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Abstract

The Ramsey model of economic growth is revisited from the point of

view of viability compared to optimality. A viable state is a state from

which there exists at least one trajectory in capital, consumption, and re-

production that remains in the set of constraints of minimal consumption

and positive wealth. There exists a largest set of viable states, including all

others, called the viability kernel. This concept is an interesting addition

to those of equilibria and optimal paths. Viability is first presented with

a constraint of minimal consumption, then with an additional criterion of

economic sustainability in the sense of the Brundtland commission, which

amounts to requiring a non-decreasing social welfare. The comparison of

viability kernels with or without sustainability shows how much consump-

tion should be reduced and when. One strong mathematical result is that

the viable-optimal solution in the sense of inter-temporal consumption is

obtained on the viability boundary of an auxiliary system. Varying prefer-

ence, technological, and demographic parameters randomly over simulated

viability kernels with and without the Brundtland criterion help identify

the determinants of the non-emptiness of the viability kernel and of its

volume: technological progress works against population growth to favor

the possibility for a given state of being viable or viable-sustainable.

keywords: Viability theory – Optimization—Sustainability—Ramsey model

JEL classification: C61, C63, C65, O41.
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proofs to be sent to Noël BONNEUIL Institut national d’études démographiques,
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1 Introduction

The theory of economic growth is based preeminently on the neoclassical

growth model, which relies on the maximization of an inter-temporal or inter-

generational welfare function. The basic optimization apparatus used is optimal

control as pioneered by Pontryagin. Inter-temporal optimization in traditional

growth theory relies on a time discounted social welfare function, which, because

it gives more weight to present generations, has no reason to satisfy long-term

sustainability criteria (for the dependence of development on natural resources:

Withagen, 1998; Van Geldrop and Withagen, 2000).

Beltrati et al. (1994), for example, used a standard growth model with re-

newable resources to show the possible non existence of any stationary long-term

equilibrium for small enough discounting rates and upper-bounded renewal rate

of resources. It is therefore necessary to amend the typical neoclassical framework

to enforce sustainability criteria. Chichilnisky (1993) added a long-term outcome

term to the traditional inter-temporal optimization of utility. This modification

enables the identification of a green golden rule in the extreme case where utility

is reduced to this long-term outcome term, but, in the general case of a convex

combination of this term with inter-temporal utility, there is no guarantee of the

existence of an optimal sustainable path (Beltratti et al., 1994). Other authors

have moved away from the constant social discount rate assumption inherent in

the neoclassical model and instead assumed that the discount rate is endogenous
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(dependent on consumption or the capital stock, as reviewed by Le Kama and

Schubert (2007).

In both frameworks, inter-temporal optimization remains the criterion of

inter-generational resource allocation. Arrow et al. (2004) formalized sustain-

ability in line with the Brundtland Commission (1987), by requiring that inter-

temporal social welfare V (t) would not decrease over time t. Arrow et al. em-

phasized that this criterion “does not identify a unique consumption path: the

criterion could in principle be met by many consumption paths” (: 150), and

that “in defining sustainable development, there is no presumption that the con-

sumption path being followed is in the sense of maximizing V ” (: 150). The

scheme advocated by these authors need not be compatible with inter-temporal

optimality in the sense of optimal control, say Pontryagin optimality.

So far no criterion has been made operational. We wish to show the close

affinity between sustainability as defined by the Brundtland Commission and

viability theory, a theory pioneered by Nagumo in 1942 and developed by Aubin

(1997). One result in viability theory is the existence and the computation of

the largest (possibly empty) set, called the viability kernel, containing all initial

states from which there exists at least one trajectory along which some qualitative

or quantitative property —represented by a set of constraints– is satisfied up to

a given, possibly infinite, time horizon. We shall draw on this theory to study

Brundtland sustainability in the sense of Arrow et al. and to disentangle its

economic and demographic determinants. Viability theory and the method we
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shall present to compute viable-optimal paths are promising when used in models

incorporating energy and natural resources in the framework of environmental

policy and intergenerational justice (Asheim et al., forthcoming).

In addition to containing the states through which a given criterion is op-

timized while satisfying the constraints, the viability kernel also allows one to

identify sub-optimal trajectories under a given dynamic. Early applications of

viability in economics are Bonneuil (1994a, 1994b), Aubin (1997), Bonneuil and

Boarini (2004), Valence (2005), Marco and Romaniello (2006), and Bonneuil and

Saint-Pierre (2008). The relationship between viability and optimality in the

sense of optimal control, say Pontryagin optimality, has been studied in abstract

settings. It receives a precise formulation in the proposal of Arrow et al. (2004).

Viability theory bridges the difference between sustainability and Pontryagin op-

timality. Cannarsa and Frankowska (1991) showed that, for the Mayer problem,

the epigraph of the value function is the viability kernel of an extended con-

trol system. We shall use similar arguments to clarify the relationship between

Brundtland sustainability and Pontryagin optimality in standard growth models.

For the sake of clarity, we focus on the well-known Ramsey growth model

originated in the seminal work of Frank Ramsey (1928) (Barro and Sala-i-Martin,

1995, Chapter 2). The Ramsey problem is recalled in the beginning of section 2.

