## Resource Consumption of Data Centers and Al

**Thomas Fricke** 

November 27, 2025 LOCOS Seminar, University of Glasgow

#### Who am I?

#### Thomas Fricke

- ► Kubernetes Cloud Security
  - critical infrastructure
  - architecture
  - examination
- ► Former life: Statistical Physics
- Disclaimer

#### Work for the German Administration

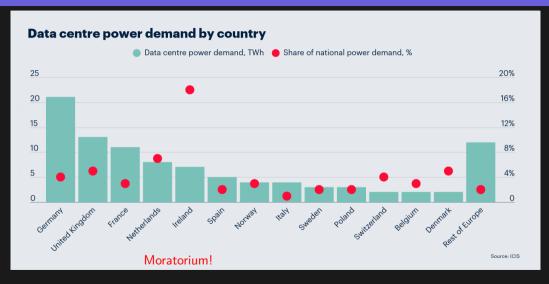
- ▶ Pro Bono: OpenCode, Consulting IT Planning Counsel
- Payed: OpenDesk, FITKO

#### **Datacenter**



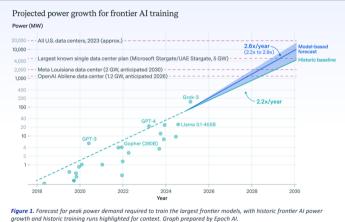
Thomas Fricke




Datacenter Degrowth and Decentralization as a Chance for Europe

#### **Datacenters are Factories**

- Energy consumption
  - ▶ 12 MW small German DC
  - ▶ 40 MW state of the art German DC
  - ▶ 300 600 MW planned in Berlin
  - ▶ 20 160 860 MW planned in Skien, Norway
- Diesel emergency power Generator
  - 1 day onsite
  - transport capacity for longer
  - ship
  - vans
- Access to transmission grid
  - transformer station
  - power lines 110kV
- total consumption
  - ▶ Berlin/Brandenburg planned <del>1-2</del> 9 GW
- Water
  - cooling
  - transport


- ▶ several Billions € of servers
  - ► typical rack 900.000€
  - several thousand racks
- access to multiple redundant fiber lines
- German setup
  - ▶ 2 x Telekom
  - Vodafone
  - ► Colt
- access control
  - typical vans
  - Kalaschnikov safe amoured glass entrance
- ▶ noisy (90 dB+)
- completely unprotected roof

### **EU Datacenter Power Demand by Country 2024**



#### Electric Power Research Institute – US Predictions

Flectric Power Research Institute Epoch Al Joint Report Finds Surging Power Demand from Al Model Training August 2025



# **Exponential Growth**

- explosives
- nuclear chain reactions
- population growth
- ► infections at the beginning of an epedemy SIR Model
- ► limited by resources

### Small Modular Reactor (SMR) – Green and Safe?

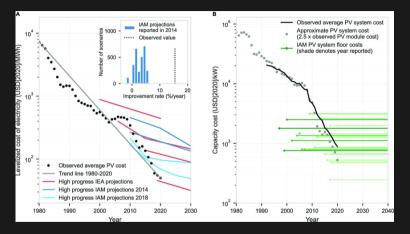


Nuscale

- ► 77 MW / unit
- ▶ 4 12 units
- too expensive
- now solar and wind power



- Gen-IV
   High-Temperature
   Helium-cooled Reactors
   (HTGR)
- ► U<sup>235</sup> 15% enriched Pebbles
- can be shipped by trucks
- 60 years of usage
- ▶ 4 × 80 MW


- X-Energy XE 100
  - Uranium under Russion contro
  - hard to mine
  - final repository
  - proliferation

#### Fact Sheet

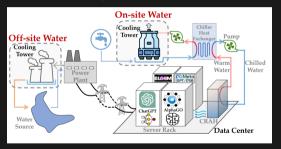
- ▶ Bloomberg: Sam Altman's Energy 'New Deal' Is Good for Al. What About Americans?
- Demand per Hyperscaler 5GW (roughly 8-10 power station blocks)
- ► Total 47GW(> 150 reactors of 300 MW)
  - 3 prototypes (1 Russia, 1 China)
  - none in the US or EU
  - Uranium mostly under Russian control
  - ► Reopen Wismut???
- ► Small ... Reactors Have A Big Problem
- ► PG&E: Pacific Gas & Electric Company
  - ► PG&E Launches First Commercial Deployment of On-Site Generative AI Solution for the Nuclear Energy Sector at Diablo Canyon
  - Utility giant PG&E agrees to \$45 million settlement related to California's second-largest wildfire
  - ► PG&E fined \$1.7 million over 2021 power shutoff lapses

