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Abstract

A context-free problem of Fair Division is a function W from n-profiles of ”types” xi to a
freely transferable amount of ”surplus” W(x1, · · · , xn) they must share in the common property
regime. A pair of tight guarantees assigns to each type an upper and a lower bound on its share
under any profile of types of the other agents, and these bounds cannot be improved. The
choice of a particular pair of such guarantees when the types and W have an economic inter-
pretation vindicates only some familiar “fair” sharing rules, and suggests many new ones. Our
examples include the allocation of an indivisible good or bad, the classic model of a “commons”
where types enter additively in the function W, and sharing the cost of a capacity or of the
transportation costs to a location on a line.

JEL classification codes: D6, D63

1 Introduction

The modern mathematical discussion of fair division starts with the concept of “fair share” in
Steinhaus’ cake cutting model ([30]): irrespective of the n other participants’ utilities I know that
my share will be worth to me at least 1

n -th of the whole cake. This first step toward defining the fair
and efficient exploitation of resources is critical in a variety of other contexts: the division of family
heirlooms and other private assets; sharing a workload or the cost of a public facility; dividing the
output of a common production function with variable returns or the discount from a joint purchase
etc..
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We bring here new arguments in support of the simplicity and versatility of the fair share concept
in an abstract model where agents are described by their type (which may represent preferences,
needs, skills, efforts, location etc..) and the resources by a black box transforming the profile of types
into an certain amount of utility (or disutility, e. g., cost) that they must share. We assume that
the agents have identical rights or liabilities toward these resources and can only be distinguished
by their types. Differences in the way those types came about – such as objective needs vs frivolous
tastes, proactive effort vs lucky skills – will be ignored: agents are fully responsible for their own
types.

In this context-free interpretation of types the first uncontroversial test of fairness is Equal
Treatment of Equals (ETE) (aka horizontal equity): two agents with identical types must be treated
equally. We impose the stronger property of Anonymity: swapping the (possibly dfferent) types of
two agents exchanges their shares and does not affect those of other agents.

The Unanimity test comes next. Fix a profile of types (x1, · · · , xn) and an agent i. At the
hypothetical unanimous profile where all agents have the same type xi they all end up by ETE with
the same utility level, 1

n -th of the corresponding efficient total utility: we call it agent i’s unanimity
utility and write una(xi). Differences in individual types are a collective externality that they are
jointly and equally responsible for. The test rules out a distribution of shares where some agent i’s
share is larger than her unanimity utility una(xi) whereas another agent j ends up with a smaller
share than una(x2): they must all end up (weakly) above, or all weakly below, their unanimity
utility.1

In the cake cutting model where utilities are additive the unanimity utility is precisely 1
n -th of

that for the whole cake. When we divide Arrow Debreu commodities and preferences are convex, it
is the utility for 1

n -th of the bundle of goods we are dividing ([35], see more references in section 2).
In the provision of a public good problem it sets an upper bound on individual utilities ([20]).2

Two simple observations apply in any Fair Division problem, irrespective of the technical details
of the model. Suppose that for any profile of types we can and do allocate the resources so that
every agent i’s utility is at least una(xi). At the xi-unanimous profile we cannot give more than
una(xi) to each agent, therefore una(xi) is type xi’s worst case utility over the adversarial choice
of types chosen by the other agents. Moreover if we don’t pay attention to unanimity utilities and
distribute the resources in any other way, the worst case utility of a type xi agent is at most una(xi)
(think again of the xi-unanimous profile). So una(xi) is unambiguously the best (largest) worst case
utility we can offer to the agents.

An endogenous lower bound on my utility that depends only on my type is what we call a lower
guarantee: it minimises the adverse influence that the other agents can have on me. We just showed

1The unanimity terminology and the corresponding test are introduced in [19]. The test is called “diversity of
preferences dividend, (or burden)” in [33], p.112-114.

2Let c(z) be the cost of producing z units of public good and ui(z, yi) be agent i’s (standard) utility if her cost share
is yi. The unanimity utility is then una(ui) = maxz ui(x,

1
n
c(z)); clearly the utility profile (una (x1) , · · · , una (xn)

is either unfeasible or Pareto optimal, so una(ui) is a the resulting upper bound on individual utilities.
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that if the function xi → una(xi) is a lower guarantee, it is larger than any other lower guarantee.
A similar upper bound on my utility (an upper guarantee) protects the other agents, as a group,

by preventing me from grabbing too much surplus. Placing a tight cap on each agent’s best case
welfare, although less common than working to increase the worst case welfare, appears regularly in
the form of “no subsidy” constraints in the natural monopoly and cost sharing literatures. Recall
the public good provision example above. The unanimity utility plays for such upper bounds the
symmetric role of the one explained above for lower bounds. If we can allocate the resources efficiently
so that the profile ((una(x1), una(x2), · · · , una(xn)) always upper-bounds individual utilities, then
una(xi) is the best case utility for type xi and the function una is smaller than any other upper
guarantee.

Our first goal is to describe the best upper and lower guarantees of a given (black box) function
from types to transferable utility (or disutility). That is, the lower guarantees that cannot be
increased and the upper ones that cannort be decreased: we call them tight guarantees. We find
that for the large class of super (resp sub) modular functions the unanimity utility is the unique
tight upper (resp lower) guarantee and make good progress toward understanding the typically very
large set of tight guarantees on the other side of the unanimity bound.

Next we add a microeconomic interpretation to the types and the black box function and capture
many classic fair division problems: the allocation of an indivisible good or bad, the classic model of
a commons, cost sharing of a capacity or of the transportation costs to a facility, and more; see the
examples in sections 2,5, and 6. In each problem the choice of a pair of tight guarantees, one lower
and one upper, severely restricts the set of feasible divisions of the surplus or cost. Each such pair
conveys its own normative meaning, its own nuance of fairness. Tight guarantees vindicate some of
the familiar division rules (egalitarian, proportional, Shapley value, serial etc..) and dismiss others.
They also inspire many new division rules.

1.1 overview of the results

The iconic example in section 2 illustrates the power of our methodology before we unfold it to full
effect. A type xi is a number between 0 and H and we must share W(x1, · · · , xn) = maxi∈[n]{xi}.
In the first story this is a desirable surplus: the agents own a single indivisible good in common
property and xi is agent i’s willingness to pay for the good. In the second story it is the cost of
a facility they share and xi is the amount of capacity i needs (as in [16]). The unanimity share
una(xi) =

1
nxi is the compelling worst share of surplus or minimal (best case) cost share for agent i.

On the other side there is a one dimensional choice of upper guarantees described in Lemma 2.1. At
one end the Egalitarian share 1

nH is natural in the indivisible good story (everyone is the common
owner of the efficient surplus), much less so in the cost sharing context. At the other end the Stand
Alone share xi is natural for the lcapacity story, and is a meaningful alternative to the egalitarian
share in the indivisible good story. There is a one dimensional set of upper guarantees compromising
between these two (different from their convex combinations) each one with an original normative
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interpretation.

Section 3 introduces the model and general properties of tight guarantees. Types vary in the real
interval [L,H]; the function W inputs a profile of types x ∈ [L,H]n and returns W(x) that must be
shared between the agents. It is symmetric in all its variables.

The real valued functions g− and g+ with domain [L,H] are respectively a lower and an upper
guarantee if for each n-profile x we have

n∑
1

g−(xi) ≤ W(x) ≤
n∑
1

g+(xi) (1)

The lower guarantee g− is tight if increasing g−(xi) at any xi violates the left hand (LH) inequality
(1) at some profile containing xi. For the tightness of g+ replace increasing by decreasing and LH
by RH. Tight guarantees are the closest separably additive approximations of the function W from
above and below.

Notation: (
k
z) is the k-vector with identical coordinates z. At the unanimous profile (

n
xi) the

system (1) implies
g−(xi) ≤ una(xi) ≤ g+(xi) for any type xi (2)

where una(xi) =
1
nW(

n
xi) is the unanimity utility.

Recall that the symmetric function W is supermodular (resp submodular) if whenever x1 < x∗
1

the difference W(x∗
1, x2, x−1,2)−W(x1, x2, x−1,2) increases (resp decreases) weakly in x2. The results

in section 4 go a long way toward solving system (1) for such functions.
The unanimity function of a super (resp sub) modular function is an upper (resp lower) guarantee:

Proposition 4.1. By (2) this means that una is the unique tight upper (resp lower) guarantee. All
results and almost all examples below take advantage of this instant answer to one half of our
problem.

As a first step to describe the set of tight guarantees on the other side of the unanimity one, we
find, like in Example 2.1, two canonical elements of this large set:

gL(xi) = W(xi,
n−1

L )− (n− 1)una(L) ; gH(xi) = W(xi,
n−1

H )− (n− 1)una(H)

If W is supermodular gL is a tight lower guarantee. Because gL(L) = una(L) and una is the
unique tight guarantee, the pair (gL, una) implies that type L gets the share una(L) irrespective of

other agents’ types. Any other type xi gets the share una(L) plus the increment W(xi,
n−1

L )−W(
n

L).
It is as if agent i is “Standing Alone” while all other agents are of type L.

Theorem 4.1 explains that gL and gH have a book-end role in the set of lower guarantees. Still
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assuming that W is supermodular, for any other tight lower guarantee g− we have

gH(L) ≤ g−(L) ≤ gL(L) = una(L) ; gL(H) ≤ gH(H) ≤ gH(H) = una(H)

Moreover, everywhere in [L,H], g−(xi) grows in xi slower than gH and faster than gL.

We focus in section 5 on the “commons” model: W(x) = F (xN ) with the notation xN =∑n
1 xi; the types are perfect substitutes in the production of surplus or cost. Examples include

the production of divisible output from input types, of a cost to share from demand types, as well
as queuing and location models. The problem is super (resp sub) modular iff F is convex (resp
concave). Although we do not describe the full set of tight guarantees (on the other side of una) we
identify two subsets gradually compromising between gL and gH . First a discrete sequence of n− 2
tight guarantees with the similar form: g(xi) = W(xi, c) − C, where c is a (n − 1)-profile mixing
types L and H, and C a constant: Proposition 5.1. Second, a continuous line of tight guarantees
also linking gL to gH : most are simply a tangent to the graph of the unanimity function, except at
both ends where they turn into the hybrid of a tangent and a simple guarantee: Proposition 6.1.

In section 6 we introduce a class of modular functions generalising the functionW(x) = maxi∈[n]{xi}
for which every tight guarantee (on the opposite side to una) is simple as we just described. Write
the order statistics of (xi)

n
1 as (xk)n1 (where x1 = maxi{xi} and xn = mini{xi}) and call W rank

separable if W(x) =
∑

k∈[n] wk(x
k) for some continuous functions wk. Such a function is modular if

and only if wk+1 − wk is weakly increasing for 1 ≤ k ≤ n− 1.
If W is modular and rank separable, Theorem 6.1 shows that its tight guarantees (opposite

to the unanimity) are parametrised by all the profiles c in [L,H]n−1 and take the simple form
g−c (xi) = W(xi, c) − C, where C is determined by the choice of c. We give several applications of
this result to capacity, facility location and queuing problems.

Our last main result, Theorem 7.1, is a full characterisation of all tight guarantees for two person
commons with one-dimensional types, when W(x1, x2) is strictly modular. They are parametrised
by the choice of a decreasing, continuous and symmetric function from the set of types into itself.
This is evidence that the full set of tight guarantees is much larger, in fact of infinite dimension,
when the modularity property is strict. Note that a rank separable function is emphatically not
strictly modular.

After concuding comments in section 8, the Appendix section 9 contains many long or minor
proofs.

1.2 tight guarantees and sharing rules

Tight guarantees contribute to solve a fair division problem in two ways. First by promoting par-
ticipation in an unscripted negotiation by minimising its stakes: a type xi agent can reject any
agreement where her share falls outside the interval [g−(xi), g

+(xi)], confident that if no agreement
is reached the manager will pick an (arbitrary) share within these bounds for each i.
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Alternatively, the shares of W(x) may be computed by a deterministic division rule: a mapping
φ from profiles x the individual shares (φi(x))

n
1 such that W(x) =

∑n
i−1 φi(x) for all x. Each rule

φ implements its own lower and upper guarantees for each type xi: g−(xi) = minx−i
{φi(xi, x−i)}

and g+(xi) = maxx−i
{φi(xi, x−i)}. Our test dismisses the rules implementing non tight guarantees

and partitions the others according to the tight pair they generate.
For instance if W(x) = F (xN ) as in section 5, the venerable Average Return (AR) rule φi(x) =

xi

xN
F (xN ) fails spectacularly the unanimity test ([22]).3 If F is concave it gives to each input type

xi below the average 1
nxN a smaller share than the unanimity lower guaranteed share 1

nF (nxi): the
latter is a justified guaranteed share because agent i is not responsible for the low returns generated
by larger inputs; she is entitled to her fair share of the best (i. e, first) marginal returns of the
technology F , captured by her unanimity share. If F is convex AR allows a below average input xi

to free ride on high returns to which they did not contribute, contradicting this time the unanimity
upper guarantee.

By contrast the increasing and decreasing Serial rules (Definition 4.4) implement respectively
the tight pairs (una, gL) and (una, gH), and this for any modular function W: Proposition 4.2.

It may not be easy, given a particular sharing rule, to decide if the guarantees it implements
are tight or not. But the answer to the converse question is easy: given a pair of tight guarantees
any sharing rule delivering shares within the interval it defines implements exactly these guaran-
tees (Lemma 3.7). We can construct such rules by simple extrapolations of the guarantees, or by
“trimming” an arbitrary sharing rule when its shares violate the guarantees.