In this section, we also convert the Ramsey problem into a benchmark viability

problem where an elementary minimal consumption constraint is to be satisfied

over time. Brundtland sustainability is introduced formally. Section 2 ends with
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a comprehensive analysis of the viability and sustainability of optimal paths in

the Ramsey model. In Section 3, elements of viability theory are presented, and

the link between Pontryagin optimality and viability is made using the Ramsey

model and its viability counterpart. Section 4 is devoted to the computation of

viability kernels corresponding to sustainability criteria. In particular, we use

the algorithm developed by Bonneuil (2006) to compute viability kernels with

and without the Brundtland criterion by randomly drawing the technological,

demographic and preference parameters of the model in plausible ranges. A re-

gression of the volumes of these sets will show the influence of each determinant

and overcome the intractability of obtaining an analytical expression for these

volumes. We will show that sustainability is achieved at the expense of consump-

tion, and we will identify all states from which there exists a sustainable path

contained in the viability kernel. For states for which such a path no longer exists

under regular dynamics, we will recommend a drastic extraordinary reduction of

consumption, an impulse, outside the regular dynamics, setting the system to a

viable state. Then, from this new starting point, viable policies are to be applied,

changing as the state of the system navigates in the viability kernel.
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2 A Preliminary investigation into Viability, Op-

timality, and Brundtland Sustainability

2.1 A Viability Formulation of the Ramsey Model with

Minimal Consumption

The Ramsey model features a planner (either an individual or a government)

whose objective is to maximize the present value of future utility gains w(c(t))e−ρt

as a positive function of consumption per head c(t) at time t and depending on

a subjective rate ρ of time preference, where 0 < ρ < 1, over an infinite time

horizon and continuous time:

maxc(.) V (0) := maxc(.)

∫∞
0 w(c(τ))e−ρτ dτ

subject to

k′(t) = f(k(t))− (n + δ)k(t)− c(t)

(1)

where “now” is time 0, n denotes the population growth rate, δ the depreciation

rate of capital, k(t) the capital per worker, k(0) > 0 is given.1 Utility w is

a strictly increasing and concave utility function, and the production function

f is strictly increasing and concave. In the traditional formulation, the state

constraints are:

k ≥ 0, c ≥ 0 . (2)

1No Ponzi game conditions are added to preclude trivial solutions of the “chain letter” type.

We shall ignore this technicality and focus on more conceptual aspects of the Ramsey problem.
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The optimal paths corresponding to model (1) are well known. As already

mentioned, Chichilnisky (1993) criticized the discounting objective function, ar-

guing that in many circumstances this function fails to guarantee subsistence

levels for future generations. We begin with the viability idea of minimal con-

sumption for all generations. The former objective of inter-temporal utility opti-

mization is replaced by feasibility from the present until a given time horizon, a

concept which is represented formally by the dynamics under viability constraints.

• When the capital per head k(t) is governed by an autonomous differential

equation, the dynamics is 2-dimensional:
(i) k′(t) = f(k(t))− (n + δ)k(t)− c(t)

(ii) c′(t) = u(t) ∈ U := [u[, u]]

(3)

where U is a closed set of measurable admissible consumption changes u(t),

and u[ ≤ u] are two real numbers.

• When the capital per head k(t) is governed by a non autonomous differential

equation, notably with a production function that depends an increase in

productivity over time, the dynamics is 3-dimensional:

(i) k′(t) = f(t, k(t))− (n + δ)k(t)− c(t)

(ii) c′(t) = u(t) ∈ U := [u[, u]]

(iii) t′ = 1

(4)

with the production function defined as:

f(t, k(t)) := A exp(ηt)f̂(k(t)) (5)
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with f̂ increasing and concave, satisfying Inada conditions, A a constant express-

ing the technological level at time 0 and η the rate of technological progress. For

the sake of simplicity, we will consider

f̂(k) = kα (6)

where α represents capital share.

In both cases, the constraints are:

k(t) ≥ 0

c(t) ≥ c(t)

t ∈ [0, T ]

(7)

where T is the time horizon, possibly infinite. Eq. (7) defines a set K of con-

straints, where c(t) is a given consumption threshold. It ensures that people con-

sume enough to have a satisfactory standard of living. Instead of inter-temporal

optimization, the programs {(3),(7)} or {(4),(7)} now require that their solutions

satisfy the qualitative property (7) at any time.

One could argue that the issue of ensuring minimal consumption can be han-

dled in an optimal control formulation (adding the corresponding control con-

straint). This would miss the point, made by Arrow et al. (2004) among others,

that the mathematics of maintenance or sustainability differ substantially from

those of optimality. We capture the issue of maintenance through the minimal

consumption requirement. Adding viability constraints to the standard Ramsey

model can be handled by the systematic computational analysis provided by vi-
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ability theory. Optimal control experts know how difficult it is to deal with even

simple state constraints.

The viability problem {(4),(7)} has three state variables k(t), c(t), and t in

the non autonomous case, a fact which seems to contradict the optimal control

problem (1). The original control variable c(t) is handled as a state variable,

but no c(0) value is imposed. While an optimal control technique seeks the

optimal value of c(0), viability is concerned with all initial conditions (k(0), c(0))

from which there exists at least one solution to dynamics (3) or (4) remaining

in constraints (7) until a given time horizon. Another novelty with respect to

optimal control is the appearance of the control u(t), formalizing any admissible

change in consumption, which ultimately allows us to write a state equation for

c(t). At any given point in time, there may be an infinity of admissible changes,

namely changes in consumption compatible with viability constraints (7). At a

given date, there is a technological and social constraint on consumption which,

in a regular regime, rules out infinite changes in this variable. The control then

varies in a bounded set U , which is more realistic than assuming that c′(t) can

take any value.

2.2 Brundtland Sustainability

Arrow et al. (2004) identify social welfare with “the present discounted value

of the flow of utility from consumption from the present to infinity, discounted
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using the constant rate” ρ > 0 (: 149). They use the sustainability criterion

from the report by the World Commission on Environment and Development

(1987), known as the Brundtland Commission (after its chairperson). Sustainable

development was defined as “development that meets the needs of the present

without compromising the ability of future generations to meet their own needs.”

