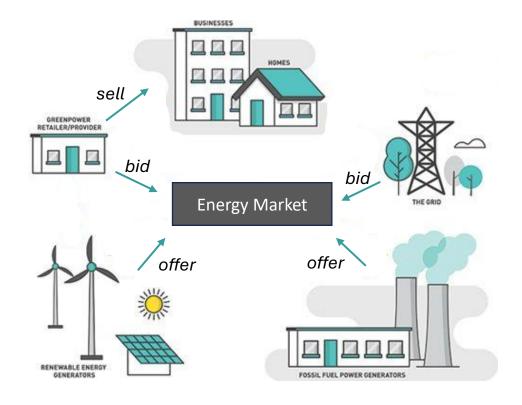


Introduction

• The Evolution of the Electricity Market:

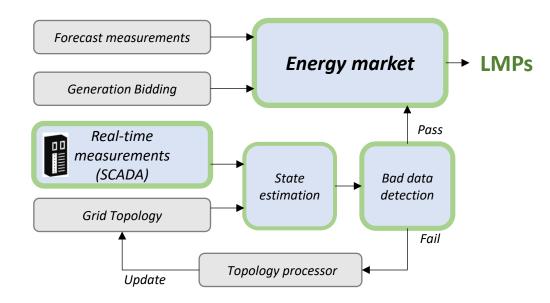
- The electricity industry has undergone a transition towards a competitive framework where participants can bid and offer energy within a dynamic pool.
- This shift has been driven by the adoption of <u>Locational Marginal Prices (LMPs)</u> as the primary mechanism for determining market dynamics.



Introduction

• The Evolution of the Electricity Market:

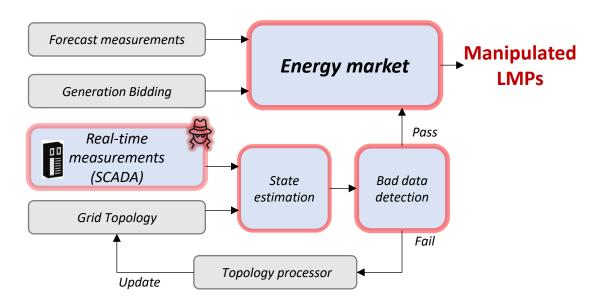
- LMPs reflect the marginal cost of supplying an electricity unit at specific locations within the grid, at any given point in time.
- LMPs facilitate efficient resource allocation, congestion management, and market equilibrium



Motivation

• Stealthy False Data Injection Attacks in the Energy Market:

- Malicious actors target data transmitted from Remote Terminal Units (RTUs) to the SCADA system.
- **Objective**: Manipulate market outcomes for financial gain.
- Persistence: Attacks designed to persist over an extended period for long-term gains.
- Impact: Manipulation of state estimation results, skewing LMPs.
- Consequences: Financial losses, inefficient resource allocation, and reduced system efficiency.



Motivation

- Current research Focus has mainly been either on threat models or physical protection of state estimation
- Anomaly detection using model-based grid representations based on predefined behaviors & known attack patterns.
- Data-driven detection models are a promising approach for identifying electricity market cyber attacks in real time.
- Barriers to AI-Based Anomaly Detection:
 - Lack of publicly available datasets for LMP manipulation scenarios.
 - Existing benchmark systems simulate markets but: Rarely include adversarial scenarios and Lack labeled time-series data for systematic evaluation

Contribution

- Stealthy Manipulated LMP Timeseries; SMLT dataset
 - 1. First open-source dataset for stealthy FDIA attacks in electricity markets
 - 2. Incorporates 8 manipulation cases (transmission ratings, system parameters, topology, demand profiles)
 - 3. Hourly resolution time series (up to 20 weeks) with ground-truth labels
 - 4. Open-source FDIA simulation framework built on Matpower
 - 5. In-depth spatio-temporal analysis of LMP manipulation + case study

Dataset Construction

• Baseline System: NPCC[1]

• Cyberattack Scenarios:

- Transmission Line Rating Attack [2]
- Critical Parameter Attack [3]
- Cyber-Topology Attack. [4]
- Ramp-Induced Data Attack [5]
- Load-Altering Attack [6]
- Aggregator-Based Strategic Curtailment [7]

^[1] Zhang, Q. and Li, F., 2023. A Dataset for Electricity Market Studies on Western and Northeastern Power Grids in the United States. Scientific Data, 10(1), p.646.