1.3 related literature

After its introduction in the mathematical discussion of cake cutting ([30], [14] [11]), the concept
of endogenous fair share (in our terminology a guaranteed worst case utility against adversarial
types of other participants) was picked up by economists in the early 70-s. If we divide a bundle
ω of private Arrow Debreu (AD) commodities in common property and preferences are convex, the
allocation 1

nω delivers precisely the unanimity utility ([35], [32]); the latter is also recognised in the
allocation of indivisible items with cash transfers ([31], [2]).

In the following two decades, endogenous lower and upper bounds on individual welfare play
an important role in the axiomatic discussion of cooperative production (the commons problem).
The stand alone utility (from using a private copy of the production function) joins the unanimity
utility and sits on the opposite side of the Pareto frontier when the returns to scale are monotonic
([28], [19], [22], [37]). The same is true in the public good provision model irrespective of returns
([20]); see also a proposal of weaker bounds in ([12]). Endogenous guarantees appear also in the
axiomatic bargaining model ([34]) with a focus on variations in the set of agents rather than the
agents’ preferences.

3The same is true for the Shapley value rule derived from the Stand Alone TU game (ibid.).

6



In this century computer scientists and others are still searching for a compelling concept of fair
share for the allocation of indivisible items (good or bad) even when utilities are additive. Only a
little more than a 3

4 fraction of the plausible MaxMin Share (MMS) is feasible at all profiles ([6],
[26], [1]) and even if the exact fraction is ever identified, this lower guarantee may not be tight.
Other concepts of endogenous fair share appear in ([10]), ([18]), ([15]) and ([3]).

An even more widely open question is the search for tight guarantees in cake division with non
additive utilities, or for dividing AD commodities with non convex preferences ([4]).

Our interpretation of self-ownership as a pair of lower and upper bounds on welfare introduces
the new viewpoint that minimising the best case utility (against adversarial others) is as important
as maximising the worst case utility. Our assumption that the agents are equally responsible for
their own type (which could mean fully or not at all) avoids a familiar controversy around the
“neo-Lockean” self-ownership maxim, defended by Nozick ([25]) but criticised for its potentially
libertarian implications by Roemer ([27]) and Cohen ([9]).

We also diverge from the context dependent interpretation of common ownership derived from
the Resource Monotonicity property: when the shared resources improve, all the participants should
weakly benefit. This fairness test is in fact incompatible with the unanimity fair share if we divide
AD commodities ([24]), and with the unanimity utility in the cooperative production commons
([23]).

Our abstract model of the commons delivers general results (in Sections 3, 4) that we apply to
a great variety of microeconomic examples. But the assumption that utility is transferable by some
numeraire is typically absent in the above literature.

2 Example 2.1: one W, two stories

The type xi varies in the interval [0, H] and the function W is

W(x) = max
1≤i≤n

{xi}

Story 1: The agents inherit an indivisible good and share it efficiently. Type xi is agent i’s
willingness to pay for the good. One of the efficient agents will get it and compensate the others in
cash. What compensation is fair?

Story 2: They share the cost (linear 1 to 1) of a public capacity: the width of a channel, the
length of a runway ([16]) or the amount of broadband they jointly buy. Type xi is the amount of
capacity agent i needs and the largest need must be met. Who should pay how much?

We generate some lower and upper guarantees, feasible but not necessarily tight, from any
deterministic sharing rule. In story 1 a natural rule splits equally of the efficient surplus W(x)
between the heirs, treating that surplus as a common property. This rule generates the following

7



lower and upper guarantees
4

g−(xi) = min
x−i∈[0,H]n−1

1

n
max{xi, max

j∈N⧹i
xj} =

1

n
xi = una(xi)

g+H(xi) = max
x−i∈[0,H]n−1

{ 1
n
max{xi, max

j∈N⧹i
xj}} =

1

n
H

The unanimity guarantee is the uncontroversial Proportional Share.

To check that g+H is a tight upper bound fix xi and consider the profile (xi,
n−1

H ): all agents other
than i cannot get more than 1

nH and we distribute the surplus H so all the agents i must get 1
nH.

In story 2 the Proportional Share 1
nxi is still reasonable as a minimal payment by i, but the

upper guarantee 1
nH (now i’s worst case outcome) is less so: it takes the extreme view of ignoring

all differences in individual demands, so an agent with very small needs may end up paying as much
as one imposing the largest capacity H. Without any reference to the context, Lemma 1.1 below
confirms the extreme nature of this normative position.

The simplest way to account for differences in needs is to divide total cost in proportion to
individual needs, which produces the guarantees

g−(xi) = min
x−i∈[0,H]n−1

{ xi

xi + xN⧹i
max
j∈[n]

{xj}} =
1

n
xi = una(xi)

g+0 (xi) = max
x−i∈[0,H]n−1

xi

xi + xN⧹i
max
j∈[n]

{xj} = xi

The upper guarantee g+0 is the familiar Stand Alone cost (discussed in subsection above). It is

tight: at the profile (x1,
n−1
0 ) no agent other than 1 pays anything (because una(0) = g+0 (0) = 0),

therefore i covers the full cost.
In story 1 the guarantee g+0 (xi) = xi does make sense if the good (perhaps a heirloom of

sentimental value) is worthless to anyone but these n agents: each one is at most entitled to the
amount of surplus that she is creating.

Clearly a convex combination of g+0 and g+H is a feasible upper guarantee but not a tight one;
we check this right after the proof of Lemma 2.1. Our first result describes the simple line of tight
upper guarantees connecting g+0 and g+H . We use the notation z+ = max{z, 0}.

Lemma 2.1: The tight upper guarantees g+p of W(x) = max1≤i≤n{xi} are parametrised by a
type p ∈ [0, H] as follows:

g+p (xi) =
1

n
p+ (xi − p)+ for xi ∈ [0, H] (3)
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So g+0 and g+H are the two end-points of the interval of tight upper guarantees.
The Lemma follows from the much more general Theorem 5.1. We give here a simple proof to

develop an intuition for our problem.

Proof : Checking that g+p meets the RH inequalities in (1) is routine and omitted for brevity.
Pick now an arbitrary tight upper guarantee g+ and set p = ng+(0). At the unanimous profile

n

(0) inequality (1) implies p ≥ 0. Tightness implies that g+ increases weakly (this is easy to check
or see Lemma 3.1) so g+(xi) ≥ 1

np for all xi. The constant function 1
nH is an upper guarantee

therefore if p > H the guarantee g+ is not tight. So p ∈ [0, H].

Applying now (1) to (xi,
n−1
0 ) gives g+(xi) ≥ xi − n−1

n p. Combining this with g+(xi) ≥ 1
np gives

g+ ≥ g+p . Because g+ is tight and g+p is an upper guarantee this must be an equality, which also
implies that g+p is tight. ■

For any λ ∈ [0, 1] choose p = λH : it is easy to check that the upper guarantee g+ = (1−λ)g+0 +
λg+H coincides with g+p at types 0 and H, and is strictly larger everywhere else.

If we adopt the tight pair (una, g+p ) the benchmark type p gets the share 1
np irrespective of other

agents’ types. In story 1 p could be an estimate of the market value of the good: if the good is
worth less than p for an agent i, she will receive at most a fair share of p; an agent who values it
more than p could receive, in addition to 1

np the full surplus xi − p. This will happen for sure if xi

is the only type above p: then i gets the good and pays 1
np to everyone else.

Similarly in story 2 p could be the “normal” or status quo capacity; only agents with needs larger
than p can be charged more than 1

np, and the surcharge can reach the full incremental cost xi − p.
Overall an agent with small needs prefer a low benchmark capacity p and one with large needs

a high p. And vice versa in story 1 where the agents of large type likes the parameter p to be low.

3 Guarantees: definition and general properties

The set of agents is {1, · · · , n} is written N or [n] depending if the individual labels matter or not,
and X = [L,H] ⊂ R is the common set of types. The notation xi may represent the type of a specific
agent identified by the context, or simply a generic single type, to distinguish it from a profile of
types x ∈ XN .

At the profile x = (xi)i∈[n] ∈ X [n] we must divide the benefit or cost W(x). The function W is

symmetric in the n variables xi and continuous on X [n].

Definition 3.1 The functions g− and g+ from X into R are respectively a lower and an upper
guarantee of W if they satisfy the inequalities:∑

i∈[n]

g−(xi) ≤ W(x) ≤
∑
i∈[n]

g+(xi) for all x ∈ X [n] (4)
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We write G−,G+ the (clearly non empty) sets of such guarantees.

Definition 3.2 Given two lower guarantees g−1 , g
−
2 ∈ G− we say that g−1 dominates g−2 if

g−1 (xi) ≥ g−2 (xi) for xi ∈ X and g−1 ̸= g−2 . The guarantee g− ∈ G− is tight if it is not dominated
in G−; equivalently increasing g− at a single x1 ∈ X creates a violation of the LH inequality in (4)
for some x−1 ∈ X [n−1].

The isomorphic statement for upper guarantees in G+ flips the domination inequality around;
for tightness it replaces increasing by decreasing and LH by RH.

We write G− and G+ for the subsets of tight guarantees in G− and G+.

Lemma 3.1
i) For ε = +,− every guarantee g ∈ Gε is either tight or dominated by a tight one. So Gε is not
empty.
ii) A tight guarantee is weakly monotonic if W is.
iii) A tight guarantee is continuous because W is.

Statement i) is a simple application of Zorn’s Lemma. For statement ii) fix g ∈ G−. If xi > x∗
i

and g(xi) < g(x∗
i ) define g̃(xi) = g(x∗

i ) and g̃ = g otherwise, then check that g̃ is still in G−. This
contradicts that g is tight. The longer proof of statement iii) is in section 9.1.

Lemma 3.2
A guarantee g in Gε is tight if and only if for all xi ∈ X there exists x−i ∈ X [n−1] s. t.

g(xi) +
∑

j∈[n]⧹i

g(xj) = W(xi, x−i) (5)

Then we call (xi, x−i) a contact profile of g at xi ; the set of such profiles is the contact set C(g)
of g.

Proof in the section 9.1.of the Appendix.

Tight guarantees with a simple contact set are easy to describe and use. Such a class of guarantees
is defined two subsections below: it plays a critical role in the results of sections 4,5 and 6.

Lemma 3.3 Fix a tight guarantee g ∈ G+. For any xi, x
∗
i and contact profile x = (xi, x−i) of g

at xi we have
g(x∗

i )− g(xi) ≥ W(x∗
i , x−i)−W(xi, x−i) (6)

and the opposite inequality if g ∈ G−.

Proof In the inequality

g(x∗
i ) +

∑
j ̸=i

g(xj) ≥ W(x∗
i , x−i)

10



we replace each term g(xj) by W(x)− g(xi)−
∑

k ̸=i,j g(xk) and rearrange it as follows

(n− 1)(W(x)− g(xi))− (n− 2)
∑
j ̸=i

g(xj) ≥ W(x∗
i , x−i)− g(x∗

i )

⇐⇒ W(x)− g(xi) + (n− 2)(W(x)−
∑
[n]

g(xj)) ≥ W(x∗
i , x−i)− g(x∗

i )

The term in parenthesis is zero by our choice of x−i so we are done. ■

Corollary Suppose K is a positive constant, X ⊂ RA and the function W is K-Lipschitz in
each xi, uniformly in x−i ∈ X [n−1]. Then so is each tight guarantee g ∈ Gε for ε = +,−.

We state without proof two useful invariance properties of guarantees.

Lemma 3.4 Fix X = [L,H], W and ε = +,−.
i) If W0 is additively separable, W0(x) =

∑
[n] w0(xi), then

Gε(W +W0) = Gε(W) + {w0}

ii) Fix θ is a bicontinuous increasing bijection xi = θ(zi) from the interval Z = [θ−1(L), θ−1(H)]

into X , and change variables to a new problem W̃(z) = W(θ(z)) where θ(z)i = θ(zi). Then if

g ∈ Gε(W) in the original problem, g ◦ θ ∈ Gε(W̃) in the new problem. If θ is decreasing, ceteris

paribus, then g ◦ θ ∈ G−ε(W̃).

For instance the problem W(x) = F (maxi∈[n]{xi}) reduces to W̃(z) = maxi∈[n]{zi} by the

change xi = F−1(zi); and W(x) = mini∈[n]{xi} reduces to W̃(z) = maxi∈[n]{zi} by the change of
variable xi = −zi.

3.1 the unanimity shares and guarantees

The restriction of W to the diagonal of X [n] defines the unanimity share of agent i:

una(xi) =
1

n
W(

n
xi) (7)

(recall (
k
z) is the k-vector with z in each coordinate). We repeat and amplify two observations made

in the Introduction.

Lemma 3.5
i) For any (g−, g+) ∈ G− ×G+ and for xi ∈ X

g−(xi) ≤ una(xi) ≤ g+(xi) (8)
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ii) If una is a lower (resp upper) guarantee it dominates each lower (resp upper) guarantee. And if
Gε is a singleton then it must be the unanimity guarantee. For ε = +,−:

una ∈ Gε =⇒ Gε = {una} and |Gε| = 1 =⇒ Gε = {una}

iii) For ε = +,− and for any xi ∈ X there is a tight guarantee g ∈ Gε s.t. g(xi) = una(xi).
Statement i) and the first part of ii), already discussed in section 1, follow by applying inequalities

(4) at a unanimous profile. The rest of the proof is in section 9.2.
We see thatW is additively separable, W(x) =

∑n
1 w(xi), if and only if both sets Gε are singletons

and the unanimity shares are justified by the tight guarantee requirement. In any other case we will
find that on at least one side of (4) there are infinitely many tight guarantees.

3.2 a special class of guarantees

In Example 2.1 for any xi, a contact profile of gp at xi is (xi,
n−1
p ).5 The guarantees for which a

fixed (n − 1)-profile serves as contact set for any type are easy to describe and play a key role in
sections 4 and 6.