They take “sustainability to mean that inter-temporal social welfare y(θ) must

not decrease over time θ,” where θ represents the “now” which was set to 0 so

far. We treat “now” as a variable in order “to concentrate on the change in V .”

Social welfare at time θ is then:

V (θ) =
∫ ∞

θ
w(c(τ))e−ρ(τ−θ) dτ (8)

the differential of which is:

V ′(θ) = −w(c(θ)) + ρV (θ) (9)

and the Brundtland condition of sustainability is:

V ′(θ) ≥ 0 (10)

2.3 Pontryagin Optimality, Viability, and Brundtland Sus-

tainability: Preliminary Results

We consider the standard Ramsey model with strictly concave utility and pro-

duction functions, both satisfying the Inada conditions. The Pontryagin method
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gives the velocities k′(t) and c′(t) on the optimal paths in the autonomous prob-

lem (1) (corresponding to η = 0 and A = 1). In this problem, the unique saddle

point, where k′(t) = 0, c′(t) = 0, is
(
k̂?, ĉ?

)
with k̂? solution of f̂ ′k(k) = ρ + δ

and ĉ? := f̂(k?), independent of the initial condition k(0) > 0. We define

k∗(t) = (A exp(ηt))1/(1−α)k̂∗ and c∗(t) = (A exp(ηt))1/(1−α)ĉ∗. In the autonomous

problem, for any initial condition k(0) > 0, the level of consumption is chosen

such that the system jumps on the saddle path and moves to the balanced growth

point at
(
k̂?, ĉ?

)
. Similarly, in the non autonomous problem (4), for any initial

condition k(0) > 0, the level of consumption is chosen such that the system

jumps on the saddle path augmented by A exp(ηt))1/(1−α) and travels to the bal-

anced growth point at (k?(t), c?(t)). Thus, optimal trajectories remain on a stable

branch and converge to the steady state equilibrium (Barro and Sala-i-Martin,

1995, chapter 2). In the autonomous case, the equation of the stable branch in

the plane (k, c) is denoted c = φ(k). In the case of a Cobb-Douglas production

function and a utility function with constant elasticity of inter-temporal substi-

tution, the most studied case in textbooks, φ(0) = 0 and φ′(x) > 0, ∀x ≥ 0.2

In particular, if k(0) < k?, consumption increases strictly from φ(k(0)) to c?. If

k(0) > k?, consumption is strictly decreasing from φ(k(0)) to c?.

If consumption can no longer jump on the stable path, but is governed by

a bounded change, and must remain above a given threshold c over time, all

2The concavity of the stable branch (the saddle path) depends on the inter-temporal elas-

ticity of substitution (Barro and Sala-i-Martin, 1995, chapter 2).

13



states do not have the same status: from the viable ones, there exists at least one

solution remaining in the set of constraints until the time horizon T ; from the

non viable ones, all solutions leave the set of constraints before the time horizon

T .

Straightforward propositions help situate viability with respect to Pontryagin

solutions. From Eq. (9),

V ′(θ) = ρ
∫ ∞

θ
(− w(c(θ)) + w(c(t)))e−ρ(t−θ) dt (11)

On the stable branch converging to the saddle point, consumption varies monoton-

ically, hence:

Proposition 2.1 An optimal path converging to the saddle point and on which

consumption c(.) is increasing is Brundtland-sustainable in the sense that it satis-

fies condition (10). Optimal paths with decreasing consumption cannot be Brundtland-

sustainable.

(proof obvious).

The minimal consumption threshold, c(t) > 0, is such that:

Proposition 2.2 If, for any time t, c(t) > c∗(t), then all optimal consumption

paths converging to the saddle point and starting from (k, c), c ≥ c(0), leave the

set of constraints in finite time, or equivalently, no such state (k, c) is viable.

If k(0) ≤ k∗(0), then the optimal consumption path increases along the stable

branch to c?(0) < c(0), failing to guarantee the minimal consumption criterion
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during the transition. If k(0) > k?(0), the optimal consumption path decreases to

c?(t), again failing to satisfy the minimal consumption criterion on the part of the

saddle-path going from c(t) to c?(t). We focus hereafter on the case c(t) < c?(t).

Proposition 2.3 Define k(t) = φ−1(c(t)) such that 0 < k(t) < k?(t). If c(t) <

c?(t), then:

1. if 0 ≤ k(0) < k(t), the optimal consumption path leaves the constraints:

(k(0), c(0)) is not viable.3

2. if k(t) ≤ k(0) ≤ k?(t), the optimal consumption path remains in the con-

straints and is Brundtland-sustainable: (k(0), c(0)) is viable.

3. if k(0) > k?(t), the optimal consumption path remains in the constraints

c(t) ≥ c(t) for all t ≥ 0: (k(0), c(0)) is viable, but not Brundtland-sustainable.

These properties, stemming from the structure of the optimal paths in the Ram-

sey model and from Proposition 2.1, reveal a feature of inter-temporal optimiza-

tion models: initially optimal economies starting from insufficient capital (case 1

of Proposition 2.3) cannot be viable (in the sense of guaranteeing a minimal stan-

dard of living). Optimal economies with a large enough allowance in endowment

of capital (case 3) are viable, but not Brundtland-sustainable: inter-temporal sub-

stitution and income effects inherent in the standard neoclassical optimal growth

3In such a case, the optimal consumption paths are increasing, and Brundtland-sustainable

by Proposition 1. However, this is of little interest if consumption is lower bounded.

15



model yield strictly decreasing optimal consumption patterns, and a subsequent

decreasing net present value. The virtuous configuration where Pontryagin op-

timality occurs together with viability and Brundtland-sustainability lies in the

intermediate case 2, where the agent consumes moderately, thus accumulating

capital and continuing to increase the income of future generations.

