.4 and 0.8 as in Tables 3 and 4 respectively. In
both cases, we examine a fall in η1 that implies a detection error probability
of 20%.20 Finally, we again simulate the solution in the approximating model
under the robust decision rule, using the same initial conditions as in Table
2.
20As pointed out in footnote 13, under an exogenous entropy constraint, an increase in

the fear of model misspecification would imply, by construction, a fall in the detection error
probability, p. In our model, a more conservative robust decision maker chooses to mitigate
model misspecification using qt and ht. Hence, when the fear of model misspecification,
η = η0

qη2h
(1−η2) −η1, rises, due to a fall in η1, we observe a fall in η ex post due to offsetting

changes in q and h and hence a corresponding increase in p. In this sense, higher detection
error probabilities indicate more and not less conservative behavior.
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Table 5: Robust policies
η1 = 0.22, η2 = 0.4 η1 = 1.21, η2 = 0.8
lifetime steady-state lifetime steady-state

y 4.589 4.854 3.387 3.703
c 2.923 3.174 2.104 2.344
i 1.078 1.137 0.794 0.868
i
h

0.587 0.543 0.489 0.491
k 14.285 15.352 10.595 11.716
h 125.611 136.613 88.516 102.738
e 0.144 0.138 0.130 0.127
n 0.194 0.195 0.148 0.150
q 0.023 0.019 0.249 0.238
η 0.054 0.054 0.056 0.056

vr(x0) -35.578 -29.556 -47.994 -39.943
φ 0.021 -0.152 0.377 0.146

For both cases considered, more conservative policies imply more pre-
cautionary behavior. However, the way this behavior is reflected differs. In
particular, for η2 = 0.4, the robust decision maker increases his buffer stocks
of physical and human capital relative those reported in Table 3, which im-
plies increases in output and consumption. In this case, he also increases
qt, trying to restrict model misspecification. This increase in qt represents
an increase in the misallocation of resources when the approximating model
governs the data. In addition, the volatility of consumption increases, so
that the costs in the transition period increase even more.21 Comparing φ
in Tables 3 and 5, the outcome of the new trade-off under more conservative
policies is that the robustness premium increases in the lifetime of the agent,
from 0.7% to 2.1%, but the gains from robust decision making increase in
the long-run, from 14.6% to 15.2%.
However, when η2 = 0.8, so that the mitigation of the effects of model

misspecification depends predominantly on qt, precautionary investment in
physical capital disappears. The incentives to engage in activities to mitigate
the potential effects of model misspecification are so high that the robust
decision maker channels his resources to this effort (e.g. q rises to nearly 25%
in Table 5 from 19% in Table 4), so that investment, output and consumption
are reduced when robust policies are more conservative. Comparing φ in
Tables 4 and 5, the outcome of the new trade-off under more conservative
policies is that the robustness premium increases both in the lifetime of the
agent, from 27.8% to 37.7% and in the long-run, from 8.4% to 14.6%.
21In particular, the volatility of consumption is 0.62 and 0.27 in this case, for the lifetime

and long-run results respectively.
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To summarize, more conservative policies, resulting from an increased
fear of model misspecification, imply more precautionary behavior. However,
the form in which this behavior is realized again depends critically on the
relative productivity of time and human capital in the knowledge production
function.

4 Conclusions

In this paper we have examined the importance of the premia associated
with robust decision making at the aggregate level using a two-sector real
business cycle model. To achieve this we introduced an additional form
of precautionary behavior by allowing the robust decision maker to reduce
the effects of model misspecification using time and existing human capital.
To obtain the robustness premium, we compared outcomes obtained from
making robust decisions, to those from making optimal choices when the
approximating model governed the data. In this environment the decision
maker had the incentive to pay a robustness premium to protect himself from
the uncertainty associated with not knowing the true model.
We found that despite more conservative robust decisions leading to