- Illinois: \$468 million in subsidies for only 339 jobs (\$1.4 million per job)
- ► Nebraska: costs for Google and Meta passed onto residents, estimated rate increase 2.5% to 3% per year
- Datacenters are extremely unequally distributed (Chicago, Texas, Virginia)
- ▶ Washington Post: Biden plan would encourage AI data centers on federal lands
- ► Europe
  - ► Ireland: 20% of electricity consumption
  - Energy Consumption in Data Centres and Broadband Communication Networks in the EU

### Nuclear Fusion – Remote 149 Mio km Distance – needs storage

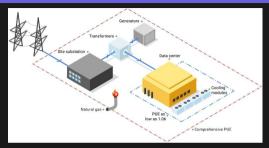


Rupert Way, Matthew C Ives, Penny Mealy University of Oxford, J. Doyne Farmer:

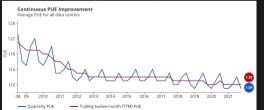

Empirically grounded technology forecasts and the energy transition, September 2022

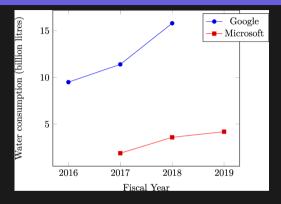
# Comparison nuclear power – PV + Wind + Batteries

| Topic       | Nuclear                     | Sun + Tides + Wind + Batteries   |
|-------------|-----------------------------|----------------------------------|
| Costs       | Exploding                   | Falling                          |
| Fuel        | $U^{235}$                   | free                             |
| Stock       | 12-130 years                | what?                            |
| predictions |                             |                                  |
| Size        | 300 MW                      | 5 MW                             |
| Number      | 4                           | several hundred                  |
| Cooling     | Water                       | none                             |
| Problems    | radioactive waste, no final | several days of dark doldrums,   |
|             | repositories, proliferation | recycling                        |
| Solutions   | none                        | transmission grids, local buffer |


#### Water

#### Data Center Dynamics: How to cut water usage in cloud data centers

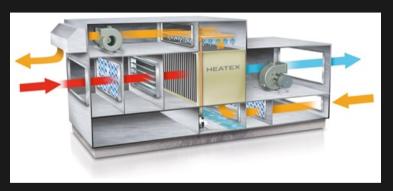


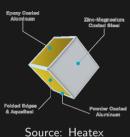


- ► Its complicated
- ▶ 1 9 l of water per kWh
- first post
  - 1 MW consumes 26 Million litres a year  $\approx$  3 l/kWh
- variations of efficiency
- weather conditions

## Google Power Usage Effectiveness – PUE Greenwashing



Centre Total Energy Consumption PUE= ICT Equipment Energy Consumption



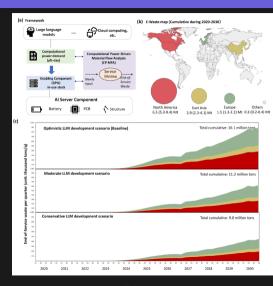




 $PUE = \frac{Data\ Centre\ Total\ Energy\ Consumption}{ICT\ Equipment\ Energy\ Consumption}$ 

Source: Google(left), Nature (right)