We confirm the point made by Arrow et al. (2004), that inter-temporal opti-

mality need not be compatible with any sustainability criterion. In this section,

we showed this property for the minimal consumption criterion and for Brundt-

land sustainability. But if optimality in the sense of Pontryagin does not guar-

antee sustainability, is it possible to characterize sustainable paths in a more

operational way than the mere fulfillment of state constraints (2) or (10)? This

is the question we address now, in examining the relationship between optimality

and viability.

3 Pontryagin Optimality and Viability: Theory

3.1 A Short Introduction to Viability Theory

Consider the autonomous problem {(3),(7)}, for n constant. It has a synthetic

expression as a differential inclusion:

x′(t) ∈ F (x(t)) and ∀t, x(t) ∈ K (12)
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with K = IR+∗ × IR+, x = (k, c) and

F (x) = {(f(k)− c− (n + δ), u) | u ∈ U} . (13)

A state x0 = (k0, c0) is said to be viable in K under F if there exists at least one

solution x(t) of Eq. (12), starting from x(0) = x0 and remaining in K forever. A

set of viable states is called a viability domain, and Aubin (1997) showed that

there exists a maximal viability domain including all other viability domains.

This set is the viability kernel ViabF (K) (which is then a set of initial conditions):

ViabF (K) := {x0 | ∃x(.), x(0) = x0 and ∀t ≥ 0, x′(t) ∈ F (x(t)), x(t) ∈ K} (14)

Trajectories visiting states outside the viability kernel are doomed to fall

below their sufficiency thresholds. For viable states, some trajectories may also

pass under the threshold, but there is at least one that does not. The viability

property is translated into local terms through the “tangential” condition:

Theorem 3.1 (Bebernes and Schuur, 1970) For F : Dom(F ) ⊂ X 7→ X

an upper semi-continuous correspondence with convex compact values and such

that:

supy∈F (x) ‖ y ‖≤ b(‖ x ‖ +1) (15)

for some real b. K is a viability domain for F if and only if

∀x ∈ K, F (x) ∩ TK(x) 6= ∅ (16)

where TK(x) = {v ∈ X such that lim infh→0
1
h
dK(x + hv) = 0} is the contingent

cone to K at x and dK(x) the distance from x to K.
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Viability conditions are stipulated at each time, not necessarily in the neigh-

borhood of equilibria or attractors. Contrary to optimization, we are no longer

concerned with predicting the trajectory the system will take, but with the main-

tenance of the system in K. What matters is that a right decision must be selected

at the right time so as to remain in K. No knowledge of the future is required,

as it is for an optimal decision. This makes viability theory valuable for dealing

with sustainability.

Saint-Pierre (1994) devised an algorithm to compute this viability kernel when

F is Marchaud4 and Lipschitz. He discretized Eq. (12) so that the sequence of

subsets Kj starting at K0 = K and defined recursively by:

Kj+1 := Kj ∩ F (Kj) (17)

converges to a subset contained in the viability kernel of K under F . He showed

that this sequence converges to the viability kernel if F is also Lipschitz:

ViabF (K) =
∞⋂

j=0

Kj (18)

Although this algorithm is theoretically valid in any dimension, in practice, as

K is reduced to a discrete grid, the algorithm must be able to update every

cell of the grid at any time, which is a formidable task. The algorithm is then

limited to three state dimensions. Bonneuil (2006) addressed the computation of

4A set-valued map F : X → K is a Marchaud map if the graph and the domain of

F are closed and not empty; the values F (x) are convex; F is non “explosive”: ∃b ∀x ∈

Dom(F ), ‖F (x)‖ := maxy∈F (x) ‖y‖ ≤ b(‖x‖+ 1).
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viable states and of the viability kernel in large state dimension, using a different

procedure, based on stochastic optimization. The idea is to minimize the distance

to the set of constraints of solutions starting from a given state, and to assess

the viability status of this state whether or not the minimization of the distance

leads to at least one trajectory remaining in the set of constraints. The search

for viable states is also achieved by the minimization of a distance to the set

of constraints, so that the procedure relies on a double stochastic optimization:

one where the initial state under examination is fixed, so as to decide whether

it is viable or not, and one where this initial state is varied. We shall use this

algorithm later in our computational work later on.

3.2 The viability-capture basin: the non autonomous case

Consider the non autonomous problem {(4),(7)}, for n constant. It has a

synthetic expression as a differential inclusion:

x′(t) ∈ F (x(t)) and ∀t, x(t) ∈ K (19)

with x(t) = (k(t), c(t), t), K = IR+3, and

F (x) = {(f(k, t)− c− δk − nk, u, 1) | u ∈ U} . (20)

A state x0 = (k0, c0, 0) is said to be viable in K ⊂ IR+2 × {0} under F if there

exists at least one solution x(t) under Eq. (19), starting from x(0) = x0 and that

remains in K until horizon T and hits the target C := IR+2 ×{T}. The capture-

viability basin CaptF (K, C, T ) at time horizon T of a target-set C viable in K
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under the dynamic F is defined as the set of all states of IR+2 × {0} from which

there exists at least one solution that remains in K until time T and hitting the

target C at time T :

CaptF (K,C, T ) := {x0 | ∃x(.), x(0) = x0 and ∀t ≥ 0, x′(t) ∈ F (x(t)), x(t) ∈ K, x(T ) ∈ C}

(21)

Both Saint-Pierre’s (1994) and Bonneuil’s (2006) algorithms are adapted to

compute capture-viability basins after the modification of the image F (x) of x

into: 
F (x) if x(t) ∈/ C

Co{F (x) ∪ {0}} if x(t) ∈ C

(22)

where CoA designates the closure of the smallest convex set containing the set

A.