^[2] Ye, H., Ge, Y., Liu, X. and Li, Z., 2015. Transmission line rating attack in two-settlement electricity markets. IEEE Transactions on Smart Grid, 7(3), pp.1346-1355.

^[3] Xu, H., Lin, Y., Zhang, X. and Wang, F., 2020. Power system parameter attack for financial profits in electricity markets. IEEE Transactions on Smart Grid, 11(4), pp.3438-3446.

^[4] Liang, G., Weller, S.R., Zhao, J., Luo, F. and Dong, Z.Y., 2017. A framework for cyber-topology attacks: Line-switching and new attack scenarios. IEEE Transactions on Smart Grid, 10(2), pp.1704-1712.

^[5] Choi, D.H. and Xie, L., 2013. Ramp-induced data attacks on look-ahead dispatch in real-time power markets. IEEE Transactions on Smart Grid, 4(3), pp.1235-1243.

^[6] Mohsenian-Rad, A.H. and Leon-Garcia, A., 2011. Distributed internet-based load altering attacks against smart power grids. IEEE Transactions on Smart Grid, 2(4), pp.667-674.

^[7] Ruhi, N.A., Dvijotham, K., Chen, N. and Wierman, A., 2017. Opportunities for price manipulation by aggregators in electricity markets. IEEE Transactions on Smart Grid, 9(6), pp.5687-5698.

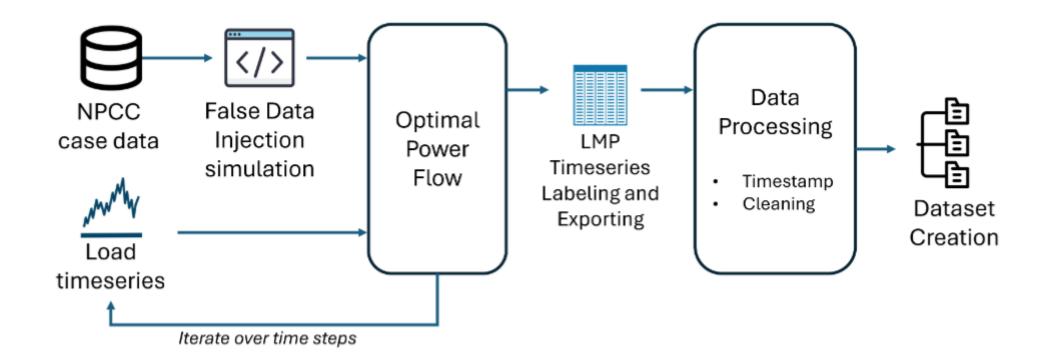
Dataset Construction

• Summary of attack cases and their validation outcomes

	Scenario	$\mathbf{a}_{\mathrm{nom}}$	α (p.u.)	Target Bus	Duration	\mathbf{BDD}	ΔLMP	$\mathbf{Profit}(\mathrm{per}\ \mathrm{week})$
Case 1	S1	$L_{ m rate,109}$	0.14	Bus 115	Week	Pass	0.19\$	127.1 \$/MWh
Case 2	S1	$L_{ m rate,109}$	0.2	Bus 115	Week	Pass	1.7\$	1146 \$/MWh
		R_{181}	2					
Case 3	S2	X_{181}	1.5	Bus 128	Week	Pass	2.47\$	416.37 \$/MWh
Case 4	S3	$L_{\rm breaker,109}$	-	Bus 115	Week	Pass	-3.24\$	-545.8\$/MWh
		$G_{ m pmax,13}$						
$Case\ 5$	S4	$G_{\mathrm{ramp},13}$	0.2	Bus 50	Week	Pass	3.18\$	$534.5\$/\mathrm{MWh}$
Case 6	S5	P_{115}	1.2	Bus 115	Peak hours	Pass	0.93\$	630.95\$/MWh
Case 7	S1, S5	$P_{115}, L_{\mathrm{rate},109}$	$\frac{1.2}{0.2}$	Bus 115	Peak hours	Pass	1.74\$	293.2\$/MWh
Case 8	S6	$G_{pmax,15,16,19,20}$	0.02	Bus 56	Peak hours	Pass	1.15\$	$193.5\$/\mathrm{MWh}$