### **Cooling**



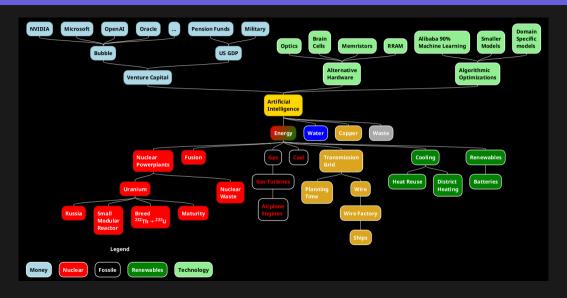



Wired

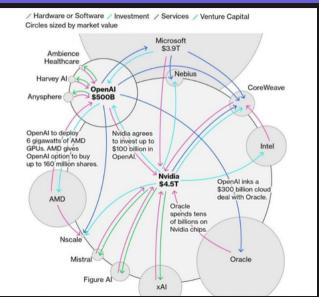
The Trump Administration's Data Center Push Could Open the Door for New Forever Chemicals

#### Al-Waste

- ► Life of Data Center Hardware: 3 5 years
- Peng Wang, Chinese Academy of Sciences, Lingyu Zhang, Institut National des Sciences Appliquées de Lyon, Asaf Tzachor, Eric Masanet, University of California, Santa Barbara:
   E-waste Challenges of Generative
  - Artificial Intelligence also in Nature
- ► Deutsche Welle E-waste from Al computers could 'escalate beyond control'
  - ► Nature E-waste challenges of generative artificial intelligence
  - ▶ 1.2-5.0 million metric tons in 2030
- ▶ 1,000 fold increase of waste




#### E-Waste


# Chip Production – Taiwan drought 2021

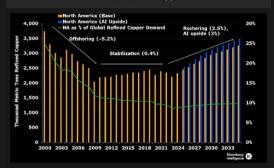


#### **Bottlenecks**



#### Al Bubble

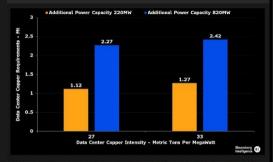



- 2 Trillion \$ needed till 2030
- only 800 Billion \$ in return
- circular business
- bilance make up
- ► Financial Times

  Oracle is already underwater on its 'astonishing' OpenAl deal
- ► Macromicro Behind NVIDIA's Stellar Earnings: Five Financial Indicators to Evaluate the AI Bubble

  - slower-than-expected growth in automotive and robotics
  - end-user Al applications showing a clear deceleration over the past four quarters

### Copper in US data centers

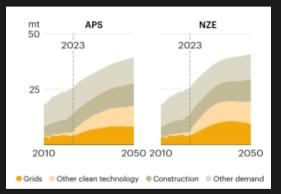

#### North American Refined-Copper Demand

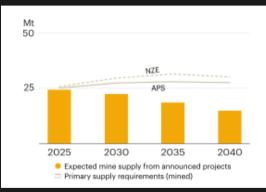


Source: Data Center Knowledge, Wakefield & Cushman, Wood Mackenzie, ICSG, Bloomberg Intelligence

- ▶ 3% increase every year
- ▶ 1.1 million tons in 2030

#### North American Data-Center Copper Demand by 2030





Source: US Department of Energy, US Energy Information Administration, IDC, eMarketer, Data Center Knowledge, Navigant Research, Cushman & Wakefield, Bloomberg Intelligence.

- ▶ 1 MW  $\approx$  27 -33 metric tons
- ► Data Centre Magazine
  How the Al Data Centre Boom Could
  Threaten Global Copper

### International Energy Agency (IEA): Copper

#### Copper Outlook for key energy transition minerals





- ▶ 3% increase every year
- ▶ 1.1 million tons in 2030
- ▶ 1 MW  $\approx$  27 metric tons