3.3 Link between Optimality and Viability

We show that optimal solutions remaining in the constraints start from the

boundary of a specific capture viability basin. The classical treatment of opti-

mality in the Ramsey model is to maximize the Hamiltonian and to focus on the

behavior around the steady state. However, what about non stationary solutions

which do nonetheless remain in the set of constraints?

To the classical program of inter-temporal utility maximization, we add con-

straints on consumption and on consumption change. We define the auxiliary
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system:

maxu(.) supt≥0

∫ t
0 w(c(τ))e−ρτ dτ

subject to

(i) k′(t) = f(t, k(t))− (n + δ)k(t)− c(t)

(ii) c′(t) = u(t)

(iii) t′ = 1

(iv) y′(t) = −w(c(t))e−ρt

(23)

under state constraints defining the closed set K:
k(t) ≥ 0

c(t) ≥ c

(24)

and control constraints:

u(t) ∈ U := [u[, u]] (25)

Defining x := (k, c, V, t), the state of the system is x̃ := (x, y) := (k, c, V, t, y) ∈

IR+5.

Cannarsa and Frankowska (1991) showed that the infimum of
∫∞
0 g(x(t)) dt

for a given positive continuous function g and a continuous-time dynamic x′(t) ∈

F (x(t)) (in continuous time) under constraints x ∈ K for a closed set K is

obtained on the boundary in the direction of low y of the viable capture basin of

the set K of constraints associated with the auxiliary system:
x′(t) ∈ F (x(t))

y′(t) = −g(x(t))

(26)

where y is an auxiliary variable.
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Similarly, the maximum is obtained on the boundary in the direction of high y

of the viable capture basin of K associated with this auxiliary system. Some au-

thors mistakenly believe that programming the maximum is achieved by changing

a plus into a minus and the viability kernel into another specific set (the “invari-

ance kernel”). The maximum requires a specific treatment and the interesting

set is a viability-capture basin:

Proposition 3.2 For g : X → IR+ a positive continuous function, the valuation

function of the T -horizon control problem:

T

V
sup

(x) = sup
u(.) solution to (26)

∫ T

0
g(x(τ))) d τ (27)

with x(0) = x, is related to the capture viability basin Capt(26)(K × IR+, K, T )

by:

T

V
sup

(x) = sup
(x,y)∈Capt(26)(K×IR+,K,T )

y (28)

Proof: For a given time horizon T , ∀(x1, y1) ∈ Capt(26)(K×IR+, K, T ),∃u(.) and x(.)

such that x(0) = x1, ∀t ≥ 0, x(t) ∈ K, and y(t) = y1 −
∫ t
0 g(x(τ)) d τ ≥ 0. At

time T , the target C = K is hit, so that

y(T ) = 0 (29)

and

y1 =
∫ T

0
g(x(τ)) d τ (30)

Hence,

y1 ≤
T

V
sup

(x) (31)
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or

sup
(x,y)∈Capt(26)(K×IR+,K,T )

y ≤
T

V
sup

(x) (32)

Conversely, take a sequence (εn)n∈IN of strictly positive real numbers converg-

ing to zero. Then, by definition of the supremum, we can associate a sequence of

solution (xn(.))n∈IN :

∀εn > 0,∃xn(.) | xn(0) = x and ∀t, xn(t) ∈ K

and
T

V
sup

(x)− εn ≤
∫ T
0 g(xn(τ)) d τ ≤

T

V
sup

(x)

(33)

If
T

V
sup

(x) is finite,
∫ T
0 g(xn(τ)) d τ converges. As g is continuous and K

closed, xn(.) converges in K, to a solution x(.). By letting εn tend to zero,

T

V
sup

(x) ≤
∫ T

0
g(x(τ)) d τ (34)

hence

T

V
sup

(x) =
∫ T

0
g(x(τ)) d tau (35)

with

∀t, x(t) ∈ K and x(0) = x (36)

Subsequently,

(x,
T

V
sup

(x)) ∈ Capt(26)(K × IR+, K, T ) (37)

2

The proposition identifies optimal paths that remain in the set of constraints.

An analytic expression for the sets involved is unlikely to be available, because
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of non linearity and set-valued analysis, and except in trivial cases the solution

is computational.

Proposition 3.2 extends to the infinite horizon optimal control problem.

Proposition 3.3 For g : X → IR+ a positive continuous function, the valuation

function in the infinitesimal horizon control problem:

∞
V

sup

(x) = sup
u(.) solution to (26)

∫ ∞

0
g(x(τ))) d τ (38)

with x(0) = x, is related to the capture viability basin

Capt(26)(K × IR+, K) :=
⋃

T≥0

Capt(26)(K × IR+, K, T ) (39)

by:

∞
V

sup

(x) = sup
(x,y)∈Capt(26)(K×IR+,K)

y (40)

proof: As g is positive, ∀x ∈ X,∀T ≥ 0,
∞
V

sup

(x) ≥
T

V
sup

(x). From Proposi-

tion 3.2, ∀T ≥ 0,

∀T ≥ 0,
∞
V

sup

(x) ≥ sup
(x,y)∈Capt(26)(K×IR+,K,T )

y (41)

or

∞
V

sup

(x) ≥ sup
(x,y)∈

⋃
T≥0

Capt(26)(K×IR+,K,T )

y (42)

or

∞
V

sup

(x) ≥ sup
(x,y)∈Capt(26)(K×IR+,K)

y (43)

Conversely, take a sequence (εn)n∈IN of strictly positive real numbers converg-

ing to zero. Then, by definition of the supremum, we associate a sequence of
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solution (xn(.))n∈IN :

∀εn > 0,∃Tn ≥ 0,∃xn(.) | xn(0) = x and ∀t, xn(t) ∈ K

and
∞
V

sup

(x)− εn ≤
∫ Tn
0 g(xn(τ)) d τ ≤

∞
V

sup

(x)

(44)

For all t ∈ [0, Tn], xn(t) belongs to K, then (x,
∞
V

sup

(x)−εn) belongs to Capt(26)(K×

IR+, K, Tn), then to the union over T , Capt(26)(K × IR+, K). Then, similar to in

the proof of Proposition 3.2, with n →∞, (x,
∞
V

sup

(x)) ∈ Capt(26)(K × IR+, K).