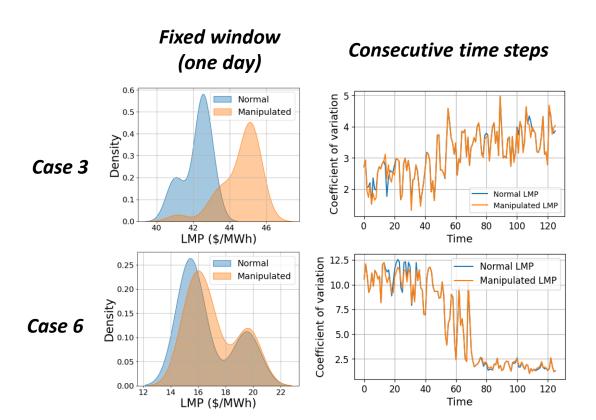
Dataset Construction

• Overview of the SMLT dataset development framework



Empirical Observations

RQ1: What is the impact of stealthy FDIAs on the distribution of LMP data?



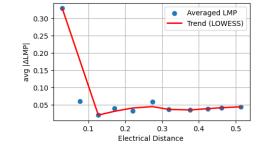
Statistical Result

Case	Visibili	ty(%)	Detectability		
	Value	Qual.	Value	Qual.	
Case 1	16.67%		0.0005	-	
Case 2	42.32%	+	0.0010	+	
Case 3	33.36%	+	0.0003		
Case 4	84.71%	++	0.0014	+	
Case 5	16.69%	-	0.0014	+	
Case 6	9.73%		0.0005		
Case 7	50.54%	++	0.0008	-	
Case 8	18.86%	-	0.0135	++	

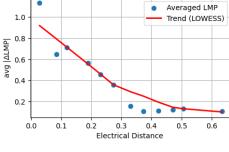
Empirical Observations

RQ2: How does the impact of an attack propagate throughout the system?

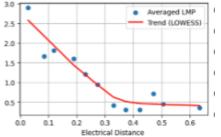
Case 3



Case 6



Case 7



Case	Visibility(%)		Detects	ability	Spreadability		
	Value	Qual.	Value	Qual.	Value	Qual.	
Case 1	16.67%		0.0005	-	0.1650	-	
Case 2	42.32%	+	0.0010	+	0.3668	+	
Case 3	33.36%	+	0.0003		0.0267		
Case 4	84.71%	++	0.0014	+	0.2275	+	
Case 5	16.69%	-	0.0014	+	0.9137	++	
Case 6	9.73%		0.0005		0.2077	-	
Case 7	50.54%	++	0.0008	-	0.5780	++	
Case 8	18.86%	-	0.0135	++	0.0465		

Case Study

• Geometric Entropy Minimization based model [8]

Case	GEM before drift					GEM after drift				
	DR	PR	F1	AUC	FAR	DR	PR	F1	AUC	FAR
1	0.137	0.958	0.240	0.566	0.005	0.881	0.265	0.408	0.692	0.496
2	0.976	0.692	0.810	0.802	0.372	0.958	0.272	0.423	0.718	0.523
3	0.006	0.500	0.012	0.500	0.005	0.943	0.276	0.428	0.721	0.502
4	0.988	0.897	0.941	0.946	0.097	0.991	0.280	0.437	0.737	0.517
5	0.994	0.898	0.944	0.949	0.097	0.988	0.280	0.437	0.736	0.515
6	0.185	0.409	0.254	0.438	0.308	0.956	0.247	0.393	0.747	0.463
7	0.769	0.476	0.588	0.715	0.338	0.989	0.240	0.387	0.746	0.497
8	0.110	0.769	0.192	0.549	0.011	0.945	0.163	0.278	0.728	0.489

Lessons Learned

• Insights from empirical analysis & case study with the SMLT dataset

- 1. Market-level data matters
 - LMP data is a strong signal for detecting FDIA attacks, even when BDD fails.
- 2. FDIA impacts propagate
 - Localized attacks spread system-wide, affecting neighboring buses.
- Duration & timing are critical
 - Short, peak-hour attacks are harder to detect due to natural LMP volatility.
- 4. Need for drift-aware models
 - LMPs are non-stationary; adaptive models must handle regime shifts & drift