Definition 3.3
i) An upper or lower guarantee is called simple if all types have a common contact profile c ∈ Xn−1

gc(xi) +

n−1∑
ℓ=1

gc(cℓ) = W(xi, c) for all xi ∈ X (9)

This implies that gc is given by

gc(xi) = W(xi, c)−
1

n
(

n−1∑
ℓ=1

W(cℓ, c)) for all xi ∈ X (10)

ii) A Stand Alone guarantee gc0 of W is a simple guarantee such that c = (
n−1
c0 ):

gc0(xi) = W(xi,
n−1
c0 )− n− 1

n
W(

n
c0)

If property (9) is true, gc can be written gc(xi) = W(xi, c) − C for some constant C. Replace
accordingly each term gc(cℓ) by W(cℓ, c)−C and rearrange to find gc(xi) as announced in (10). The
converse transformation of (10) to (9) is just as easy.

Lemma 3.6 For any c ∈ Xn−1 if gc is a guarantee, it is is tight.

5There are more: e. g., if xi ≤ p we can choose any x−i where just one type is larger than p.
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This follows at once from (9) and Lemma 3.2.

If the parameter c = (
n−1
c0 ) is unanimous the Stand Alone guarantee gc0 “touches” the unanimity

guarantee at c0: gc(c0) = una(c0). In Lemma 2.1 gp is the Stand Alone guarantee with parameter
c0 = p.

We do not expect a simple but not Stand Alone guarantee to touch the unanimity guarantee:
see statement ii) in Proposition 5.1.

3.3 implementing a guarantee by a sharing rule

A sharing rule φ for the function W maps each profile x ∈ X [n] to a division y = φ(x) of W(x):∑
[n] yi = W(x).

Given a pair (g−, g+) of tight guarantees it is easy to find a rule φ of which the guarantees are
precisely this pair.

Lemma 3 7. Fix the function W and a tight pair (g−, g+) ∈ G− × G+. If the sharing rule φ
satisfies g−(xi) ≤ φi(x) ≤ g+(xi) for all i and x then it implements (g−, g+): for all i and x

min
x−i

{φi(xi, x−i)} = g−(xi) ; max
x−i

{φi(xi, x−i)} = g+(xi)

To check the left equality note that minx−i
{φi(xi, x−i)} is a lower guarantee, at the same time

bounded below by g−. then invoke the tightness of g−. A similar argument works for the right
equality.

The moving average of g− and g+ is the simplest sharing rule implementing this pair in G−×G+:

φi(x) = λg−(xi) + (1− λ)g+(xi)

where for all x ∈ X [n] we choose λ s. t.
∑

[n] φi(x) = W(x).

Alternatively we can pick any sharing rule φ that does not implement (g−, g+) and adjust it
only at those profiles where if fails at least one of these bounds; in this way the adjusted rule φ̃ does
implement the desired pair of guarantees and preserves the choices of φ as much as possible.

4 Modular functions W
In this class of benefit and cost functions that includes most of our examples, the analysis of tight
guarantees simplifies on both sides of the system of inequalities (4). The following definitions take
into account of the fact that W is symmetric in its variables.

Definition 4.1 We call W super (resp sub) modular if for all x ∈ X [n] and all x∗
1 such that

x∗
1 > x1 the function W(x∗

1, x−1) −W(x1, x−1) is weakly increasing (resp decreasing) in x−1. And
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W is strictly super (sub) modular if this monotonicity is strict.
We say that W is modular if it is either supermodular or submodular.

The following consequence of Definition 4.1 can be taken as an alternative definition of super-
modularity (or submodularity by reversing the inequality). For every x1, x

∗
1, x2, x

∗
2 in X and x−12

in Xn−2 such that xi ≤ x∗
i for i = 1, 2, we have

W(x1, x
∗
2, x−12) +W(x∗

1, x2, x−12) ≤ W(x1, x2, x−12) +W(x∗
1, x

∗
2, x−12) (11)

If W is twice differentiable it is modular if and only if the sign of ∂ijW(x) is constant in X [n].
Simple examples of (non differentiable) modular functions include maxi{xi} submodular (Exam-

ple 2.1), mini{xi} supermodular. But the median of {xi}i∈[n] (say n is odd) is not modular. We
describe its guarantees in Example 6.3.

An important remark: with the exception of section 5, none of our general results requires W to
be monotonic in the xi-s, or convex or concave even in a single variable.

4.1 the unanimity guarantee

Proposition 4.1 If W is super (resp sub) modular the unanimity function (7) is the unique tight
upper (resp lower) guarantee: G+ = {una}.

Notation: as W is symmetric in the xi-s, we write (z;
k
y) for any (k + 1)-vector where one

coordinate is z and k coordinates are y.
Proof The proofs for the submodular and supermodular cases simply exchange the sign of all

inequalities. We assume that W is supermodular without loss of generality.
Suppose n = 2. By Lemma 3.5 we only need to prove that una is an upper guarantee, una ∈ G+:

W(x1, x2) ≤
1

2
(W(x1, x1) +W(x2, x2)) for any x1, x2

which follows inequality (11) and W(x1, x2) = W(x2, x1).
Reasoning by induction we assume the statement is true up to (n − 1) agents. We fix a n-

person supermodular function W and a profile x ∈ X [n]. For all i the unanimity function of the
supermodular (n− 1)-function W(·;xi) is an upper guarantee, therefore

{W(x) ≤ 1

n− 1

∑
j∈[n]⧹{i}

W(xi;
n−1
xj ) for all i} =⇒ nW(x) ≤ 1

n− 1

∑
(i,j)∈P

W(xi;
n−1
xj ) (12)

where P is the set of ordered pairs (i, j) in [n]. Fix now a pair i, j and use again the inductive
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assumption for W(·;xj) at the (n− 1)-profile (xi,
n−2
xj ):

W(xi;
n−1
xj ) ≤

1

n− 1
((n− 2)W(

n
xj) +W(xj ;

n−1
xi ))

Summing up both sides over (i, j) ∈ P and writing S for the summation in the RH inequality of
(12) gives

S ≤ (n− 2)

n∑
j=1

W(
n
xj) +

1

n− 1
S =⇒ S ≤ (n− 1)

n∑
j=1

W(
n
xj)

Combining the RH of (12) with the latter inequality concludes the proof. ■

We saw in Lemma 3.5 (statement iii) that for a fully general function W, modular or not,
and for every type xi there is a tight lower guarantee g− touching the unanimity function at xi:
g−(xi) = una(xi) (and the same is true for at least one tight upper guarantee).

Our next result says that if W is strictly supermodular a tight lower guarantee can only meet the
unanimity function at a single type (or not at all). Combining these two facts we see that if W is
strictly modular there is for each type xi a different tight guarantee g on the other side of unanimity
touching una at xi: in particular there is a continuum of such guarantees.

In Example 2.1 the tight upper guarantees are parametrised by the type where they touch the
unanimity function. But for a general strictly modular function W we expect for each type a large
continuum of tight guarantees touching una at that type, and many more never touching una: this
will be clear from Proposition 5.2 and 7.1 below.

Lemma 4.1 If W is strictly modular then a tight guarantee g on the other side of the unanimity
one touches its graph in at most one type: the equation g(xi) = una(xi) has at most one solution.

Proof in section 9.3.

4.2 two canonical Stand Alone guarantees

On the other side of the unanimity we discover two Stand Alone guarantees (Definition 3.3) already
mentioned in section 1.1 and the literature review.

Definition 4.2 The two canonical guees gL, gH are

gL(xi) = W(xi;
n−1

L )− n− 1

n
W(

n

L) (13)

gH(xi) = W(xi;
n−1

H )− n− 1

n
W(

n

H)

In Example 2.1 g+L and g+H they are the end points of G+. They keep this role in all modular
problems.
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Theorem 4.1 Fix a supermodular function W.
i) Then gL and gH are tight lower guarantees of W.
ii) The property gL(L) = una(L) characterises gL in G−; so does gH(H) = una(H) for gH .
iii) Any tight lower guarantee g− grows slower than gH and faster than gL: for any x < y

gL(y)− gL(x) ≤ g−(y)− g−(x) ≤ gH(y)− gH(x)

iv) Any tight lower guee g− starts (at L) above gH and below gL, and ends (at H) above gL and
below gH

gH(L) ≤ g−(L) ≤ gL(L) = una(L) (14)

gL(H) ≤ g−(H) ≤ gH(H) = una(H)

Proof in section 9.4.

Clearly if W is a supermodular surplus, gL favors the types xi close to L who get a share close
to their best case una(xi), and gH favors those close to H. These comments are inverted if W(x) is
a cost or if W is a submodular surplus.

Whether W is super or submodular, statement iii) implies that the spread ∆(g) = g(H)−g(L) is
smallest at one of gL, gH and largest at the other, over all tight guees on the other side of unanimity.
For instance in Example 2.1 ∆(g+p ) = H − p varies from H for g+0 to 0 at g+H . It is easy to check
that the spread of our two canonical guarantees is another way to characterise them.6

4.3 implementing the Stand Alone guarantees: the serial rules

We adapt to our model these well known sharing rules, originally introduced for the commons
problem with substitutable inputs ([22], [29]) discussed in the next section.

Definition 4.4 The increasing Serial sharing rule (Ser↑) φser↑ is defined by the combination
of two properties a) it is symmetric in its variables and b) the share of agent i with type xi is
independent of other agents’ larger shares.7

When the agents are labelled by increasing types as x1 ≤ x2 ≤ · · · ≤ xn agent i’s share is:

φser↑
i (x) =

W(x1, · · · , xi−1,
n−i+1
xi )

n− i+ 1
−

i−1∑
j=1

W(x1, · · · , xj−1,
n−j+1
xj )

(n− j + 1)(n− j)
(15)

We omit this computation for brevity: see the details in ([21]) where this is equation (6).

6For instance if W is supermodular and ∆(g) = ∆(gL) for some g ∈ G−, we sum up g(x)− g−(L) ≥ gL(x)− gL(L)
with g(H)− g(x) ≥ gL(H)− gL(x) to get an equality and conclude g = gL.

7The share φi(x) does not change if agent j’s type changes from xj to x′
j both weakly larger than xi.
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The decreasing Serial rule Ser↓ is defined symmetrically by property a) and b)*: agent i’ share
is independent of other agents’ smaller shares. It is given by the same expression (15) if we label
the agents by decreasing types.

In Example 2.1 the Ser↑ rule is proposed first in [LO] and interpreted as the Shapley value. The
SER↓ rule reduces to the Equal Split rule.

Proposition 4.2 Fix a supermodular function W in [L,H][n].
The SER↑ rule implements the pair of guarantees (gL, una). The Ser↓ rule implements the pair
(gH , una).

The isomorphic statement for submodular functions exchanges the gL and gH guarantees.

Proof in section 9.5.

Dismissing the Proportional, Equal Split and Shapley rules These two familiar rules,
φpro
i (x) = xi

xN
W(x) and φes

i (x) = 1
nW(x), make sense in particular when X ⊂ R+ and W increases

in x. They cannot play a general role in our approach to fair division because they do not point
to the unanimity shares when the function W is separably additive. Moreover the guarantees they
generate are often not tight: Example 2.1 is a spectacular exception where they actually implement
respectively the pairs (una, gL) and (una, gH).

In the commons problem W(x) = F (xN ) to which we now turn the Proportional rule is popular.
But we noted in subsection 1.2 that it violates the unanimity guarantee, whether the problem is
super or submodular. Lemma 9.1 in section 9.6 explains that on the other side it implements gL but
only if L = 0. It also shows the same failings for the Shapley value division rule. That the Equal
Split rule fails both lower and upper tightness tests is clear.

5 Substitutable inputs

Definition 5.1 A commons problem is defined by the domain of types [L,H] ⊂ R and W(x) =
F (xN ). It is super (resp sub) modular if and only if F is convex (resp concave).

We do not require F to be monotonic or [L,H] to be non negative. This extends the usual
context of a production function in common property where types are input contributions or output
demands (see references in subsection 1.3). For instance the function F can be single-peaked if
F (xN ) is the profit of n suppliers acting as a monopolist. We also take advantage of the invariance
properties in Lemma 3.4 to solve problems with complementary inputs (Example 5.1) and to propose
ways to divide the cost or benefit of the variance of types located along a line (Example 5.3).

The next two subsections introduce two new families of tight guarantees for modular commons
problems.
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5.1 the n simple guarantees

They are a sequence of simple guarantees (Definition 3.3) progressively compromising from one
Stand Alone guarantee to the other.

Proposition 5.1 Fix a n-person commons problem ([L,H], F ) and consider the functions gℓ,h
where ℓ, h are integers s. t. 0 ≤ ℓ, h ≤ n− 1 and ℓ+ h = n− 1:

gℓ,h(xi) = F (xi + (ℓL+ hH))− 1

n
{ℓF ((ℓ+ 1)L+ hH) + hF (ℓL+ (h+ 1)H)} (16)

so that gn−1,0 = gL and g0,n−1 = gH .
i) If F is convex (resp concave) gℓ,h is a simple tight lower (resp upper) guarantee.
ii) If F is strictly convex (resp concave) the n−2 guarantees other than gL and gH do not touch

the unanimity one (their graphs do not intersect). The gap una(xi)−gℓ,h(xi) (resp gℓ,h(xi)−una(xi))
is minimal at the type xi =

ℓ
n−1L+ h

n−1H

Proof in section 9.7.
A rephrasing of statement ii) is that the guarantees gℓ,h are not Stand Alone ones in the sense

of Definition 3.3.
There is perhaps a sequence of natural division rule between Ser↑ and Ser↓ to implement the

n − 2 lower guarantees between gL and gH . Short of discovering one we must use the ready made
interpolation rules explained after Lemma 3.7.