higher robustness premia, when the mitigation of model misspecification de-
pends on a low productivity of time relative to human capital, robust choices
increase welfare in the long-run. Thus, unfounded conservative policies imply
an opportunity cost for this generation but they will be beneficial for future
generations. In stark contrast, if the technology used to mitigate the effects
of model misspecification relies on a low productivity of human capital rel-
ative to time then the misallocation of resources under the approximating
model is so strong that more conservative robust policies imply welfare costs
which remain even in the long-run. Hence, unfounded conservatism will hurt
not only the current, but also future generations. Finally, depending on the
technology used to reduce model uncertainty, we found that while increasing
the fear of model misspecification leads to a net increase in precautionary
behavior, investment and output can fall. Of course the relative productivity
of human capital and time used to protect against model misspecification is
an open issue which remains to be resolved empirically.
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5 Appendices

5.1 Appendix A

Using the probability densities for the approximating and the distorted model22

fa(z̃t+1 | z̃t) ∼ N(z̃0 + ρz̃t, σσ
′)

22Note that f(z̃t+1 p z̃t) allows for misspecification that occurs only as perturbations to
the conditional means of the innovations to the states, z̃t+1 in fa(z̃t+1 p z̃t) and leaves the
conditional volatilities of the shocks, as parametrized by σσ′, unchanged. As Hansen and
Sargent (2008) show (see ch. 2.6, 3 and 7), as long as we stay within the LQ framework
with Gaussian distributions for the approximating model fa(z̃t+1 p z̃t), allowing for a more
general class of misspecification does not change important results. In particular, even
when the minimizing agent is allowed to distort the variance of wt+1, it is still optimal
to choose a normal density with the same mean. However, the minimizing agent would
choose to increase the variance of the distribution if given the chance. This would only
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f(z̃t+1 | z̃t) ∼ N(z̃0 + ρz̃t + σwt+1, σσ
′)

we can calculate the log-likelihood ratio in

I(fa, f)(z̃) =

∫
log

(
f(z̃t+1 | z̃t)
fa (z̃t+1 | z̃t)

)
f(z̃t+1 | z̃t)dz̃t+1

as:

log

(
f(z̃t+1 | z̃t)
fa (z̃t+1 | z̃t)

)
= log f(z̃t+1 | z̃t)− log fa(z̃t+1 | z̃t)

=
1

2
w′t+1wt+1 +

1

2
w′t+1σ

−1(z̃t+1 − z̃0 − ρz̃t − σwt+1) +

+
1

2
(z̃t+1 − z̃0 − ρz̃t − σwt+1)′ (σ′)−1wt+1.

Hence, the conditional relative entropy in I(fa, f)(z̃) is given as:

I(fa, f)(z̃) =

∫
[1
2
w′t+1wt+1 + 1

2
w′t+1σ

−1(z̃t+1 − z̃0 − ρz̃t − σwt+1)+

+1
2
(z̃t+1 − z̃0 − ρz̃t − σwt+1)′ (σ′)−1wt+1]f(z̃t+1 | z̃t)dz̃t+1

where the expectation is evaluated with respect to the true, or distorted
model, which implies that:

I(fa, f)(z̃) =
1

2
w′t+1wt+1.

5.2 Appendix B

The problem of the robust decision maker when σ = 0, is to choose {it,mt, nt,
et, kt+1, ht+1}∞t=0 to maximize

∞∑
t=0

β̌
t{ 1

1− ς [

(
at (kt)

α (ht)
ζ (nt)

1−α−ζ − it − Ω
1

1−γ
t

)µ
×

×

1− nt − et −

 1(
Ω̃t+1

)
h
(1−η2)
t

 1
η2


(1−µ)

]1−ς}

hurt the maximizing agent through the constant term, d, in the value function, v(x0) (see
eq. 17), but would otherwise not affect choices. In other words, if we allowed for more
general distortions along these lines there would be a fall in the value of the game reflected
by the smaller constant term in the value function, but the policy functions chosen by the
maximizing and minimizing agents would be the same.
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where at = exp (ãt), Ωt = mt
κ(etht)