#### **Understanding Data Centre IT Efficiency – The Hidden Power Source**

#### by Rich Kenny – Interact

### Environmental Impact – British Geological Survey

| Rare corth elements     | REE | 9.5 | China        | China        | Bhenium          | Re  |     | Chile        | Chile        |
|-------------------------|-----|-----|--------------|--------------|------------------|-----|-----|--------------|--------------|
| Antimony                | Sh  | 9.0 | China        | China        | Selectors        | Sie |     | Jupan        | China        |
| Ø smuth                 | Вi  | 8.8 | China        | China        | Mercury          | Hg  |     | Chino        |              |
| Gormanium               | Ge  | 8.6 | China        |              | Ruorine          | F   |     | China        | South Africa |
| Vanudium                | ٧   | 8.6 | China        | China        | Niobium          | Nb  | 6.7 | Drazi        | Brezil       |
| Gallium                 | Go  | 8.6 | China        |              | Zirconium        | Zr  |     | Australia    | Austrella    |
| Strontium               | Sr  | 8.3 | China        | China        | Chronium         | Cr  | 6.2 | South Africa | Kazakhstan   |
| lungsten                | w   | 8.1 | China        | China        | tin              | Sn  | 6.0 | China        | China        |
| Malybdenum              | Mo  |     | China        | China        | Mangenase        | Min | 5.7 | China        | South Africa |
| Cohnlt                  | Cn  | 8.1 | DRC          | BRC          | Nickel           | Ni  | 5.7 | Indonesia    | Austrolia    |
| Indium                  | In  | 8.1 | China        |              | Therium          | Th  | 5.7 |              | USA          |
| Araenie                 | As  | 7.9 | China        |              | Uranium          | u   | 5.5 | Kazakhatan   | Austrolio    |
| Magresium               | Mg  |     | China        | Russiu       | Lead             | Pb  | 5.5 | China        | Austrolia    |
| Platinum group elements | PGE |     | South Africa | South Africa | Iron             | Fe  | 5.2 | China        | Austrolia    |
| Lithium                 | G . | 7.6 | Australia    | CINIC        | Carbon (Diamond) | C   | 5.2 | Russin       | Austrolia    |
| Barium                  | Ba  |     | China        | Chirx        | Titonium         | Ti  | 4.8 | Canade       | China        |
| Curbun (Gruphite)       | C   |     | China        | China        | Cupper           | Cu  | 4.8 | Chile        | Chile        |
| Berylium                | Вe  |     | USA          |              | zinc             | Zn  | 4.8 | China        | Australia    |
| Silver                  | Ag  |     | Moxico       | Peru         | Aluminium        | Al  | 4.8 | Australia    | Guinea       |
| Codmium                 | Cel |     | China        |              | Cold             | Au  | 4.5 | Chine        | Australia    |
| Tantalum                | Та  |     | Rwanda       | Australia    |                  |     |     |              |              |

### Low hanging fruits

▶ Recycling of components can save > 80% of minerals Rich Kenny

Understanding Data Centre IT Efficiency – The Hidden Power Source by Rich Kenny – Interact

Software production generates more emissions than software operations
 Aydin Mir Mohammadi

One year of the CO2-challenge – insights and lessons learned

### Thumb Rules

| Resource     | Unit                  | Source                  | Main<br>competition                  | Impact Blast<br>Radius                          |
|--------------|-----------------------|-------------------------|--------------------------------------|-------------------------------------------------|
| Power        | 1 MW                  | power plants            | industry,<br>households              | earth                                           |
| Transmission |                       | power lines             | landscape                            |                                                 |
| Copper       | 27 t                  |                         | mining<br>industry,<br>electric cars | indigenous<br>communities in the<br>mining area |
| Water        | 1000 –<br>9000<br>l/h | ground water,<br>rivers | farms,<br>households                 | local to the<br>datacenter                      |

### Skien – Gromstulskogen



#### Google in Germany

- ► Clandestine behavior meets sycophantic politicians
- Absolutely intransparent
  - Heise

```
Amazon Reforestation: Google Deal with Brazilian Startup
```

5.5 billion euros: Google's "GDP booster" for AI in Germany

How Green Are Google Data Centers Really?

"high-voltage power has been exclusively laid for operators," including nine 110 kV lines.

... figures for Germany from 2024 show, according to AlgorithmWatch, only 68 percent coverage when viewed hourly; the rest, it claims, came from fossil sources.