Example 5.1 Complementary inputs
A project wil return one unit of surplus if and only if all agents complete their own part in full.

Agent i’s input xi ∈ [L,H] is the probability that i is successful, and 0 < L < H ≤ 1. The agents
share the expected return

W(x) = x1x2 · · ·xn for x ∈ [L,H][n]

The function W is supermodular so una(xi) =
1
nx

n
i is the unique tight upper bound on type xi’s

share.
The change of variable xi = ezi (Lemma 3.4) transforms W into W̃(z) = ezN to which we apply

Proposition 5.1 then write the guarantees g̃ℓ,h in terms of the original problem:

gℓ,h(xi) = LℓHh(xi −
1

n
(ℓL+ hH))

So our n simple guarantees are linear in type.
Here gL(xi) =

1
nL

n +Ln−1(xi −L) helps an agent supplying minimal effort as much as possible
(as gL(L) = una(L)) and gives a little bit more for any “voluntary” larger effort. At the other
end gH(xi) =

1
nH

n −Hn−1(H − xi) expects maximal effort and rewards it as if everyone else does
the same. The minimal share of a “slacker” falls rapidly with his effort, and become negative if
xi <

n−1
n H: this tax is needed to subsidize the hard working agent if she is the only one! The n− 2
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other guarantees gℓ,h allow the manager to adjust, along a grid increasingly fine as n grows, the
critical effort level 1

n (ℓL + hH) guaranteeing a positive share of output (slightly smaller than the
level where the gap between the upper and lower bounds is minimal).

5.2 the tangent and hybrid guarantees

If the general function W is globally convex and differentiable in [L,H][n] the tangent θa at any
point (a, una(a)) of its unanimity graph

θa(xi) =
1

n
W(

n
a) + ∂1W(

n
a)(xi − a)

defines a feasible but not necessarily tight lower guarantee, θa ∈ G−. Indeed for any xi ∈ [L,H] the
LH of inequalities (4) is ∑

[n]

θa(xi) = W(
n
a) + ∂1W(

n
a)(xN − na)) ≤ W(x)

precisely the tangent hyperplane inequality of W at (
n
a) because W is symmetric.

For W(x) = F (xN ) with F convex we find that most tangents to the unanimity graph are tight
lower guarantees: those touching that graph inside the subinterval of [L,H] left after deleting 1

n -th
of the interval at each end. And on the deleted left and right interval, concatenating a tangent
with the translated of one of our two Stand Alone guarantees completes the continuous line of tight
guarantees connecting gL to gH

In the commons model F is either convex or concave so has well defined left and right derivatives.
At a point z where they differ, we write dF

dx (z) the corresponding closed interval and Θa(xi) =
1
nF (na) + dF

dx (na)(xi − a) for the set of tangent(s) to the unanimity graph at na, with generic

element θa: θa(xi) =
1
nF (na) + ∂θa × (xi − a) where ∂θa ∈ dF

dx (na).

Proposition 5.2: If F is convex in [nL, nH] the supermodular commons W(x) = F (xN ) admits
the following tight lower guarantees ga, where a ∈ [L,H]:

Case 1: n−1
n L+ 1

nH ≤ a ≤ 1
nL+ n−1

n H then ga = θa ∈ Θa in [L,H];
Case 2: L ≤ a ≤ n−1

n L+ 1
nH then

ga = θa ∈ Θa in [L, na− (n− 1)L] ; ga = gL + (n− 1)(una(L)− θa(L)) in [na− (n− 1)L,H]]

Case 3: 1
nL+ n−1

n H ≤ a ≤ H then

ga = gH + (n− 1)(una(H)− θa(H)) in [L, na− (n− 1)H] ; ga = θa ∈ Θa in [na− (n− 1)H,H]

If F is concave in [nL, nH] the same family of ga, a ∈ [L,H], are tight upper guarantees of W.
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Proof in section 9.8.

An important remark: at a given contact point on the graph of the unanimity function we have
many other (a large infinity in fact) of tight guarantees. This is clear from the discussion of Theorem
7.1 two sections below.

5.3 more examples

Example 5.2 Sharing the cost of a public bad
Each agent can engage in a potentially polluting activity at a level xi in X = [0, 2d]. The cleaning

cost is F (xN ) = (xN − nd)+: total activity xN below nd is costless, but requires cleaning at price 1
beyond this threshold. This cost function is convex.

The unanimity cost share una(xi) = (xi − d)+ is the single tight upper guarantee (worst cost
share) for the different types. A “clean” type xi ≤ d will never pay (but could be paid): the cost
can only be shared by the dirty agents. The latter agent may pay up to the cost of his pollution in
excess of the threshold d.

The Stand Alone guarantee gL is gL(xi) ≡ 0. A clean agent never pays anything (because
gL = una in [0, d]) but cannot be compensated either.

The other Stand Alone gH(xi) = xi−d takes a radically different viewpoint: a dirty agent i pays
his worst unanimity cost for sure (gH = una in [d, 2d]) even if the other agents are so clean that
total pollution incurs no cost; in that case the tax xi−d will go the the clean agents; a zero polluter
can receive as much as d in cash. Under the guarantee gH a clean agent j is effectively selling her
unused pollution credit d− xj to “absorb” the pollution of the dirty ones.

There is only one other simple guarantee and only if n = 2m + 1 is odd8, striking a reasonable
compromise between the extremists gL and gH :

gm.m(xi) = (xi − d)+ − m

n
d ≃ (xi − d)+ − 1

2
d

Here an agent will pay something for sure only if his pollution is 50% larger than the threshold d,
and even a very dirty type can expect a rebate of 1

2d if the others are sufficiently clean. At the other
end the superclean agent, xi = 0, cannot be rewarded more than 1

2d.
By contrast the infinitely many tangents at the kink (d, 0) of the unanimity graph are tight lower

guarantees, and in this case do not need to be adjusted near the endpoints of X :9

gλ(xi) = λ(xi − d) for 0 ≤ λ ≤

Now dirtiness is (at least) taxed at the fixed rate λ and the same rate applies to the subsidy of
clean types.

8This is because the cost function is two-piece linear.
9Case 2 in Proposition 5.2 gives gL for a in the corresponding neighborhood of 0, and case 3 gives similarly gH .

20



Keep in mind a consequence of Theorem 7.1 two sections below: the lower tight guarantees in
Propositions 5.1, 5.2 far from exhaust the whole menu.

Example 5.3 Sharing the cost of the variance
Agents choose a type xi in [0, 1] and must share (n times) the variance of their distribution:

W(x) =
∑
[n]

x2
i −

1

n
(
∑
[n]

xi)
2

(17)

In a cost sharing interpretation agent i′s deviation from the mean 1
nxN has a quadratic cost

(xi − 1
nxN )2 and W(x) is the sum of these costs. For instance given the profile of locations xi the

sum of quadratic travel costs to a facility located at the mean (to minimise this sum) is precisely
(17)

Cash compensations for agents incurring a large travel cost are feasible. The cost function W
is submodular and una(xi) ≡ 0. The unanimity test limits these transfers to each type xi: they
should never exceeed i’s travel cost to the facility: no one should end up with a net subsidy from
the others.

The natural cost sharing rule φi(x) = (xi − 1
nxN )2 rules out cash compensations. It meets the

unanimity lower bound but the upper bound (worst case) it assigns to type xi is too high:. Its easy
to check that it implements the upper guarantee:

max
x−i

φi(xi, x−i) =
n− 1

n
(xi − 1)2 if xi ≤

1

2
; =

n− 1

n
x2
i if xi ≥

1

2

This is the maximum of the upper guarantees gL(xi) =
n−1
n x2

i and gH(xi) =
n−1
n (xi − 1)2, and

is strictly larger everywhere than the tight upper guarantee g 1
2
(xi) = (xi − 1

2 )
2 discussed below.

To compute the tight guarantees identified in Propositions 5.1 and 5.2 we apply the invariance
Lemma 3.4. By statement i) there and a change of sign, every tight upper guarantee g+ of W
obtains from a tight lower guarantee g∗ of W∗(x) = (xN )2 as g+(xi) = x2

i − 1
ng

∗(xi).
The n simple upper guarantees in Proposition 5.1 are indexed as follows by the integer h from 0

to n− 1:

g+h (xi) =
n− 1

n
(xi −

h

n− 1
)2 + δh

where δh = h(n−1−h)
n2(n−1) .

So g+h focuses on the location h
n−1 where the the worst cost share δh is small because δh ≤ 1

4n for
all h. Contrast this with the two Stand Alone guarantees gL and gH that do not charge anything
to their respective benchmark types 0 and 1.

The tangent lower guarantees of W∗ (case 1 in Proposition 5.2) are g∗a(xi) = na(2xi − a): they
correspond to the tight upper guarantees g+a (xi) = (xi − a)2 of W for a ∈ [ 1n ,

n−1
n ]: the location
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a is free for a type a, and the worst cost share at other locations is exactly the travel cost to the
benchmark. But if a is L or H the guarantees g(xi) = x2

i and (1 − xi)
2 are dominated by gL and

gH .
Note that if a ≃ h

n−1 the guarantees g+a and g+h are similar: g+h is n−1
n flater than g+a and smaller

at 0 and 1, but unlike g+a , it never vanishes.

6 Rank separable functions

In this large class of functions W the tight guarantees are all simple and parametrised by a (n− 1)-
profile c in [L,H][n−1].

The decreasing order statistics of the profile x ∈ [L,H][n] is written (xk)nk=1 with x1 = maxi{xi}
and xn = mini{xi}. The statement “xi is of rank k in profile x” is unambiguous if xi is different from
every other coordinate; otherwise we mean that xi appears at rank k for some weakly increasing
ordering of the coordinates of x.

Definition 6.1 The function W on [L,H][n] is rank-separable if there exist n continuous real
valued functions wk on [L,H] s. t.

W(x) =

n∑
k=1

wk(x
k) for all x in [L,H][n] (18)

An equivalent definition of rank separability phrased as a functional equation in the unknown
W makes clear where the functions wk come from:

W(x) =

n∑
k=1

W(
k−1

H ,xk
n−k

L ) for all x in [L,H][n]

The routine proof of the equivalence is omitted.

Lemma 6.1 The rank separable function W is supermodular (resp submodular) if and and only
if wk grows weakly slower (resp faster) than wk+1 in [L,H]: wk(y) − wk(z) ≤ wk+1(y) − wk+1(z)
for all z ≤ y and k ∈ [n− 1].

Proof in section 9.9.

The simple rank separable functions W(x) = x1 and xn are respectively sub and supermodular.
But the other rank function W(x) = xk, 2 ≤ k ≤ n − 1, are neither sub- nor supermodular. In
Example 6.3 below we describe their tight guarantees, infinitely many of them on both sides of
inequality (4) because the unanimity function is not any kind of guarantee.

More examples with linear functions wk follow the characterisation theorem.
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Recall the Definition 3.3 of the simple guarantee gc with universal contact profile c ∈ [L,H]n−1:

gc(xi) = W(xi, c)−
1

n
(

n−1∑
ℓ=1

W(cℓ, c))

Theorem 6.1 Fix a (super or sub) modular function W. The two following statements are
equivalent:
i) The function W is rank separable.
ii) For all c ∈ [L,H]n−1 the function gc is a tight simple guarantee of W on the other side of the
unanimity one.

The function W has no other tight guarantee.

The long proof is in section 9.10.

Recall that in the rank separable Example 2.1 the tight upper guarantees form a uni-dimensional
interval. For a general modular and rank separable function the set Gε of tight guarantees on the
other side of una is of dimension at most n − 1. This is in sharp contrast with what Theorem 7.1
reveals about strictly modular and differentiable functions W for which the dimension of that set is
infinite. The rank separable functions are additive in the open subsets of [L,H][n] where the ordering
of the coordinates is strict and constant, therefore not at all strictly modular.

In the next examples W is also additive w r t the ordered types, so every tight guarantee is
piecewise linear and concave (resp convex) if W is super (resp sub) modular.

Example 6.1 Team work and Queuing
As in Example 2.1 the same supermodular function W has two very different interpretations:

W(x) = x1 + 2x2 + · · ·+ nxn for x ∈ [0, H]n (19)

Story 1: Team work with increasing returns
When k agents work as a team their productivity is 1

2k(k+1) per hour. Agent i can work for xi

hours, so the maximal output (19) is produced by making everyone work from time 0 to xn, then
all but agent n from time xn to xn−1, etc.. . How should we divide the output?

Story 2: Queuing with cash compensation ([17], [7], [8])
A single server processes n jobs, each job takes one day, and agent i’s waiting cost is xi per day,

varying in [0, H]. High cost agents are served first to minimise total waiting costs and the optimal
cost is also (19). What cash compensations from the impatient agents to the patient ones are fair?

The unanimity upper guarantee is una(xi) =
1
2 (n+1)xi and the first Stand Alone lower guarantee

is gL(xi) = xi. The tight pair (gL, una) makes sure that working for a very short time never incurs
a penalty in the team story or make a profit in the queuing one. By statement ii) in Theorem
4.1 every other tight lower guarantee g is s. t. g(0) < 0 thus taxing (at some contact profiles) an
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absentee agent in story 1, and allowing the very patient one in story 2 to receive more than her
actual waiting cost.

The substantial literature on the queuing model rules out the option of rewarding a patient agent
that much. This makes sense if agents are not responsible for their types: I am not blamed for my
impatience but only asked to compensate those more patient than me because I will impose a wait
on them. For instance the convincing solution proposed in (Manq) make me pay to each agent I
displace one half of their cost for waiting one more day.