Finally,
∞
V

sup

(x) = sup(x,y)∈Capt(26)(K×IR+,K) y.

2

4 Computing Viability Kernels

We begin with the simple viability problem {(4),(7)} with minimal consump-

tion, then with the criterion of non-decreasing inter-temporal social welfare —the

Brundtland criterion—, and then we shall check robustness. For the specific prob-

lem (23), the introduction of the auxiliary variable adds one dimension; even two

in the autonomous case because time in System (23) is a variable in its own right

through the discounting term exp(−ρt). The computation must be done in state

dimension greater than three, a task made possible by Bonneuil’s (2006) viability

algorithm. A variant of this algorithm (Bonneuil, forthcoming) is used to com-

pute the boundary of the capture viability basin in the direction of high y without

the knowledge of the whole viability kernel, which is very time-consuming. The
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principle involves two steps: firstly, a viable state is found for the auxiliary dy-

namic; secondly y is maximized for the same x. For each new attempt (x, y),

a simulated annealing is performed to find one trajectory remaining in K and

reaching the target C on time horizon T . For T infinite, an approximation and

extrapolation of “reaching the target” is used, a task here made easy by the

discounting term exp(−ρt).

4.1 Minimal Consumption Viability

Figure 1 shows a set of attainable states from a given initial state x0 and

the viability kernel for constant minimal consumption c in the autonomous case.

It contains all initial states from which an agent can navigate in capital and

consumption, with the changes in consumption the agent can afford or she is

compelled to make. At any time, the agent is able to safeguard minimal satisfac-

tion, because, by definition, his or her state (k, c) remains in the set of constraints

defined by Eq. (7). Within the viability kernel, any change in consumption is vi-

able. The difficulty lies at the boundary of the viability kernel: on the boundary

in the direction of high consumption, the only viable change in consumption is re-

duction at velocity u[ := infU u(t), leading to both reduction in consumption and

capital, until reaching the boundary of the set of constraints itself, which occurs

at c = c, allowing the entrance into the interior of K again (semi-permeability

property of Quincampoix, 1990). The boundary c = c of the viability kernel
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is also the boundary of the set of constraints, so that the control u(t) is not

necessarily unique (as indeed it is not in our Ramsey case study) .

In the autonomous case, with f(k) := Akα (with parameters A as technolog-

ical level and α as capital share), when velocity is maintained at the minimum

available u[ (so that c = c0 +u[t), the corresponding boundary solution is a func-

tion k = κu[(c) at f , n, and δ fixed. The viability boundary in the direction of

high c corresponds to the solution of:

dκu[ =
1

u[
(f(κu[)− c− (δ + n)κu[) dc (45)

passing through (f−1(c), c). The non autonomous case is less straightforward.

4.2 Optimal Inter-Temporal Consumption

The maximum of the integral of the net present utility is obtained by remain-

ing on the boundary of the capture-viability basin of K in System {(23),(24)} in

the direction of high y. With the specification w(c) = c1−σ

1−σ
and f(k) = Akα, Fig-

ure 2 presents states on the projection of this boundary onto the space (k, c, y).

These states give maximal
∫∞
0 w(c(τ))e−ρτ dτ with (k, c) remaining in the set of

constraints.

Figure 2 shows that intertemporal utility y can be maximized along other

(viable) trajectories than the saddle path of Pontryagin maximization. One

trajectory (k(.), c(.), y(.)) is represented: it leads from the initial state x(0) =

(k(0), c(0), 0, y(0) = y0) to (k(T ), c(T ), T, y(T ) ≈ 0). As x(0) is on the boundary
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Figure 1: Viability kernel, delimited by the black line in the direction of high

consumption, by c in the direction of low consumption, with an example of a set

of attainable states. f(k) = 0.04
√

k, n + δ = 0.01 (autonomous case).
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Figure 2: Maximal
∫ T
0 w(c(τ))e−ρτ dτ with (k(.), c(.)) remaining in the set of

constraints. Case f(k) = 0.04
√

k, n + δ = 0.01, ρ = 0.05, σ = 0.5.
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of the viability-capture basin, y0 is the maximal value attainable from k(0), c(0)

while satisfying the state and the control constraints all along the trajectory.

Notably, no jump in consumption is allowed, as it is in the classical Ramsey

framework. In the case of Figure 2, we recognize that c(T ) ≈ c∗, but there

is a transitional phase during which c(t) moves to c∗ with its constraints U on

consumption change. The slight “fluctuations” displayed by the trajectory on

Figure 2 come about because of the numerical precision inherent in simulated

annealing. They should not deflect attention from the efficiency with which

Bonneuil’s algorithm successfully identifies the correct trajectory and the correct

boundary.

Obtaining the extremum of the integral criterion through viability has the

advantage that constraints are specifically taken into account; they do not appear

as a penalization in a static formulation using Lagrange multipliers. HJB requires

properties of entering field (Soner condition). With viability, the delineation of

the viability kernel allows the absence of entering field on the border of K. Also,

both viability theory and algorithm support non-linearity naturally.

