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Why is it hard in finance?

there is no single model that can
universally predict prices across
all market conditions. A model that
performs well in one regime will
break in another.

signals decay fast, regimes are overlapping not crisp,
microstructure adds noise, and non-stationarity makes
centralized models brittle!
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all market conditions. A model that
signals decay fast, regimes are overlapping not crisp, performs well in one regime will
microstructure adds noise, and non-stationarity makes break in another.
centralized models brittle!
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Fault-Monitoring lens for markets
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Solution Ideology: Proposition F) ot s
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Solution Ideology

Price returns
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Detection quality, contributions, efficiency, robustness

Model FPC Silhouette Precision | Recall F1
HMM-

DFC 0.7769 0.61 0.83 0.88 0.84
(ours)

Single

HMM — — 0.71 0.76 0.73
GARCH | — — 0.65 0.68 0.66
Distribut

ed FCM 0.7200 0.54 0.70 0.73 0.71

+11 pts F1 vs single HMM; +18 pts vs
GARCH,; better clustering (FPC/Silhouette).

12

A public charity, IEEE is the world's large&tlt&bhRich) priofiessional organization dedicated to advancing technology for the benefit of humanity.

Base (no VATR/EBNR): F1 0.77, FPC 0.728, Sil 0.53

+ VATR: F1 0.82, FPC 0.749, Sil 0.57 (~+5 F1 from faster switching)

+ VATR + EBNR (Full): F1 0.84, FPC 0.7769, Sil 0.61 (extra gain from
entropy-weighted sync)
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Results

Detection quality, contributions, efficiency, robustness

Streaming Latency Breakdawn per Model Variant
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Latency: Streaming breakdown shows lower
response time than centralized; VATR/Sync

overhead is small
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CPU Usage for Centralized vs Distributed Models

— Centralized CPU Usage
— Distributed CPU Usage
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Memory Usage for Centralized vs Distributed Models

— Centralized Memory Usage
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Compute footprint: Smoother CPU and
lower memory over iterations vs
centralized
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Classification Accuracy vs. Node Failure Percentage

10 20 30 40 50
Failure Percentage (%)

Robust to node loss: F1
degrades gently up to ~30%
node failures (=0.84 — 0.79),
still =0.72 at 50% failure
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Ablation: why VATR & EBNR matter [ B siems

Scalability & multi-node processing
Each node learns local structure—close to the feed—and ships only A™ and
c™ for entropy-weighted sync, the VATR controller then adapts the global
transitions when risk spikes.

VATR (Volatility-Adaptive Transition Refinement)
Static HMM transitions lag during risk spikes — late regime switches, whipsaw,
turnover.

EBNR (Entropy-Based Node Reweighting)
In distributed data, some windows/nodes are noisy or uninformative; naive averaging washes out
boundary signals.
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Stress case: Abrupt volatility regime (macro-shock
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HMM-DFC detector (ours): smaller At and VATR ON window
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Deployment & scalability s s

Why it scales:
e Add nodes, add coverage — no central bottleneck.
e Data stays local — less shuffling, lower latency.

e Resilient: if a node/coordinator blips, the system keeps the last good
settings and degrades gracefully.

e In tests: faster response than a centralized setup and almost linear growth

A public charity, IEEE is the world's large&tlt&bhRich) priofiessional organization dedicated to advancing technology for the benefit of humanity. : :
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Takeaways & Limitations

Takeaways Limitations
Earlier, safer switches: VATR cuts detection delay and + Labels & drift: ex-post, feature-dependent — need rolling
whipsaw. relabeling & stability monitors.

Cleaner aggregation: EBNR down-weights noisy windows VATR tuning: bad 1/B\tau/\betat/f can flip-flop — use bounded

_, fewer false alarms. tilt, hysteresis, decay.

Entropy # informativeness: augment EBNR with liquidity/data-
Economic impact: smaller drawdowns & fewer VaR/ES Py g auietty

quality weights.

breaches; better net P&L after costs. _
»  Sync staleness: coordinator lag can stale — TTL + fallback to

Deployable: low-latency edge nodes, data stays local; fault- ocal

_ENo
tolerant (graceful under 30-50% node loss). » Backtest realism/capacity: cost/impact are proxies — validate

Scalable: add nodes to add assets; near-linear to ~7 with live/shadow & stress tests.

clusters; VATR/Sync overhead is small.
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Thank you!

fehanduri2Z0@gmail.com
f.ghanduri.1@research.gla.ac.uk SCAN ME

Add me on linkedin! m
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