Our tests of tightness are compatible with this viewpoint, but also with many others treating the
impatient agents much more agressively in the queuing story. In the team story they allow to tax
the absentees for the benefit of those who work long hours, much like in Example 5.1. The stronger
such effect is with the other canonical guarantee gH(xi) = n(xi − n−1

2n H) where the absentee may
end up (at some profiles) paying as much as as much as 1

2 (n− 1)H.
Included in Theorem 6.1 is for each c0 ∈ [L,H] the two-piece linear Stand Alone guarantee with

all n− 1 fixed types at c0:

gc0(xi) =
n(xi − n−1

2n c0)
xi +

n−1
2 c0

if
xi ≤ c0
xi ≥ c0

where it takes a type above approximately 1
2c0 to avoid any penalty (story 1) or rule out a profit

(story 2).
To make the derivative of a simple guarantee gc decreases more progressively with xi from n to

1, we can instead choose the fixed types at 1
nH, 1

nH, · · · , n−1
n H.

Example 6.2 Sharing the cost of the spread
The types xi vary in the interval [L,H] of length ∆, they must share the submodular cost of the

spread W(x) = x1 − xn. For instance types represent a location and W(x) is the cost of a road or
link connecting the agents. Or type xi is when agent i will show up for service and they share the
cost of staffing the desk so everyone will be served upon arrival. Etc.. This is similar in spirit to
Example 5.3 where the cost is the variance of the types, but here we discover all the tight guarantees
whereas there we found infinitely many but certainly not all of them.

The tight lower guarantee is una(xi) ≡ 0: everyone’s best case is to pay nothing, but nobody
can make a profit. But should an agent be penalised (pay more than the average) for being at the
periphery of the distribution of agents, and if so, by how much?

Like in Example 2.1 the simple Equal Split rule φi(x) =
1
n (x

1 − xn) delivers a plausible upper
guarantee ges(xi) =

1
n∆, tight if n ≥ 3.

Fixing any c ∈ [L,H]n−1 it is easy to check that for n ≥ 3 the simple upper guarantee gc depends
only upon the largest and the smallest parameters c1 and cn−1. In the safe interval [cn−1, c1] you
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pay at most 1
n (c1 − cn−1).

10 Write δ = c1 − cn−1 and µ = 1
2 (c1 + cn−1) then

gc(xi) = max{ 1
n
δ, |xi − µ| − n− 2

2n
δ} for all xi ∈ [L,H]

If δ = H−L this is the Equal Split guarantee and for δ = 0 the Stand Alone one gc(xi) = |xi−c1|,
in particular the two canonical guarantees for c1 = L or H.

The upper bound guarantee rises at speed 1 going down from cn−1 or up from c1: those types
could pay, in addition to the base cost share 1

nδ, the full connecting cost to the safe interval.

Remark We interpreted Example 5.3 as the division of quadratic travel costs to an optimally
located facility. With linear travel cost this become the cost of traveling to the median xm+1 of the
types (say n = 2m+ 1) and is computed as W(x) =

∑m
k=1 x

k −
∑n

ℓ=m+2 x
ℓ, another rank separable

function.

In our last example W is not modular but simple enough that we can still describe the two sets
of tight guarantees, now infinite on both sides.

Example 6.3 Production with quota
Fix n and a quota q, 2 ≤ q ≤ n− 1. Agent i inputs the effort xi. To achieve the output y = F (z)

we need at
least q agents contributing an effort at least z:

Wq(x) = F (xq) for x ∈ [L,H]n] (20)

If q = 1 this is the submodular Example 2.1, up to a change of variable, and if q = n its
supermodular mirror image. For other values of q, Wq is not modular.

Here una(xi) = 1
nF (xi) is neither a lower guarantee nor an upper guarantee. There is a one

dimensional choice of tight guarantees on both sides of (4). The set G+
q is parametrised by p ∈ [L,H]:

g+p (xi) =
1

n
F (p) +

1

q
(F (xi)− F (p))+

and G−
q is similarly parametrised by p∗ ∈ [L,H]:

gp∗(xi) =
1

n
F (p∗) +

1

n− q + 1
(F (xi)− F (p∗))−

The proof, omitted for brevity, mimicks that of Proposition 2.1.
If p = p∗ this “standard” level of effort guarantees the share 1

nF (p). If the actual input xq is
below p the “slackers” inputting a sub-standard effort get on average less than 1

nF (p) if there are

10For n = 2 there is a single parameter c0 and the corresponding tight guarantee is gc0 (xi) = |xi − c0|. The Equal
Split guarantee is not tight in this case only.
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some hard working agents who get at least 1
nF (xq). Symetrically if xq is above p∗ the “slackers”

cannot get more than the standard share 1
nF (p), and may get less if more than q agents input xi

larger than z∗.

7 Two person strictly modular problems

A commons problem (section 5) is strictly modular if F is strictly convex or strictly concave. But
no rank separable function is (as explained just after Theorem 6.1).

The key to our characterisation result is a precise description, in the next two Lemmas, of the
contact set of tight guarantees on the other side of una. Fixing a modular function W(x1, x2) and
a tight guarantee g on either side of (4), we define its contact correspondence γ with range and
domain [L,H]:

γ(x1) = {x2 ∈ [L,H]|g(x1) + g(x2) = W(x1, x2)} for all x1 ∈ [L,H] (21)

It is non empty by Lemma 3.2 and we write its graph as Γ(γ).

Lemma 7.1 If W is supermodular, g ∈ G− and Γ(γ) contains (x1, x2) and (x′
1, x

′
2) s.t.

(x1, x2) ≪ (x′
1, x

′
2), then Γ(γ) contains (x1, x

′
2), (x

′
1, x2) ∈ as well, and W is not strictly super-

modular.
If W is submodular replace G− by G+.
Proof We sum up the two equalities in (21) for (x1, x2) and (x1′, x2′):

W(x1, x2) +W(x′
1, x

′
2) = {g(x1) + g(x′

2)}+ {g(x′
1) + g(x2)} ≤ W(x1, x

′
2) +W(x′

1, x2)

Combined with the supermodular inequality (11) this gives an equality and the desired contradiction.
In fact W is then additive inside the rectangle [x1, x

′
1]× [x2, x

′
2]. ■

Lemma 7.2 Fix a strictly supermodular function W and a tight guarantee g ∈ G− – or a
submodular W and g ∈ G+ – with contact correspondence γ.
i) Γ(γ) is symmetric: x2 ∈ γ(x1) ⇐⇒ x1 ∈ γ(x2) for all x1, x2.
ii) γ is convex valued: γ(x1) = [γ−(x1), γ

+(x1)], single-valued a.e., and upper-hemi-continuous (its
graph is closed).
iii) γ− and γ+ are weakly decreasing and x1 ≤ x′

1 =⇒ γ−(x1) ≥ γ+(x′
1); γ is the u.h.c. closure of

both γ− and γ+.
iv) γ(L) contains H and γ(H) contains L.
v) γ has a unique fixed point a: a ∈ γ(a), and a is an end-point of γ(a).

Proof in Appendix 9.11.

After picking a correspondence γ as just described, the tight guarantee of which γ describe the
contact set obtains by integrating the differential equation dg

dxi
(xi) =

∂W
∂xi

(xi, γ(xi)).
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Theorem 7.1 Fix a strictly super (resp. sub) modular function W, continuously differentiable
in [L,H]2.
i) For any correspondence γ as in Lemma 7.2, the following equation

g(x1) =

∫ x1

a

∂1W(t, γ(t))dt+ una(a) (22)

defines a tight lower guarantee g ∈ G− (resp. G+).
ii) Conversely if g is a guarantee in G− (resp. G+) with contact correspondence γ (as in Lemma
7.2) then g takes the form (22).

Corollary: If n = 2 all guarantees on other side of una touch it (are tangent to it if smooth)
at a unique point

So the sets G± on the other side of unanimity are parametrised by a large set of functions γ.

The proof starts with a differentiability result (Lemma 9.2) in Appendix 9.12 and concludes in
Appendix 9.13.

The contact correspondences of the two Stand Alone guarantees gL, gH follow respectively the
lower and upper edges of the square [L,H]2.11 A natural compromise between these two follows the
anti-diagonal γ(x1) = L+H − x1 of [L,H]2. With the notation d = 1

2 (L+H) this is

gd(xi) = una(d) +

∫ xi

d

∂1W(t, 2d− t)dt

In general, after selecting the type a at which γ crosses the diagonal of [L,H]2, we can pick
any decreasing single-valued function γ from [L, a] into [a,H] mapping L to H and a to itself, then
fill the (countably many) jumps down to create the correspondence γ of which the graph connects
(L,H) to (a, a), and finally extend γ to [a,H] by symmetry of its graph around the diagonal of
[L,H]2.

We illustrate this embarrassement of riches in the commons of section 5.

Example 7.1 Commons with substitutable inputs
We have W(x) = F (x1 + x2) and F is strictly concave on [0, 1].
Proposition 5.1 has no bite for n = 2.
In Proposition 5.2 statement i) delivers a unique full tangent guarantee gd described above.
The contact functions of the guarantees in statements ii) and iii) are two-piece linear. For

instance if α ∈ [0, 1
2 [: γα(0) = [2α, 1]; γα(xi) = 2α− xi on ]0, 2α] and γα(xi) = 0 on [2α, 1].

To construct new tight upper guarantees connecting gL and gH we can fix σ ∈ [0, 1] and use the
following piecewise constant contact function:

γσ ≡ 1 on [0, σ[ ; γσ(σ) = [σ, 1] ; γσ(xi) = σ on ]σ, 1[ ; γσ(1) = [0, σ]

11For instance γL(0) = [0, 1], γL(]0, 1]) = 0.
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The equation (22) gives

gσ(xi) =
F (xi + 1)− F (σ + 1) + 1

2F (2σ)
F (xi + σ)− 1

2F (2σ)
if

xi ≤ σ
xi ≥ σ

concatenating two different stand alone-like pieces, connected at xi = σ where they touch the
unanimity graph. Unlike the gα-s in Proposition 5.2 (see γα above), the connection is not smooth.

Taking the symmetric of γσ around the anti-diagonal we find, after similar computations, a
second family of non smooth concatenations of stand alone-like pieces parametrised by τ ∈ [0, 1]:

gτ (xi) =
F (xi + τ)− 1

2F (2τ)
F (xi)− F (τ) + 1

2F (2τ)
if

xi ≤ τ
xi ≥ τ

8 Concluding comments

We start with three open questions.

Q1 The two generalised serial sharing rules (subsection 4.2) implement the unanimity guarantee
and the two canonical Stand Alone ones. Can we find similarly natural sharing rules to implement
the n− 2 simple guarantees in Proposition 5.1? Or the tangent guarantees in Case 1 of Proposition
5.2? Or the simple guarantees of rank separable problems?

Q2 Generalising Theorem 7.1 for n ≥ 3
The key for this Theorem is the full description of the contact correspondence of any tight

guarantee (Lemmas 7.1, 7.2 ). We could not gain a similar understanding of this correspondence
with three or more agents.

In a two agent problem the contact set of every tight guarantee g in Gε intersects the diagonal:
g touches una (Lemma 7.2). This gives the starting point of the integral equation (22). But if n ≥ 3
in Proposition 5.1 and Theorem 6.1 we found many tight guarantees of which the contact set does
not intersect the diagonal.

Q3 Multi-dimensional types
All definitions and results of section 3 are preserved if the type space X is a compact subset of

a metric space. An obstacle to further develop the multidimensional analysis is the following very
challenging decentralisation question.

The following claim is obvious from the definitions and Lemma 3.5. Suppose each type has two

components xi = (xa
i , x

b
i ) ∈ Xa × Xb = X and pick two functions Wa on X [n]

a and Wb on X [n]
b . If

g+a and g+b are two tight guarantees of, respectively, Wa and Wb, then g+a + g+b is clearly a tight
guarantee of their “sum” W(x) = Wa(x

a) +Wb(x
b) on the domain X .

We do not know for which domain of functions W the converse decentralisation property holds:
every tight guarantee g of Wa+Wb (two functions in the domain) is the sum of two tight guarantees
in the component problems.

The answer eludes us even for the simple problem of assigning more than one indivisible object
and cash transfers when utilities over objects are additive : the corresponding function W is the
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sum of problems Wa(x
a) = maxi∈[n]{xa

i } over several objects a. With much sweat we showed that
the decentralisation property holds for two agents and two objects!12

relation to optimal transport The tight guarantees g− and g+ to a given symmetric function
W are its best approximations by symmetric additively separable functions from above and below.
There is a formal connection13 to the celebrated Optimal Transport problem ([36], [13]), specifically
to its dual formulation as the Kantorovitch- Rubinstein Lemma:

max
Π:Πi=λi

{
∫

W(x)dΠ(x)} = min
gi:

∑
i gi(xi)≥W(x)

{
∑
i

∫
gi(xi)dλi}

where W(x) is the abstract transport cost, and Π the transportation protocol with fixed marginals
λi over the n coordinates of x.

The symmetry assumption is central to our approach: it restricts the marginals λi to be identical
and the function Π symmetric, which is not the case in a standard Monge transportation problem
or the matching models discussed in ([13]). The insights of that literature may still be useful for
symmetric fair division problems such as those discussed here.

9 Appendix: missing proofs

9.1 Lemma 3.1, statement iii) and Lemma 3.2

Step 1: a tight guarantee is upper-hemi-continuous. We fix g ∈ G− and check that it is u.h.c..
If it is not, there is in X some x1, a sequence {xt

1} converging to x1, and some δ > 0 such that
g(xt

1) ≥ g(x1) + δ for all t. Then we have, for any x−1 ∈ X [n−1]

W(xt
1, x−1) ≥ g(xt

1) +

n∑
i=2

g(xi) ≥ (g(x1) + δ) +

n∑
i=2

g(xi)

Taking the limit in t of W(xt
1, x−1) and ignoring the middle term we see that we can increase g at

x1 without violating (4), a contradiction of our assumption g ∈ G−.