4.3 Brundtland Sustainability

In Section 2.2 we showed that Brundtland sustainability amounts to adding

Eq. (10), which yields:

V (θ) ≥ w(c(θ))

ρ
(46)
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We introduce the auxiliary variable y, and with it, the time variable t involved

in y if it is not present yet:

(i) k′(t) = f(t, k(t))− (n + δ)k(t)− c(t)

(ii) c′(t) = u(t)

(iii) t′ = 1

(iv) V ′(t) = −w(c(t)) + ρV (t)

(v) y′(t) = −w(c(t))e−ρt

(47)

Satisfying the Brundtland condition amounts to having (k, c, t, V, y) remain in

the closed set defined by the constraints {(24), (46)} until reaching the target

y = 0 at the time horizon. The dynamics (47) is 5-dimensional. The numerical

computation follows Bonneuil’s (2006) algorithm. The robustness to parameters

is addressed below.

The comparison in Figure 3 of the projection onto the plane (k, c, 0) of the

viability kernel with and without Brundtland sustainability highlights the neces-

sity to reduce one’s consumption with the hope of being Brundtland-sustainable.

It also specifies the level of maximal consumption, when change in consumption

is necessary (when the viability boundary is attained), and what this change u

must be (such that there exists one trajectory remaining in K until a given time

horizon T ). Figure 1 presented the autonomous case, with a production function

of the form f(k) = Akα; Figure 3 presents the 3-dimensional non autonomous

case with f(t, k) = Aeηtkα with a technological growth rate η.

Any Brundtland-viable state is viable without Brundtland sustainability, be-
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cause the set of constraints with Brundtland is a subset of the set of con-

straints without Brundtland. This explains why the capture basin with Brundt-

land is included in the capture basin without it, a general result illustrated

in Figure 3. We denote the maximum consumption, with k′ = 0, in the au-

tonomous system (η = 0) by (k̂∗∗, ĉ∗∗), and define k∗∗(t) = (A exp(ηt))1/(1−α)k̂∗∗

and c∗∗(t) = (A exp(ηt))1/(1−α)ĉ∗∗. The fact that the boundary of the viability

kernel with Brundtland increases with k is due to positive technological progress,

which enables trajectories starting from certain states with a high k(0) and a

c(0) > c∗∗(0) to attain a c(t) ≤ c∗∗(t). Then, the system has the possibility of

sliding over time at the same k(t), and then of being Brundtland-viable. The

fact that the boundary of the viability kernel without Brundtland increases with

k is not as simple as in the autonomous case (Eq. (45)), hence the need for an

algorithm.

4.4 Optimal Inter-Temporal Consumption with Brundt-

land Sustainability

Similar to our computation of the viable-optimal solution in the Ramsey

model, the viable-optimal solution in the Ramsey model with Brundtland sus-

tainability is obtained on the boundary of the viability kernel in the direction

of high y of the 5-dimensional auxiliary system (47). The constraint of inequal-

ity (46) was added. The 3D-projection onto the space (k, c, y) is represented on
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Figure 3: Comparison of the projections onto the plane (k, c, 0) of the viability

kernel with and without Brundtland sustainability (non autonomous case). Case

f(k) = 0.21e0.005tk0.55, n + δ = 0.011, σ = 0.5, ρ = 0.02, c = 1.32, u[ = −0.034,

T = 200.
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Figure 4.

4.5 Robustness

Using the Bonneuil (2006) algorithm, we computed viability kernels with and

without the Brundtland criterion for 200 different sets of parameters drawn at

random. The parameters are:

• the elasticity σ in the iso-elastic utility function w(c) = c1−σ

1−σ
; the range of

variation of σ was taken as [0.2, 0.8];

• the technological progress level A (ranging in [0.01, 0.5]), the technological

progress rate η (ranging in [0.0, 0.03]), and the capital share α (ranging in

[0.3, 0.7]) in the production function A exp(ηt)kα;

• the consumption threshold c (positive);

• the discounting factor ρ, which to satisfy the requirement of integral conver-

gence for T = ∞, must be greater than (1− σ)η, so ρ was drawn randomly

from [(1− σ)η, 0.05]);

• the population growth rate n (in [−0.02, 0.02]);

• the set of controls, with u[ varying in [−0.01, 0] and u] in [0, 0.01];

• T was set large enough so that all trajectories starting from any k in the

(k, c, 0) plane have the time to leave the set of constraints.
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Figure 4: Maximal
∫ T
0 w(c(τ))e−ρτ dτ with (k(.), c(.), t(.), V (.)) remaining in the

set of constraints, and particular trajectory leading to maximal
∫ T
0 w(c(τ))e−ρτ dτ

with (k(.), c(.), t(.), V (.)) remaining in the set of constraints. Case f(k) =

0.04
√

k, n + δ = 0.01, ρ = 0.05, σ = 0.5.
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The regression of the volume of the viability kernel suffers from a selection issue,

because we measure the effects of co-variates only when we observe the non empti-

ness of the viability kernel. This difficulty is solved by the two-stage Heckman

procedure (Heckman, 1979; Wooldridge, 2002; Cameron and Trivedi, 2005). We

recall that the dependency of the point k∗∗(t), c∗∗(t) of maximum consumption

with k′(t) = 0 on parameters is:

k∗∗(t) = (
αAeηt

n + δ
)

1
1−α (48)

and

c∗∗(t) = f(k∗∗(t))− (n + δ)k∗∗(t) = c∗∗(0)e
ηt

1−α (49)

For 0 ∈ U , the viability kernel without sustainability is trivially empty for c >

c∗∗(T ), and trivially non empty for c ≤ c∗∗(T ). The identification of emptiness

with the value of c with respect to the state of maximum consumption c∗∗(t) for

which k′ = 0 means that the inverse Mills ratio, an additional term introduced

in the regression of the volume to correct the bias resulting from using a non-

randomly selected sample (Heckman, 1979) –here the condition that the volume

is non empty–, is automatically set to zero in the regression.