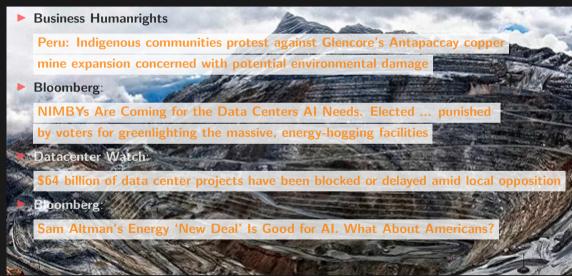
Algorithmwatch

Investitionspläne von Google: Nachhaltigkeit und Transparenz in den Blick nehmen

Google

Google ... €5.5 Billion Investment in Germany, including Al ..., through 2029

#### Google Kubernetes


#### How Google Does It: Building the largest known Kubernetes cluster, with 130,000 nodes

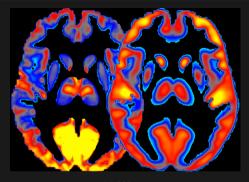
- ► A single NVIDIA GB200 GPU needs 2700W of power.
- > some 10K
- single cluster power footprint100s MW
- ideally distributed across multiple data centers
- for Al platforms exceeding 100K
  - robust multi-cluster solutions
  - significant challenge
- If your workloads require this level of scale, reach out to us to discuss your specific needs!
- ▶ utilization still 25% ?

```
gcloud container node-pools create burn \
--zone eu-north-666 \
--cluster burn-the-planet \
--num-nodes-100000 \
--machine-type adx-highgpu-4g \
--accelerator type=nvidia-gb200,count=4,gpu-driver-version=DRIVER_VERSION \
--additional-node-network network=GVNIC_NETWORK_PREFIX-net,subnetwork=GVNIC_NETWORK_PREFIX-sub-0
--additional-node-network network=GVNIC_NETWORK_PREFIX-net,subnetwork=GVNIC_NETWORK_PREFIX-net,subnetwork=GVNIC_NETWORK_PREFIX-net,subnetwork=GVNIC_NETWORK_PREFIX-net,subnetwork=GVNIC_NETWORK_PREFIX-net,subnetwork=GVNIC_NETWORK_PREFIX-net,subnetwork=GVNIC_NETWORK_PREFIX-net,subnetwork=GVNIC_NETWORK_PREFIX-net,subnetwork=GVNIC_NETWORK_PREFIX-net,subnetwork=GVNIC_NETWORK_PREFIX-net,subnetwork=GVNIC_NETWORK_PREFIX-net,subnetwork=GVNIC_NETWORK_FREFIX-net,subnetwork=GVNIC_NETWORK_FREFIX-net,subnetwork=GVNIC_NETWORK_FREFIX-net,subnetwork=GVNIC_NETWORK_FREFIX-net,subnetwork=GVNIC_NETWORK_FREFIX-net,subnetwork=GVNIC_NETWORK_FREFIX-net,subnetwork=GVNIC_NETWORK_FREFIX-net,subnetwork=GVNIC_NETWORK_FREFIX-net,subnetwork=GVNIC_NETWORK_FREFIX-net,subnetwork=GVNIC_NETWORK_FREFIX-net,subnetwork=GVNIC_NETWORK_FREFIX-net,subnetwork=GVNIC_NETWORK_FREFIX-net,subnetwork=GVNIC_NETWORK_FREFIX-net,subnetwork=GVNIC_NETWORK_FREFIX-net,subnetwork=GVNIC_NETWORK_FREFIX-net,subnetwork=GVNIC_NETWORK_FREFIX-net,subnetwork=GVNIC_NETWORK_FREFIX-net,subnetwork=GVNIC_NETWORK_FREFIX-net,subnetwork=GVNIC_NETWORK_FREFIX-net,subnetwork=GVNIC_NETWORK_FREFIX-net,subnetwork=GVNIC_NETWORK_FREFIX-net,subnetwork=GVNIC_NETWORK_FREFIX-net,subnetwork=GVNIC_NETWORK_FREFIX-net,subnetwork=GVNIC_NETWORK_FREFIX-net,subnetwork=GVNIC_NETWORK_FREFIX-net,subnetwork=GVNIC_NETWORK_FREFIX-net,subnetwork=GVNIC_NETWORK_FREFIX-net,subnetwork=GVNIC_NETWORK_FREFIX-net,subnetwork=GVNIC_NETWORK_FREFIX-net,subnetwork=GVNIC_NETWORK_FREFIX-net,subnetwork=GVNIC_NETWORK_FREFIX-net,subnetwork=GVNIC_NETWORK_FREFIX-net,subnetwork=GVNIC_NETWORK_FREFIX-net,subnetwork=GVNIC_NETWORK_FREFIX-net,subnetwork=GVNIC_NETWORK_FREFIX-net,subnetwork=GVNIC_NETWORK_FREFIX-net,subnetwork=GV
```

#### Create a GW cluster with a single line

#### Resistance




# Comparison NVIDIA Hopper H100 vs Homo Sapiens<sup>2</sup>



700 Watts

#### **Energy Consumption**

- ► Single Graphics Card
- ▶ 700 Watts = 0.7kW
- ► ~ <del>30</del> 100 kW / rack
- ▶ instead of 3 to 6 KW / rack



20 Watts

New method for combining measures of brain activity (left) and glucose consumption (right) ...