Step 2: Lemma 3.2. “If” is clear. For “only if” we fix g ∈ G− and show that it meets property (5).
For any x1 ∈ X define

δ(x1) = min
x−1∈X [n−1]

{W(x1, x−1)−
∑
[n]

g−(xi)}

12The proof is available upon request from the authors.
13We thank Fedor Sandomirskiy for pointing it out.
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and note that this minimum is achieved at some x−1 because the function x−1 →
∑n

i=2 g
−(xi) is

u.h.c. (step 1). Moreover δ(x1) is non negative.
If δ(x1) = 0 property (5) holds at x−1. If δ(x1) > 0 we can increase g at x1 to g(x1) + δ(x1),

everything else equal, to get a guarantee dominating g.

Step 3: a tight guarantee is lower-hemi-continuous. We fix g ∈ G− and check that it is l.h.c.. By
the continuity of W and compactness of X [n] we have:

∀η > 0,∃θ > 0,∀x1, x
∗
1, x−1 : ||x1 − x∗

1|| ≤ θ ⇒ W(x1, x−1) ≤ W(x∗
1, x−1) + η

If g is not l.h.c. there is some x1 and {xt
1} converging to x1 and δ > 0 s.t. g(xt

1) ≤ g(x1)− δ for
all t. Pick θ for which (14) holds with η = 1

2δ and t large enough that ||xt
1 − x1|| ≤ θ: then for any

x−1 we have

g(x1) +

n∑
i=2

g(xi) ≤ W(x1, x−1) ≤ W(xt
1, x−1) +

1

2
δ

Replacing g(x1) with g(xt
1) + δ gives g(xt

1) +
∑n

i=2 g(xi) ≤ W(xt
1, x−1) − 1

2δ for any x−1: this
contradicts the contact property (5) for xt

1.

9.2 statements ii) and iii) in Lemma 3.5

Proof Statement iii) Fix ε = −, an arbitrary x̃1 ∈ X and write B(x̃1, r) for the closed ball of center
x̃1 and radius r. Use the notation ∆(x) =

∑n
1 una(xi)−W(x) to define the function

δ(x1) = max{∆(x1, x−1) : ∀i ≥ 2, xi ∈ B(x̃1, d(x1, x̃1))}

It is clearly continuous, non negative because ∆(x1, x−1) = 0 if xi = x1 for i ≥ 2, and δ(x̃1) = 0.
Define g = una − δ and check that g is the desired lower guarantee of W. At an arbitrary profile
x = (xi)

n
1 choose xi∗ s.t. d(x̃1, xi∗) is the largest: this implies δ(xi∗) ≥ ∆(x). Combining this with

δ(xi) ≥ 0 for i ̸= i∗ gives
∑n

1 δ(xi) ≥ ∆(x) which, in turn, is the LH inequality in (4) for g. As g is
in G−, it is dominated by some g̃ in G−(Lemma 3.1) and g̃(x1) = una(x̃1) by inequality (8).

Second part of statement ii) We assume that G− does not contain una and check that G− is not a
singleton. This assumption and the continuity of W imply that for an open set of profiles x ∈ X [n]

we have
∑

[n] una(xi) > W(x). Fix such an x and (by statement i)) pick for each i a tight guarantee
gi equal to una at xi: these n guarantees are not identical.

9.3 Lemma 4.1

Proof by contradiction. Fix the even n = 2m and (without loss) W strictly supermodular. For some
tight lower guarantee g of W we have g(xi) = una(xi) at two types x1 and x2 with x1 < x2. This
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implies

mg(x1) +mg(x2) ≤ W(
m
x1,

m
x2) =⇒ W(

n
x1) +W(

n
x2) ≤ 2W(

m
x1,

m
x2) (23)

But by repeated application of supermodularity we have

W(
m
x2,

m
x2)−W(

m
x1,

m
x2) ≥ W(

m
x2,

m
x1)−W(

m
x1,

m
x1)

precisely the opposite inequality. This is a contradiction.
The proof for the odd n = 2m+ 1 is similar. We sum first the two inequalities

(m+ 1)g(x1) +mg(x2) ≤ W(
m+1
x1 ,

m
x2) and mg(x1) + (m+ 1)g(x2) ≤ W(

m
x1,

m+1
x2 )

=⇒ W(
n
x1) +W(

n
x2) ≤ W(

m+1
x1 ,

m
x2) +W(

m
x1,

m+1
x2 )

and rewite the latter as

W(
m
x2,

m+1
x2 )−W(

m
x1,

m+1
x2 ) ≤ W(

m
x2,

m+1
x1 )−W(

m
x1,

m+1
x1 )

for another contradiction of strict supermodularity.

9.4 Theorem 4.1

Statement i) Without loss we fix W supermodular and check that gL is a feasible lower guarantee.
By Lemma 3.6 this implies that it is tight. Consider the following inequality Πq for q ∈ [n]:

W(x1, x2, · · · ;xq,
n−q

L ) +

n∑
ℓ=q+1

W(xℓ,
n−1

L ) ≤ W(x) + (n− q)W(
n

L)

Note that Πn is a tautology and Π1:∑
[n]

W(x1;
n−1

L ) ≤ W(x) + (n− 1)W(
n

L)

means that gL is a lower guarantee (meets the LH of (4)). So it is enough to prove inductively that
Πq+1 implies Πq.

Supermodularity implies

W(xq+1,
n−1

L )−W(L,
n−1

L ) ≤ W(xq+1, x1, · · · ;xq,
n−q−1

L )−W(L, x1, · · · ;xq,
n−q−1

L )

We call D the right hand term of this inequality and increase in the inequality Πq the left term
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W(xq+1,
n−1

L ) to D +W(L,
n−1

L ): after rearranging we get the inequality Πq+1 as desired.

Statement ii) If the tight guarantee g− in G− satisfies g−(L ) = 1
n (

n

L) we have for all xi

g−(xi) + (n− 1)g−(L) ≤ W(xi;
n−1

L ) =⇒ g−(xi) ≤ gL(xi)

so g− = gL because it is tight.

Statement iii) Fix g− ∈ G− two types x1, x
∗
1 s. t. x1 < x∗

1 and a contact profile x−1 for g− at
x1; then apply the opposite of (6) in Lemma 3.3:

g−(x∗
1)− g−(x1) ≤ W(x∗

1, x−1)−W(x1, x−1) ≤ W(x∗
1,

n−1

H )−W(x1,
n−1

H ) = gH(x∗
1)− gH(x1)

where the 2d inequality comes from the supermodularity of W. Next pick x∗
−1 a contact profile for

g− at x∗
1 and apply similarly the opposite of (6):

g−(x∗
1)− g−(x1) ≥ W(x∗

1, x
∗
−1)−W(x1, x

∗
−1) ≥ gL(x

∗
1)− gL(x1)

Statement iv) Suppose g− ∈ G− is s. t. g−(L) < gH(L). We combine this inequality with
g−(xi) − g−(L) ≤ gH(xi) − gH(L) (statement iii)) to get that gH dominates g−. Now if we have
g−(L) > gL(L) we combine it with g−(xi) − g−(L) ≥ gL(xi) − gL(L) to have g− dominating gL.
This proves (14), and a similar argument proves the last two inequalities. ■

9.5 Proposition 4.2

We prove the statement for the serial↑ rule (15). By Lemma 3.7 it is enough to check the inequality

gL(xi) ≤ φser↑
i (x) ≤ una(xi) for all x.

Step 1. We show that φser↑
i (x) increases (weakly) in all variables xj such that xj ≤ xi, i. e., for

j ≤ i− 1 . This generalises Lemma 1 in [21].

If W is differentiable in [L,H]n we check this by computing the derivative ∂qφ
ser↑
i for q ≤ i− 1

in the LH of equation (15) and using the symmetry of W:

∂qφ
ser↑
i (x) =

∂qW(x1, · · · , xi−1,
n−i+1
xi )

n− i+ 1
−∂qW(x1, · · · , xq−1,

n−q+1
xq )

n− q
−

i−1∑
j=q+1

∂qW(x1, · · · , xj−1,
n−j+1
xi )

(n− j + 1)(n− j)

Recall that the coordinates of x are weakly increasing. Because ∂qW increases weakly in xj , j ̸= q,
the numerator of each negative fraction is not larger than that of the first fraction. The identity

1
n−i+1 = 1

n−q +
∑i−1

j=q+1
1

(n−j+1)(n−j) concludes the proof.
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Without the differentiability assumption the only step that requires an additional argument is
the following consequence of supermodularity: as the coordinates of x increase weakly the term

W(x) − 1
n−q+1W(x1, · · · , xq−1,

n−q+1
xq ) increases weakly in xq for each q ≤ n − 1. We omit the

details.

Step 2. By construction of φser↑ we have φser↑
i (x) = φser↑

i (x1, · · · , xi−1,
n−i+1
xi ) and by Step 1

it is enough to check that gL(xi) lower bounds φ
ser↑
i (x) at the profile (

i−1

L ,
n−i+1
xi ) while una upper

bounds it at (
n
xi). The latter follows from φser↑

i (
n
xi) = una(xi).

Applying (15) we see that gL ≤ φser↑
i reduces to

W(
n−1

L , xi) ≤
1

n− i+ 1
W(

i−1

L ,
n−i+1
xi ) +

n− i

n− i+ 1
W(

n

L)

⇐⇒ (n− i)(W(
n−1

L , xi)−W(
n

L)) ≤ W(
i−1

L ,
n−i+1
xi )−W(

n−1

L , xi)

Finally we apply supermodularity to successively lower bound W(
q

L,
n−q
xi ) − W(

q+1

L ,
n−q−1
xi ) by

W(
n−1

L , xi)−W(
n

L) for q = (n− 2), · · · , (i− 1) and sum up these inequalities.

9.6 The Average Returns and Shapley rules in the commons problem

While Proposition 4.2 shows that the two Serial sharing rules implement the two incremental guaran-
tees for any modular function W, we check that in the commons problem of section 5 the guarantees
implemented by the Average Returns and Shapley value rules are not tight from either above or
below.

We fix F strictly concave on R+ and such that F (0) = 0, and the set of types [L,H] s. t.
0 ≤ L < H. So W is submodular.

Average Returns (AR): φar
i (x) = xiAF (xN ), with the notation AF (z) = F (z)

z ;14

Shapley value (Sha): φSha
i (x) = ES(F (xi + xS)− F (xS)), where the expectation is over the set

S of agents preceding i, when the ordering of agents is uniformly distributed.

Lemma 9.1 For the Average Returns and Shapley rules on [L,H]:

g−AR(xi), g
−
Sha(xi) < una(xi) =

1

n
F (nxi)

for xi ∈ [L,H[, with equality at H.

14At the profile (
n
0) the definition needs adjusting, e. g. to equal split, but this does not affect the computations of

worst and best cases.
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If L = 0 we have g+AR = g+Sha = gL. If L > 0 we have

g+AR(xi), g
+
Sha(xi) > gL(xi) = F (xi + (n− 1)L)− n− 1

n
F (nL)

for xi ∈]L,H] with equality at L.
Proof For the AR rule the average return AF decreases strictly so that g−AR(xi) = xiAF (xi +

(n − 1)H) < xiAF (nxi) on [0, H[. Similarly on [L,H] we have g+AR(xi) = F (xi + (n − 1)L) =
gL(xi) +

n−1
n F (nL) so that g+AR is only tight if L = 0 and in that case it is gL.

For the Shapley rule the strict concavity of F implies, for xi < H

g−Sha(xi) =
1

n

n−1∑
q=0

(F (xi + qH)− F (qH))

<
1

n

n−1∑
q=0

(F (xi + qxi)− F (qxi)) =
1

n
F (nx)

g+Sha(xi) =
1

n

n−1∑
q=0

(F (xi + qL)− F (qL))

If L = 0 this gives g+Sha = gL. If L > 0 and xi > L we sum up, for 1 ≤ q ≤ n− 1, the inequalities

F (xi + (q − 1)L)− F (qL) > F (xi + (n− 1)L)− F (nL)

=⇒ g+Sha(xi) >
n− 1

n
(F (xi + (n− 1)L)− F (nL)) +

1

n
F (xi + (n− 1)L) = gL(xi)

9.7 Proposition 5.1

We assume without loss that F is convex.
Step 1 The function gℓ,h defined by (16) is a lower guarantee: gℓ,h ∈ G−. By Lemma 3.6 this
implies that gℓ,h is tight.

We set Z = ℓL+ hH for easier reading. The feasibility inequality (4) applied to gℓ,h reads∑
[n]

F (xi + Z) ≤ F (xN ) + ℓF (Z + L) + hF (Z +H) for x ∈ [L,H][n] (24)

We proceed by induction on n. There is nothing to prove if n = 2. For n = 3 we already know
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that g2,0 and g0,2 are in G−; for g1,1 the inequality (24) is

3∑
i=1

F (xi + L+H) ≤ F (x123) + F (2L+H) + F (L+ 2H) (25)

Suppose x12 ≥ L+H: then the convexity of F implies

F (x3 + L+H)− F (2L+H) ≤ F (x123)− F (x12 + L)

Replacing F (x3 + L + H) in (25) by this upper bound and rearranging gives a more demanding
inequality

F (x1 + L+H) + F (x2 + L+H) ≤ F (x12 + L) + F (L+ 2H)

following again from the convexity of F . So we are done if xij ≥ L+H for any pair i, j.
Suppose next xij ≤ L+H for all three pairs. Then we have for i = 1, 2, 3

x123, 2L+H ≤ xi + L+H ≤ L+ 2H

and the uniform distribution on the triple x123, 2L+H,L+2H is a mean-preserving spread of that
on (xi + L+H)3i=1, which proves (25).

