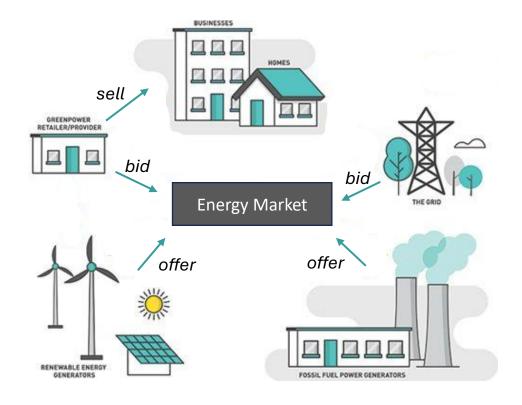


Introduction

• The Evolution of the Electricity Market:

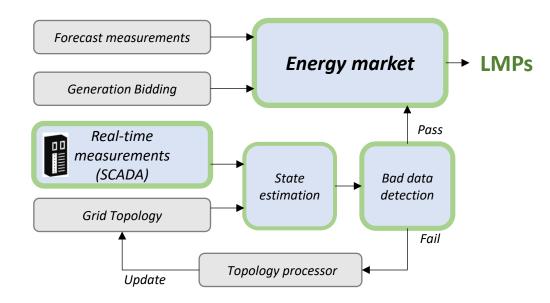
- The electricity industry has undergone a transition towards a competitive framework where participants can bid and offer energy within a dynamic pool.
- This shift has been driven by the adoption of <u>Locational Marginal Prices (LMPs)</u> as the primary mechanism for determining market dynamics.



Introduction

• The Evolution of the Electricity Market:

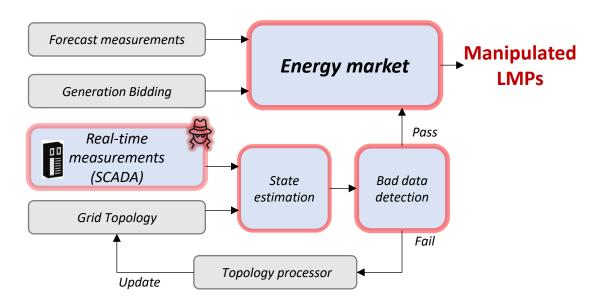
- LMPs reflect the marginal cost of supplying an electricity unit at specific locations within the grid, at any given point in time.
- LMPs facilitate efficient resource allocation, congestion management, and market equilibrium



Motivation

• Stealthy False Data Injection Attacks in the Energy Market:

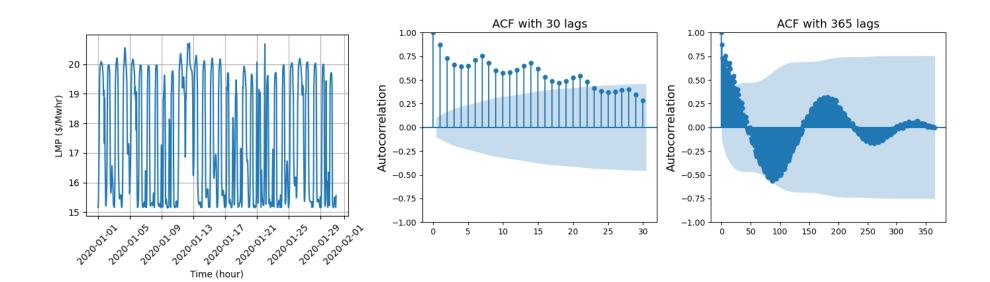
- Malicious actors target data transmitted from Remote Terminal Units (RTUs) to the SCADA system.
- **Objective**: Manipulate market outcomes for financial gain.
- Persistence: Attacks designed to persist over an extended period for long-term gains.
- Impact: Manipulation of state estimation results, skewing LMPs.
- Consequences: Financial losses, inefficient resource allocation, and reduced system efficiency.



Challenges

CH1: LMP attacks are designed to avoid detection, with attackers subtly influencing energy prices.

CH2: The inherent uncertainty in power systems results in non-stationarity of energy prices. This yields the key statistical properties of LMP to drift over time.