Similarly, for the viability kernel with sustainability, all states over c∗∗(T )

are passed through by trajectories which either leave K in finite time or require

c′ < 0 at least once, thus, from Proposition 2.1, these states are not Brundtland-

viable. A state sliding along (k∗∗(t), c∗∗(t)), which is allowed when 0 ∈ U , has

a non decreasing net present value and is Brundtland sustainable. Again, the
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Heckmann procedure sets the inverse Mills ratio automatically to zero, because

non emptiness is equivalent to c ≤ c∗∗(T ).

For the volume of the viability kernel without sustainability, Table 1 confirms

what can be guessed from Figure 1 namely that the higher the consumption

threshold c, the smaller the viability kernel; and the higher the production coeffi-

cient A, the larger the viability kernel; the same is true for the technology growth

rate η which accompanies A. Conversely, the population growth rate n, which

appears in the expression of c∗∗ for example with an effect contrary to that of A,

has a decreasing effect on the volume of the viability kernel: population growth,

in this Malthusian model, reduces wealth per head. The lower the minimal con-

trol u[, the greater the scope for reducing one’s standard of living and hence the

larger the viability kernel.

For the volume of the viability kernel with sustainability, Table 2 shows the

effect of relevant variables, notably the positive effect of k∗∗(0) or c∗∗(0) which

is strongly correlated with k∗∗(0), and the additional positive effect of the tech-

nological growth rate η. Proposition 2.1 implies that the value of the minimal

change u[ < 0 in consumption plays no role on the volume of the viability kernel

with sustainability, as the simulation confirms, and that non emptiness requires

that the value of the maximal change u] be non negative: at some time, the

system must have a non decreasing consumption to prevent V from decreasing.

Neither the discount rate ρ nor elasticity σ play any significant role. These two

parameters slightly distort the set of equilibria and the viability kernel, but not
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sufficiently for this to be significant with the method of computing kernels by

drawing points at random. The variation of the viability kernel with other para-

meters (technological level A, population growth rate n, capital share α) passes

through the dependency on c∗∗(t).

Table 1: Regression (two-step Heckman procedure) of the volume of the viability

kernel without sustainability for c ≤ c∗∗(T ) (all variables standardized in [0,1]).

Variable Estimate Standard deviation

Intercept 0.04 0.03

minimal change u[ -0.42* 0.02

maximal change u] -0.01 0.02

technology level A 0.40* 0.03

technology growth rate η 0.17* 0.03

capital share α 0.30* 0.03

population growth rate n -0.08* 0.03

minimal consumption c -73.44* 5.34

inverse Mills ratio 0.00 .

*: significant at the 5% level N=200, R=0.81
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Table 2: Regression (Two-step Heckman procedure) of the volume of the viability

kernel with sustainability for c ≤ c∗∗(T ) (all variables standardized in [0,1]).

Variable Estimate Standard deviation

Intercept 0.07 0.03

technology growth rate η 0.26* 0.03

maximal consumption c∗∗ where k′ = 0 25.15* 1.58

minimal consumption c -62.80* 4.23

discount rate ρ -0.02 0.03

elasticity σ 0.02 0.03

inverse Mills ratio 0.00 .

*: significant at the 5% level N=200, R=0.74

Note: u[ and u] contained in c∗∗
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5 Conclusion

Re-visiting the Ramsey model of neoclassical optimal growth, we enriched the

theory by completing the usual concepts of optimal path and of equilibria with

that of viable state. This allowed us to diversify the classical study of the sole

optimal solution converging to the steady state: instead of looking at where the

system goes, turned the question on its head: to satisfy given constraints, what

are the initial states from which this is possible, and what are the changes in

consumption that make this possible? By proceeding thus, we no longer needed

to add an ad-hoc long-term outcome term to the traditional inter-temporal opti-

mization of utility as in Chichilnisky (1993).

We delineated the viability kernel –the largest set of such viable states– in

the autonomous and in the non autonomous cases. We went on to consider the

constraint reflecting economic sustainability in the sense of the Brundtland com-

mission, before situating optimality in the Pontryagin sense, Brundtland sustain-

ability, and viability in relation with each other. We compared viability kernels

with or without sustainability and showed by how much consumption must be re-

duced to ensure sustainability. Being outside the viability-capture basin requires

an abrupt reduction in consumption to a Brundtland viable state, followed by

the implementation of viable policies.

The viable-optimal solution in the sense of inter-temporal consumption is

optimal among the solutions continuously satisfying the constraints. It is no
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longer obtained through Pontryagin, and we showed that it is obtained on the

capture-viability boundary of an auxiliary system. We solved the similar prob-

lem augmented for Brundtland sustainability. We then successfully combined

viability, optimality, and sustainability.

On the applied side, we revealed significant technological, demographic, con-

sumption (c), and decision-making (u[) determinants of viability kernels. As

expected in the Ramsey model which is Malthusian in spirit (population growth

always has a negative effect on wealth), population growth reduces the viabil-

ity kernel, favoring the movement of the state toward poverty (k = 0), while

technological progress always increases the viability kernel, giving more room

to manoeuvre against impoverishment. We showed that technological progress

works against population growth to favor the possibility for a given state of being

viable or viable-sustainable.

We suggest that this new concept of viability and optimality-viability, which

reveals the potential of economic models, in thi scase the simple Ramsey model,

to account for the presence of constraints and for the intrinsic diversity and

unpredictability in the resulting behaviors and destinies of the system.
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