For the inductive argument we fix n ≥ 4 and gℓ,h s. t. ℓ+ h = n− 1 and ℓ ≥ 1. We assume that
(24) holds for n− 1 agent problems and prove it for (ℓ, h).

Suppose xN⧹{n} ≥ Z for some agent labeled n without loss of generality. Then the convexity of
F implies

F (xn + Z)− F (Z + L) ≤ F (xN )− F (xN⧹{n} + L)

As before we replace F (xn +Z) by this upper bound and rearrange (24) to the more demanding∑
[n−1]

F (xi + Z) ≤ F (xN⧹{n} + L) + (ℓ− 1)F (Z + L) + hF (Z +H)

which for the convex function F̃ (y) = F (y + L) and Z̃ = (ℓ − 1)L + hH is exactly (24) at x−n for
the guarantee g(ℓ−1),h.

We are left with the case where xN⧹{i} ≤ Z for all i for which the different terms under F in
(24) are ranked as follows:

xN , Z + L ≤ xi + Z ≤ Z +H

and the distribution ( 1n ,
ℓ
n ,

h
n ) on the support x, Z + L,Z + H is a mean-preserving spread of the

uniform distribution on the n inputs xi + Z. So gℓ,h meets (24).
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If h ≥ 1 the symmetric proof starts by assuming xN⧹{n} ≤ Z and using the convexity inequality

F (xN⧹{n} +H)− F (xN ) ≤ F (Z +H)− F (xn + Z)

to obtain a more demanding inequality that is in fact (24) for gℓ,h−1 and the function F̂ (y) =
F (y +H).

Statement ii) The derivative of the gap function is dF
dx (nxi)− dF

dx (xi+Z) which changes from negative
to positive at 1

n−1Z so Z achieves the smallest gap. The equality gℓ,h(Z) = una(Z) is rearranged
asi:

F (Z) =
1

n
F (nZ) +

ℓ

n
F (Z + L) +

h

n
F (Z +H))

This contradicts the strict convexity of F if ℓ, h are both positive.

9.8 Proposition 5.2

We assume without loss that F is convex so that W is supermodular.
Case 1 We already noted that θa is in G−. For tightness we fix a type xi and look for a vector x−i

such that xi + xN⧹i = na. This implies
∑

[n] θa(xj) = F (na) by the definition of θa, so (xi, x−i) is
a contact profile of θa at xi and we are done by Lemma 3.5. The desired vector x−i exists if and
only if xi + (n− 1)L ≤ na ≤ xi + (n− 1)H, precisely as we assume.

Case 2 At a profile x where xi ≤ na− (n− 1)L for all i, we just saw that ga = θa meets the LH of
(4). We check now this inequality for a profile x where the first t types are above na − (n − 1)L,
t ≥ 1, and the other n − t types (possibly zero) are below that bound. For i ≤ t we can write
ga(xi) = F (xi + (n− 1)L) +Ci where Ci is a constant w r t x, and similarly ga(xj) = ∂θa × xj +Cj

if j > t. Then the desired LH inequality of (4) is∑
i≤t

F (xi + (n− 1)L) +
∑
j>t

∂θa × xj + C ≤ F (xN ) (26)

for some constant C.
For i ≤ t the difference F (xi + xN⧹i) − F (xi + (n − 1)L) is smallest for xi = na − (n − 1)L

so it is enough to prove (26) if this is the case. For j > t we check similarly that the difference
∆ = F (xj + xN⧹j) − ∂θa × xj is smallest if xj = L. Note that t ≥ 1 implies xN⧹j ≥ na − (n −
1)L+ (n− 2)L = na−L, therefore the derivative of F (xj + xN⧹j) w r t xj at any xj > L is weakly
larger than ∂θa which proves the claim. So it is enough to prove (26) if xj = L for j > t and
xi = na− (n− 1)L for i ≤ t. In this case we have xN = tna− (t− 1)nL, xN ≥ na and (26) is

tga(na− (n− 1)L) + (n− t)ga(L) ≤ F (tna− (t− 1)nL)
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⇐⇒ ∂θa × (t− 1)n(a− L) ≤ F (tna− (t− 1)nL)− F (na)

which follows at once from the convexity of F .
Checking tightness. At a type xi ≤ na− (n− 1)L we have

xi + (n− 1)L ≤ na ≤ xi + (n− 1)(na− (n− 1)L)

(replace xi by L in the last term and rearrange). This implies the existence of a profile x−i entirely
inside [L, na− (n− 1)L] and s. t. xi + xN⧹i = na: as in Case 1 this is a contact profile. And at a

type xi ≥ na− (n− 1)L the definition of ga shows directly that (xi,
n−1

L ) is a contact profile.
We omit the symmetric proof of Case 3. ■

9.9 Lemma 6.1

Fix W defined by (18) and the continuous functions wq.
Proof of “only if” We assume thatW is supermodular. For any (n−2)-profile x−12 ∈ [L,H][n]⧹{1,2}

and any 4-tuple of types s. t. y1 < x1 and y2 < x2 this implies

W(x1, x2;x−12)−W(y1, x2;x−12) ≥ W(x1, y2;x−12)−W(y1, y2;x−12) (27)

Fix x1, y1 s. t. L < y1 < x1 < H and pick any rank q except n. If we pick y2, x2 so that
L < y2 < y1 < x1 < x2 < H then we can choose x−12 so that x1 and y1 are of rank q in the profiles
on the RH of (27), whereas after increasing y2 to x2 they are of rank q+1 in the profiles on the LH.
Then (27) amounts to

wq+1(x1)− wq+1(y1) ≥ wq(x1)− wq(y1)

Because W is continuous this desired inequality holds for any x1, y1 s. t. x1 ≤ y1.
Proof of “if” We are given the continuous wq such that wq grows weakly slower (resp faster) than

wq+1 for all q ≤ n− 1. We show that the rank separable function W given by (18) is supermodular,
i. e. we prove (27) for any x, y1, y2 s. t. y1 ≤ x1 and y2 ≤ x2. As W is continuous it is enough to
prove it when y1, y2 and all the coordinates of x are diffferent.

Next it is without loss to assume that in the jump up from yi to xi either the rank of this
coordinate does not change, or it goes down but exactly one. Indeed if y1 is ranked q in (y1, x2;x−12)
and x1 ranked q − 3 in (x1, x2;x−12) we decompose the jump in three small jumps each decreasing
the rank by one, and sum up the corresponding inequalities (27). The same argument applies to the
jump from y2 to x2.

In the profile (y1, y2;x−12) we call qi the rank of yi, so q1 > q2. For clarity we omit the fixed
term x−12 in the computations below and define

∆1 = W(x1, y2)−W(y1, y2) ; ∆2 = W(y1, x2)−W(y1, y2) ; ∆0 = W(x1, x2)−W(y1, y2)
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so that (27) is equivalent to ∆0 ≥ ∆1 +∆2.
We assume y1 < y2 without loss and consider first the case x1 < y2. Then ∆1 = wq1(x1)−wq1(y1)

if agent 1’s rank does not change in the move from y1 to x1, or ∆1 = wq1−1(x1) + wq1(xj) −
wq1−1(xj) − wq1(y1) if agent 1 jumps above agent j of rank q1 − 1 (that cannot be agent 2). Next
∆2 = wq1(x2)− wq1(y2) and we see that ∆0 = ∆1 +∆2.

Assume from now on x1 > y2 which implies q1 = q2 + 1, and agent 1’s rank at (x1, y2) is q2
(because each rank upgrade is at most one). We distinguish three cases. If y1 < y2 < x2 < x1 then
only agents 1 and 2 swap ranks and

∆1 = wq2(x1) + wq2+1(y2)− wq2(y2)− wq2+1(y1) ; ∆2 = wq2(x2)− wq2(y2)

∆0 = wq2(x1) + wq2+1(x2)− wq2(y2)− wq2+1(y1)

so that ∆0−∆1+∆2 = (wq2+1(x2)−wq2+1(y2))− (wq2(x2)−wq2(y2)) non negative by assumption.
If y1 < y2 < x1 < x2 and agent 2’s rank at x2 is still q2, then ∆1 and ∆2 are just as in the

previous case, and
∆0 = wq2(x2) + wq2+1(x1)− wq2(y2)− wq2+1

(y1)

implies ∆0 −∆1 +∆2 = (wq2+1(x1)− wq2+1(y2))− (wq2(x1)− wq2(y2)) and the conclusion.
We omit for brevity the similar computations of the last case where agent 2’s rank at x2 is q2−1.

9.10 Theorem 6.1

9.10.1 Statement i) =⇒ statement ii)

We fix W rank separable and supermodular.
Step 1.For any c the function gc defined by (10) is in G−. By Lemma 3.6 it is enough to show

gc ∈ G−.
Because gc(xi) and W(xi; c) are continuous in xi, c it is enough to prove the LH inequality (4)

for strictly decreasing sequences {xℓ}n1 and {cq}n−1
1 s. t. H > c1 and cn−1 > L and xℓ ̸= cq for all

ℓ, q. This is always assumed in the rest of the proof.

Step 1.1 Call the ordered sequence of types x regular (w r t c) if

x1 > c1 > x2 > c2 > · · · > cq−1 > xq > cq > · · · > cn−1 > xn (28)

then check that x is a contact profile of gc:

n∑
1

gc(xq) =

n∑
1

W(xq, c)−
n−1∑
1

W(cq, c) =

n−1∑
1

(wq(xq)− wq(cq)) +W(xn, c) = W(x)

Recall that (xi, c) is also a contact profile (Definition 3.3).
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Step 1.2 For any three sequences x, x′ and c we say that x′ is reached from x by an elementary
jump up above cq if there is some ℓ such that x−ℓ = x′

−ℓ; cq is adjacent to xℓ in x from above and
adjacent to x′

ℓ in x′ from below. In other words x′
ℓ > cq > xℓ and there is no other element of x or

c between xℓ and x′
ℓ. The definition of an elementary jump down below cq is symmetrical.

Starting from for an arbitrary profile x̃ we construct the canonical path of profiles
σ = {x̃ = 1x, · · · ,ℓ x, · · · ,T x = x∗} from x̃ to a regular profile x∗ such that 1) each step from ℓx to
ℓ+1x is an elementary jump up or down of some txℓ over some cq and 2) ℓ ≤ q if txℓ jumps up above
cq, and ℓ ≥ q + 1 if txℓ jumps down below cq.

Case 1: x̃1 > c1. Then x̃1 never moves and x̃1 = x∗
1; if x̃2, · · · , x̃ℓ are above c1 then ℓ − 1

successive elementary jumps down of x̃ℓ, then x̃ℓ+1, etc.. below c1 defines the first ℓ− 1 steps of the
desired path, and we are left with the shorter sequences x̃−1 and c−1.

Case 2: c1 > x̃1. Then the successive elementary jumps up of x̃1 over the closest cq then
cq−1, · · · , c1 define the first q steps of the desired path until q+1x = x∗

1 that never moves again; then
as above we use the induction for the sequences x̃−1 and c−1.

Step 1.3 We pick an arbitrary profile x̃, construct a sequence σ from x̃ to some regular x∗, and
check that in each step of the sequence the sum

∑n
1 gc(xℓ)−W(x) cannot decrease, which together

with Step 1.1 concludes the proof that gc ∈ G−. This sum develops as

B︷ ︸︸ ︷
(

n∑
ℓ=1

W(xℓ, c))−
C︷ ︸︸ ︷

W(x)−

D︷ ︸︸ ︷
n−1∑
q=1

W(cq, c)

Consider an elementary jump up of txℓ above cq:
t+1xℓ > cq > txℓ. The net changes to the three

terms in the sum are

∆B = wq(
t+1xℓ)− wq+1(

txℓ) + wq+1(cq)− wq(cq)

∆C = wℓ(
t+1xℓ)− wℓ(

txℓ) ; ∆D = 0

With the notation ∆(f ; a → b) = f(b)− f(a) and some rearranging this gives

∆B −∆C +∆D = ∆(wq − wℓ; cq → t+1xℓ) + ∆(wq+1 − wℓ;
t xℓ → cq)

where both final ∆ terms are non negative because ℓ ≤ q and by Lemma 6.1 wq −wℓ and wq+1 −wℓ

increase weakly.
The proof for an elementary jump down is quite similar by computing the variation of

∑n
1 gc(xℓ)−

W(x) to be ∆(wℓ−wq)(cq → xt
ℓ)+∆(wℓ−wq+1)(x

t+1
ℓ → cq) and recalling that in this case we have

ℓ ≥ q + 1.

Step 2 A tight guarantee g ∈ G− of W takes the form gc in (10) (Definition 3.3).
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Recall the notation C(g) for the set of contact profiles of g defined by (5). For each q ∈ [n] its
projection Cq(g) is the set of those xi ∈ [L,H] appearing in some profile x ∈ C(g) with the rank q; it
is closed because C(g) is closed and we call its lower bound cq. The sequence {cq} decreases weakly
because in a contact profile where cq has rank q the type xq+1 ranked q+1 is below cq. Also cn = L
because g is tight so cn is in one of its contact profiles.

We show first that C1(g) = [c1, H] and that in this interval g “follows” w1, i. e., g − w1 is a
constant. The critical tool is Lemma 3.3 and we also keep in mind that g is continuous (Lemma
3.1). Pick a profile x ∈ C(g) s. t. x1 = c1 and apply inequality (6) to c1 and an arbitrary x̂1 in
[c1, H] to get g(x̂1)− g(c1) ≥ w1(x̂1)− w1(c1). Combine this with the contact equation for x:

g(c1)− w1(c1) =

n∑
2

(wq(xq)− g(xq)) ≤ g(x̂1)− w1(x̂1)

and recall that g is a lower guarantee: the latter inequality must be an equality therefore x̂1 is in
[c1, H]; as x̂1 was arbitrary this shows [c1, H] = C1(g) and that g − w1 is a constant in [c1, H].