γ , and Ω̃t+1 =
(
wat+1

)2
+
(
wϕt+1

)2
+
(
wτt+1

)2
+η1

subject to:
ght+1 = (1− δh)ht +mt + ϕt, h0 > 0

gkt+1 = (1− δk)kt + it + τ t, k0 > 0

ãt+1 = (1− ρa)ã+ ρaãt

ϕt+1 = (1− ρϕ)ϕ+ ρϕϕt

τ t+1 = (1− ρτ )τ + ρττ t

and the paths {wat+1, w
ϕ
t+1, w

τ
t+1}∞t=0 are chosen by a malevolent agent with

the objective to minimize the agent’s lifetime utility, subject to the above
constraints.
To solve this problem, we use the Bellman-Isaacs condition that holds for

this game, which indicates that the first order conditions for extremizing, i.e.
for simultaneously maximizing and minimizing the objective with respect to
it, mt, nt, et, kt+1, ht+1 and wat+1, w

ϕ
t+1, w

τ
t+1 respectively, match those of an

ordinary optimization problem with joint control processes {it,mt, nt, et, kt+1,
ht+1, w

a
t+1, w

ϕ
t+1, w

τ
t+1}. Hence, we can stack the first order conditions of the

zero-sum two-player dynamic game above and solve them simultaneously (see
e.g. Hansen and Sargent (2008, ch. 7)). The steady-state solution of this
set of non-linear equations gives the results in Table C for the calibration
reported in Table 1.

Table C: Steady-state
c/y 0.662
i/y 0.231
ih/y 0.107
k/y 3.122
h/y 24.324
y 4.173
c 2.762
i 0.964
ih 0.447
k 13.028
h 101.506
e 0.132
q 0.025
n 0.195
wa 0.000
wϕ 0.000
wτ 0.000
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5.3 Appendix C

We express the objective function (10) in implicit form as r(zt) where zt = [1
kt ht ãt, ϕt, τ t it mt nt et, w

a
t+1, w

ϕ
t+1, w

τ
t+1]

′. Our aim is then to replace the
non-linear function r(zt) by a quadratic one of the form z′tMzt. To this
end we approximate r(zt) around a fixed point z, which is the steady state
solution obtained above in Appendix B, using the first two terms of a Taylor
series expansion, i.e.

r(zt) ≈ r̂(zt) = r(z) + (zt − z)′
∂r

∂zt
|ss +

1

2
(zt − z)′

∂2r

∂zt∂z′t
|ss(zt − z) (D1)

where, the partial derivatives in (D1) are evaluated at the steady-state z (see
also Anderson et al. (1996) for more details).
Let j be a ((h̃+ ñ)× 1), where ñ = nmax + nmin, zero vector, except for a

1 in the row that corresponds to the entry of unity in the zt vector, so that
j′zt = 1. We can now rewrite (D1) as:23

r̂(zt) = z′tMzt, where

M = j

[
r(z)−

(
∂r

∂zt
|ss
)′
z +

1

2
z′

∂2r

∂zt∂z′t
|ssz
]
j′ +

1

2

[
∂r

∂zt
|ssj′ − jz′

∂2r

∂zt∂z′t
|ss −

∂2r

∂zt∂z′t
|sszj′ + j

(
∂r

∂zt
|ss
)′]

+
1

2

∂2r

∂zt∂z′t
|ss.

We next partition M(h̃+ñ)×(h̃+ñ) as
(
M11 M12

M21 M22

)
, where M11 is (h̃× h̃); M12

is (h̃× ñ); M21 is (ñ× h̃); andM22 is (ñ× ñ). Finally, we can now obtain the
desired quadratic form for r(zt), i.e.

z′tMzt =

(
xt
ũt

)′(
M11 M12

M21 M22

)(
xt
ũt

)
.

23See Ljungvist and Sargent (2000, ch. 4) Appendix B for details.
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