Research Gap

- Focus on attack strategies development rather than detection mechanisms.
- 2. Existing defense approaches secure measurement units but:
 - Assume PMUs are attack-proof (ignoring GPS spoofing, etc.)
 - Protecting only select measurements reduces redundancy; lowers estimation accuracy.
- 3. Current anomaly detection frameworks:
 - Depend on model-based approaches (predefined system models).
 - Vulnerable to stealthy FDIAs and novel attacks outside assumed conditions.

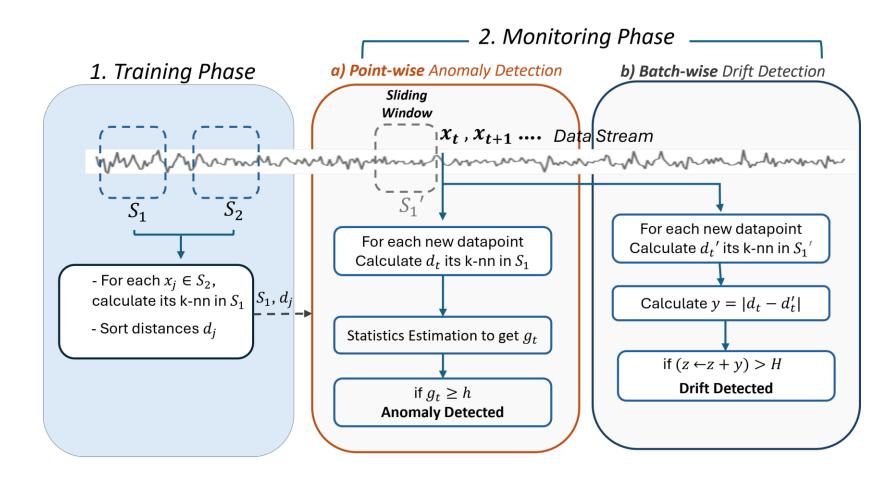
Contribution

We propose a data-driven, online Change Ponit Detection framework for detecting stealthy FDIAs in LMP time series:

- 1. Novel framework for detecting LMP manipulation via market-level models.
- 2. Generalized CPD approach; no assumptions on data distribution.
- Adaptive anomaly detection distinguishing deliberate attacks from normal evolving LMP patterns.

Methodology

Drift-aware Unsupervised Anomaly Detection Framework:



Methodology

Point-wise Anomaly Detection Model:

Algorithm 1 GEMAD: Anomaly Detection Model

```
1: Input: S_1, d_j and parameters: k, \alpha, \lambda, h.
 2: Initialization: the reference set S_1' \leftarrow S_1.
 3: for each new point x_t: do
          Get the k-NNs of x_t from S_1 and compute d_t.
         \hat{p}_t = \frac{1}{N_2} \sum_{x_i \in \mathcal{S}_2} \mathbb{I}\{d_j > d_t\}, \, \hat{s}_t = \log\left(\frac{\alpha}{\hat{p}_t}\right)
         g_t \leftarrow \max\{0, \lambda.g_{t-1} + \hat{s}_t\}
          if q_t \geq h then
                Alarm
 8:
          else
 9:
               Label x_t as normal, S'_1(t) \leftarrow S'_1(t-1) \cup \{x_t\}
10:
          end if
11:
12: end for
```


Methodology

Batch-wise Drift Detection Models:

Algorithm 2 CAD Drift Detection

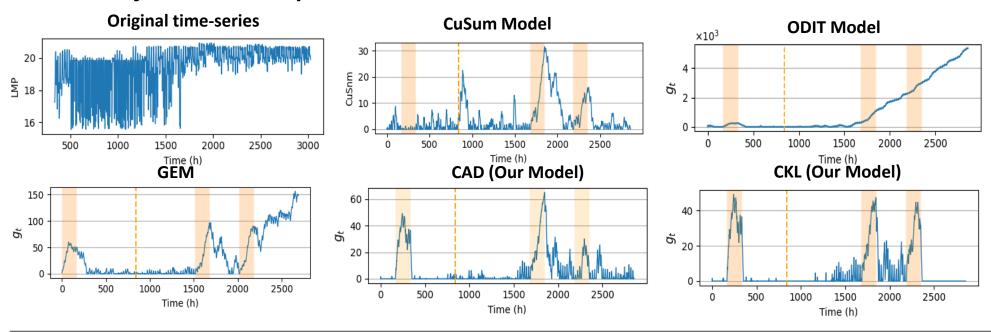
```
1: Input: Threshold H.
2: Initialization: z \leftarrow 0, S_1' from GEMAD (Algorithm 1).
3: for each new point x_t: do
       Call GEMAD to label x_t and obtain d_t.
       if x_t is normal: then
5:
           Get the k-NNs of x_t from S'_1 and compute d'_t.
6:
           y = |d_t - d'_t|, z = z + y
7:
           if z > H then
8:
              Drift detected: reset z and retrain model
9:
           end if
10:
       end if
11:
12: end for
```


Algorithm 3 CKL Drift Detection

```
1: Input: Threshold H, tolerance \theta, window size w
 2: Initialization: z \leftarrow 0, S_1' from GEMAD (Algorithm 1).
 3: for each new point x_t: do
       Call GEMAD to label x_t and obtain d_t.
       if x_t is normal: then
 5:
            Append p_t to P and get the k-NNs of x_t from S'_1.
 6:
           Compute d'_t and p'_t in (7), (9), append p'_t to P'
 7:
           if len(P') = w then
               D_{KL}(P||P') in (12), z \leftarrow z + |D_{KL} - \theta|
 9:
               if z > H then
10:
                   Drift detected; reset y and retrain model
11:
               end if
12:
           end if
13:
       end if
14:
15: end for
```


Experiments

1- Detection Performance Comparison



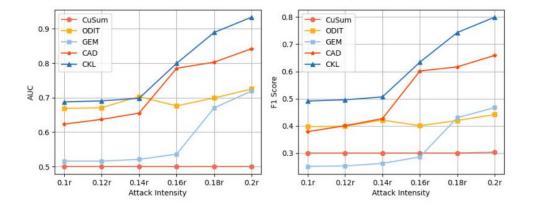
Metric	CuSum		ODIT		GEM		CAD (Our Model)		CKL (Our Model)	
	Before	After	Before	After	Before	After	Before	After	Before	After
DR	0.119	0.9642	0.988	1.000	0.9107	0.8244	0.9821	0.9136	0.9821	0.9519
Precision	0.0826	0.2250	0.3023	0.2250	0.5751	0.2591	0.9166	0.4342	0.9166	0.5955
F1-score	0.0976	0.3648	0.4630	0.3096	0.7050	0.3943	0.9482	0.5886	0.9482	0.7422
AUC	0.3388	0.6503	0.6133	0.5546	0.7872	0.6504	0.9776	0.8401	0.9776	0.9156
FAR	0.4413	0.6634	0.7614	0.8906	0.3363	0.5234	0.0269	0.2334	0.0269	0.1208

Experiments

2- Impact of Diverse Attack Intensity

Attack intensity	No FDIA	0.1r	0.12r	0.14r	0.16r	0.18r	0.2r
LMP (\$/Mwhr)	15.6	15.61	15.64	15.7	15.77	16.03	16.2
Total illegal profit in a week (\$/Mwhr)	0	59.83	81.08	121.22	160.8	227.7	269.47

TABLE III: LMP values under different attack intensities



3- Detection Efficiency Comparison

Method	CAISO) dataset	Synthetic dataset		
	FAR	Updates	FAR	Updates	
No drift detection	0.3306	0	0.3123	0	
Fixed update (weekly)	0.0404	24	0.0841	18	
CAD Model	0.0188	12	0.1483	6	
CKL Model	0.0059	11	0.0947	3	

Conclusion & Future work

Key Achievements:

- Novel market-level approach for stealthy FDIA detection.
- Concept drift—aware, adaptive detection model.
- High detection reliability with minimal false alarms.

Future Work:

- Extend the framework by integrating spatial clustering of buses to enhance detection accuracy.
- Design an optimized model update strategy that determines when and what to update after drift detection.