\*\*Dr. Ehsan Shokri Kojori, NIAAA

### Misalignement – How to Kill One Industry After the Other

- Maskulinity
  - ► Rittal 1MW cooling
  - 2 sportcar equivalents
- ► All money into old technology
- ► Trillions of Venture Capital
  - Graphic Cards
  - Nuclear
  - **▶** Exhaustion of VC
- ► Fewer Billions could trigger

#### real innovation

- ► Funding for alternative AI technologies
- ► Integration into existing Infrastructure
- Decentralisation to save Ressources



### **Prediction Recap and FOMO**

- never seen before 5 fold increase
- ▶ from 3.7% to 5-15% of the 2030 prediction
- ▶ adding 10% to the US grid
  - unprepared
  - instable
- FOMO (fear of missing out) propaganda
  - ► China will lead in 2030
  - at the brink of World War III
  - Retain US leadership in AI
  - ► US Gov: Al linchpin of our economy
  - Al New Deal
- ▶ nuclear power to the rescue − SMR

### Touching Limits: Energy, Water, Metal CO<sub>2</sub>

- ▶ Ireland: Al Data Center Moratorium until 2028 because of Blackout fears
- ▶ Netherlands: Inside the data centre moratorium movement
- ▶ Tech HQ: Heating up: how much energy does Al use? What we do know is that training ChatGPT used 1.287 gigawatt hours, roughly equivalent to the consumption of 120 US homes for a year.
- ▶ Moomoo: Chicago data center electricity demand increased by 900%! Al continues to detonate global energy challenges
- ► Cleanroom Technology: data centers run out of power
- ▶ Business Today: OpenAl might go bankrupt by end of 2024
- ▶ Business Insider: The AI boom will push America's shaky power grid to its limit
- ▶ Wired: Al's Energy Demands Are Out of Control. Welcome to the Internet's Hyper-Consumption Era
- ▶ OECD: How much water does Al consume? The public deserves to know
- ▶ Substack: The Great Salt Lake is Disappearing. So, Utah Banned the Rights of Nature.
- ▶ Straight Arrow News: Al tools consume up to 4 times more water than estimated
- ▶ Substack: Material Sacrifices To tackle climate chaos, decolonize the labor movement
- ▶ The Driller: Growing Demand for Copper Drives Need for Increased Domestic Mining, Experts Suggest
- ► Generative AI is reportedly tripling carbon dioxide emissions from data centers
- ▶ Odessa American Online: Al to boom natural gas market
- ► Arabian Gulf Business Insight: Aramco partners with US startup Groq for Al data centre

### Impact on the Environment

#### Neo Colonialism

► Reporter Brasil

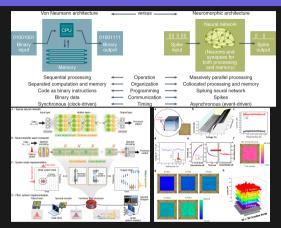
Documents link Amazon and Google to companies investigated for illegal gold mining

► Tucson

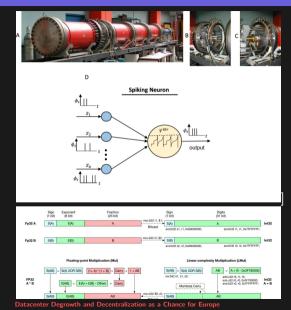
Arizona opinion: Data centers redefine the Copper State

Dan Watch

Impacts of copper mining on people and nature

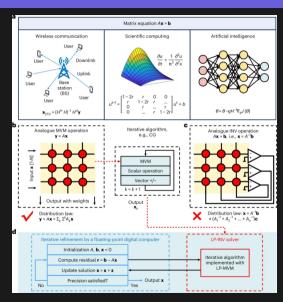

Monga Bay

Renewables won't save us from climate catastrophe, experts warn; what will?

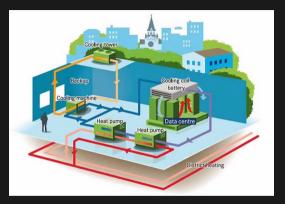

► The Guardian

How the rise of copper reveals clean energy's dark side

### Neuromorphic Computing – Can Tech Save us?



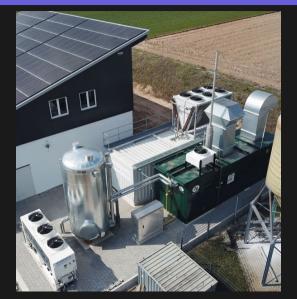

Could save 95% of the energy needed




## China FOMO - The Right Way

- WikipediaSolar power in China
- ► Bloomberg Alibaba's Shares Soar After Investors Buy Into Big Al Moves
- ► Alibaba New Al Training Method Cuts Search Costs by Nearly 90%
- Nature Precise and scalable analogue matrix equation solving using resistive random-access memory chips
  - NumPy
  - SciPy
  - on an analogue chip




### Reusing the heat





- Cloud and Heat Vattenfall
- ► Integration into district heating
- ► NTT Berlin 2 Gasag
  - district heating does not really fit
  - must be planned and implemented together

### Reusing the heat – Schwäbische Alp





- ► Integration into district heating
- ► Small scale J-H Computers
- better than Geothermal energy
- works from 40kW
- ▶ nice from > 240kW

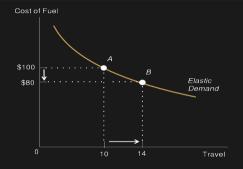
### **Europe**

- Start investing into the right technologies
- Cheaper than a single Gigafactory
- Supports local strength
- Decentralisation
  - Resilience
  - Low Latency
  - Robots
  - Technology advantage
  - Ecology
- ► Altad

  KI in Mikrochips: Der Blick in den

  Abgrund bringt Innovationen hervor
- ► OpenFlexure

50\$ self printed microscope


- Europe / Africa
- ► Al on a tablet
- Leukemia
- Malaria



### **Conclusion: Optimization**

- Increasing efficiency
- Focus on the right part of economy
- ► But beware
- ► Factor of 10: buys us 10 years
- ► Factor of 1000: buys us 30 years
- ► Insufficient on the long run
- **▶** Degrowth

#### **Jevons Paradoxon**

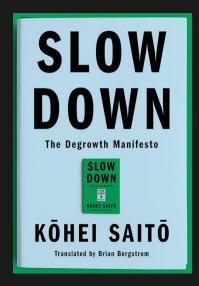


Jevons Paradox

# Experts are skeptical about Google's AI water consumption claims

- Google's five drops per query is just the tip of the iceberg
- individual user problem now
- ▶ get over it don't look up

#### Jevons Paradoxon


- first described for steam engines
- example is for travelling costs
- Rebound Effects in Cloud Computing: Towards a Conceptual Framework

#### Personal observations

- provisioning times are hidden costs
- self provisioning
- cloud enabling
- virtualisation
- containers
- Kubernetes
- CI/CD pipelines

## Conclusion: Degrowth

- Wikipedia
   Degrowth is an academic and social movement aimed at the planned and democratic reduction of production and consumption as a solution to social-ecological crises
- Must become imperative in engineering
- ightharpoonup Optimization  $\neq$  Degrowth
  - buys time
  - but only a few years



### **Question? Remarks?**

#### Further reading

- ► Gerry McGovern
- ► Paris Marx
- ► Halloween Talk at SreCon Emea 2024
- ► Kohei Saito on archive.org: Marx in the Anthropocene

#### Some Answers

Slides: https://thomasfricke.de/como2025.pdf

Mail: como2025@thomasfricke.de

Mastodon: @thomasfricke@23.social

LinkedIn: https://www.linkedin.com/in/thomas-fricke-9840a21/