We show next that [c2, c1] ⊆ C2(g) and g follows w2 in this interval. Pick any x̂2 ∈ [c2, c1[ and x
∈ C(g) s. t. x2 = c2 and apply again (6) to c2 and x:

g(x̂2)− g(c2) ≥ W(x̂2, x−2)−W(c2, x−2) (29)

The rank of x̂2 in (x̂2, x−2) is at least 2 because x̂2 < c1. If it is 2 the RH term above is w2(x̂2)−
w2(c2). We combine again this inequality with the contact equation for c2 to get

∑
q ̸=2(wq(xq) −

g(xq)) ≤ g(x̂2) − w2(x̂2) and deduce exactly as before that x−2 is a contact profile of x̂2 so that
x̂2 ∈ C2(g) moreover g − w2 is constant for those types x̂2 in [c2, c1] of rank 2 in (x̂2, x−2).

If the rank of x̂2 in (x̂2, x−2) is 3 inequality (29) becomes

g(x̂2)− g(c2) ≥ w2(x3) + w3(x̂2)− w2(c2)− w3(x3)

After using the contact equation of (c2, x−2) to replace w2(c2)− g(c2) by
∑

q ̸=2(g(xq)−wq(xq))
we obtain

g(x̂2) +
∑
q ̸=2

g(xq) ≥ (
∑
q ̸=2,3

wq(xq)) + w2(x3) + w3(x̂2)

Because g is a lower guarantee this is an equality, proving that (x̂2, x−2) ∈ C(g) and x̂2 ∈ C2(g);
moreover g − w2.is constant for this subset of types in [c2, c1].

The similar argument when the rank q of x̂2 in (x̂2, x−2) is larger than 3 should now be clear:
it concludes the proof that [c2, c1] ⊆ C2(g), moreover identifies at most n − q + 1 closed subsets of
the interval in which g − w2.is constant: this function is continuous therefore it is constant on the
whole interval.

There is no additional difficulty to prove for all q ∈ [n] the inclusion [cq, cq−1] ⊆ Cq(g) and the
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fact that g−wq is constant in this interval. Now the guarantee gc for c = (cq)
n−1
q=1 also follows wq as

well in [cq, cq−1]: both g and gc are continous so they differ by a constant, that must be zero because
they are both tight.

9.10.2 Statement ii) =⇒ statement i)

Fixing W supermodular and s. t. each function gc, c ∈ [L.H]n−1 is a tight lower guarantee of W,
we prove that W is rank separable.

Step 1 The function W meets the equation

W(x) =

n∑
q=1

W(xq, c)−
n−1∑
ℓ=1

W(cℓ, c) (30)

for any (n− 1)-sequence c and profile x, intertwined as in (28):

x1 ≥ c1 ≥ x2 ≥ c2 ≥ · · · ≥ cq−1 ≥ xq ≥ cq ≥ · · · ≥ cn−1 ≥ xn (31)

By the Definition 3.3 of gc ((10)) the RH term of (30) is just
∑n

q=1 gc(xq) hence bounded above
by W(x) by assumption. We check the opposite inequality by induction on n.

For n = 2 the supermodularity and symmetry of W imply at once W(x1, x2) + W(c, c) ≤
W(x1 , c)+W(x2 , c) whenever x1 ≥ c ≥ x2. For a general n repeated application of supermodularity
implies

W(cn−1, c)−W(xn, c) ≤ W(cn−1, x−n)−W(xn, x−n) (32)

The desired inequality in (30) holds if it still holds after we add to its LH the RH of (32) and the
LH of (32) to its RH. This operation produces, after rearranging, the inequality

W(cn−1, x−n) ≤
n−1∑
q=1

W(xq, c)−
n−2∑
ℓ=1

W(cℓ, c)

precisely (30) for the supermodular symmetric function of (n − 1) variables x−n → W̃(x−n) =
W(cn−1, x−n).

Step 2 Solving the functional equation
For n = 2 we apply (30) to x1 ≥ c ≥ x2 = L:

W(x1, L) = W(xq, c) +W(L, c)−W(c, c) ⇐⇒ W(xq, c) = W(x1, L) + w2(c)

where w2(c) = W(c, c) −W(L, c). As x1 and c can be freely chosen in [L.H] provided x1 ≥ c, the
rank separability of W follows.
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Assuming the result is true until n − 1 we apply (30) for W with domain [L,H]n to a pair x, c
meeting (31) and s. t. xn = cn−1 = L:

W(x−n, L) = {
n−1∑
q=1

W(xq, c−(n−1), L)}+W(c−(n−1),
2

L)− {
n−2∑
ℓ=1

W(cℓ, c−(n−1), L)} −W(c−(n−1),
2

L)

For the function W̃(x−n) = W(x−n, L) over [L,H]n−1 this is exactly equation (30) so by the

inductive assumption W̃ is rank separable. For some continuous functions θ1, · · · , θn−1 on [L,H] we

have W(x−n, L) =
∑n−1

q=1 θq(xq).for any decreasing sequence x1, · · · , xn−1.
We now apply (30) to the pair x, c meeting (31) as well as xq = cq for 2 ≤ q ≤ n−1, and xn = L:

W(x1, c−1, L) = W(x1, c) +

n−1∑
q=2

W(cq, c) +W(c, L)−
n−1∑
ℓ=1

W(cℓ, c)

Taking advantage of separability of W(·, L) in the first n− 1 variables, this reduces to

θ1(x1)− θ1(c1) = W(x1, c)−W(c1, c)

In this equation the weakly decreasing sequence x1, c1, · · · , cn−1 is arbitrary, which shows that
W separates its largest variable from the n − 1 others: for some continous functions τ, T we have
W(x) = τ(x1) + T (x−1) if x1 is a largest coordinate.

The argument leading to the earlier decomposition of W(x−n, L) is easily replicated for the
function W(H,x−1) (apply (30) when x1 = c1 = H) to show the decomposition W(H,x−1) =∑n

q=2 λq(xq) for some continuous λ-s. We also know W(H,x−1) = τ(H) + T (x−1) therefore T is
additively separable as well over decreasing sequences and we are done.

9.11 Lemma 7.2

Statement i) is clear because W is symmetric. In Statement ii) upper-hemi-continuity of γ is clear
because W and g are both continous (step 1 in the proof of Lemma 3.5 above).

To check that γ is convex valued we fix (x1, x2), (x1, x
′
2) ∈ Γ(γ) and z s. t. x2 < z < x′

2, and
check that Γ(γ) contains (x1, z) too. Pick some w ∈ γ(z): if w > x1 we see that Γ(γ) contains
(x1, x2) and (w, z) s.t. (x1, x2) ≪ (w, z) which is a contradiction by Lemma 7.1. If w < x1 we use
instead (w, z) and (x1, x

′
2) to reach a similar contradiction, and we conclude w = x1.

The proof below that γ is single-valued a. e. will complete that of statement ii).

Statement iii) If x1 < x′
1 in X and γ−(x1) < γ+(x′

1) we again contradict the strict super-
modularity of W (Lemma 7.1) . So x1 < x′

1 =⇒ γ−(x1) ≥ γ+(x′
1) and γ− and γ+ are weakly

decreasing.
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If γ(x1) is not a singleton, γ+(x1) > γ−(x1), then γ+ jumps down at x1; a weakly decreasing
function can only do this a countable number of times. That the u.h.c. closure of γ+ contains
[γ−(x1), γ

+(x1)] follows from γ−(x1) ≥ γ+(x1 + δ) for any δ > 0.

Statement iv) If γ(L) does not contain H we pick some x1 in γ(H): by statement i) γ(x1)
contains H therefore x1 > L; we reach a contradiction again from Lemma 7.1 because Γ(γ) contains
(L, γ+(L)) and the strictly larger (x1, H).

Statement v) Kakutani’s theorem implies that at least one fixed point exists. If Γ(γ) contains
both (a, a) and (b, b) we contradicts again Lemma 7.1. Check finally that the inequalities γ−(a) <
a < γ+(a) are not compatible. Pick δ > 0 s.t. γ(a) contains a − δ and a + δ: then Γ(γ) contains
(a, a+ δ) and (a− δ, a) (by symmetry) and we invoke Lemma 7.1 again.

9.12 Differentiability of tight guarantees

Lemma 9.2 Inheritance of differentiability
Suppose X = [L,H] is the interval L ≤ x ≤ H in RA. We fix xi ∈ X , a tight guarantee

g ∈ Gε for ε = +,− and a contact profile x = (xi, x−i) of g at xi. If g(·) and W(·, x−i) are both
differentiable at xi, we have
if L < xi < H

dg

dxi
(xi) =

∂W
∂xi

(xi, x−i) (33)

if xi = L and g ∈ G−, or xi = H and g ∈ G+

dg

dxi
(xi) ≤

∂W
∂xi

(xi, x−i)

if xi = H and g ∈ G−, or xi = L and g ∈ G+

dg

dxi
(xi) ≥

∂W
∂xi

(xi, x−i)

Proof Equation (33). Pick an arbitrary contact profile x of W and g ∈ G−. Inequality (6) in
Lemma 3.3 implies g(x∗

i )− g(xi) ≤ W(x∗
i , x−i)−W(xi, x−i) for all x

∗
i in some neighborhood of xi.

If L < xi < H and both g(·) and W(·, x−i) are differentiable at xi we develop this inequality as

(
dg

dxi
(xi) + o(x∗

i − xi))× (x∗
i − xi) ≤ (

∂W
∂xi

(x) + o′(x∗
i − xi))× (x∗

i − xi)

where both o(·) and o′(·) are continuous and vanish at zero. As x∗
i − xi can take both signs, this

implies the equality (33). The two inequalities follow similarly when the sign of x∗
i − xi is constant

in the neighborhood of xi. ■
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Note that if W(·, x−i) is differentiable at xi the function zi → W(zi, x−i) is K-Lipschitz for some
K in a neighborhood V of xi. By the Corollary to Lemma 3.3, so is g(·) at xi in V . In turn this
implies that g has bounded variation on any interval, hence is differentiable in xi almost everywhere
in [L,H].

Corollary Suppose W is differentiable in [L,H][n]. Then for ε = +,− the tight guarantees in
Gε are characterised by their contact set C(g): for any two different g, h ∈ Gε we have C(g) ̸= C(h).

Moreover any (true) convex combination of g, h stays in Gε but leaves Gε: ]g, h[∩Gε = ∅.

Proof. By Lemma 9.2 if C(g) = C(h) we get dg
dx = dh

dx in the interval ]L,H[ so g and h differ by
a constant, and if the constant is not zero one of g, h is not tight.

For the second statement suppose that G− contains g, h and 1
2 (g+h), all different. Fix xi ∈]L,H[

and a contact profile (xi, x̃−i) of
1
2 (g+h) at xi. Clearly x̃−i is also a contact profile of g and of h at

xi. Again by Lemma 9.2 this implies dg
dxi

(xi) =
dh
dxi

(xi) = ∂iW(xi, x̃−1) almost surely in ]L,H[. We
conclude that g − h is a constant and get a contradiction of g ̸= h. The argument for larger convex
combinations with general weights is entirely similar. ■

9.13 Theorem 7.1

Step 0: the integral in (22) is well defined.
For any correspondence γ as in Lemma 7.2 the integral

∫ x1

a
∂1W(t, γ(t))dt is the value of∫ x1

a
∂1W(t, f(t))dt for any single-valued selection f of γ: this is independent of the choice of f

because γ is multi-valued only at a countable number of points and every single-valued selection of
γ(x1) is a measurable function.

Statement ii) Fix g ∈ G− and its contact correspondence γ. As discussed in the previous subsection
g is differentiable a. e. in [L,H]. Its derivative dg

dx is dg
dx (x1) = ∂1W(x1, x2) for any x2 ∈ γ(x1).

Therefore we can write the RH of (22) as ∂1W(x1, γ(x1)) without specifying a particular selection
of γ(x1).

Note that g(a) = una(a) because (a, a) ∈ Γ(γ). Now integrating the differential equation above
with this initial condition at a gives the desired representation (22).

Statement i)
Step 1 Lemma 7.2 implies that Γ(γ) is a one-dimensional line connecting (L,H) and (H,L) that we
can parametrise by a smooth mapping s → (ξ1(s), ξ2(s)) from [0, 1] into [L,H]2 s.t. ξ1(·) increases
weakly from L to H and ξ2(·) decreases weakly from H to L. We can also choose this mapping so
that ξ1(

1
2 ) = ξ2(

1
2 ) = a, the fixed point of γ.15

We fix an arbitrary selection γ∗ of γ, an arbitrary x1 in [L,H], and check the identity∫ x1

a

∂1W(t, γ(t))dt+

∫ γ∗(x1)

a

∂1W(t, γ(t))dt = W(x1, γ
∗(x1))−W(a, a) (34)

15If a is 0,or 1 we check that (22) defines the two canonical incremental guarantees in Theorem 4.1.
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We change the variable t to s by t = ξ1(s) in the former and by t = ξ2(s) in the latter. Next s
is the parameter at which (ξ1(s), ξ2(s)) = (x1, γ

∗(x1)) and we rewrite the LH of (34) as∫ s

1
2

∂1W(ξ1(s), ξ2(s))
∂ξ1
∂s

(s)ds+

∫ s

1
2

∂1W(ξ2(s), ξ1(s))
∂ξ2
∂s

(s)ds

where in each term ∂1W(t, γ(t)) we can pick a proper selection of the (possible) interval because
(ξ1(s), ξ2(s)) ∈ Γ(γ). As W(x1, x2) is symmetric in x1, x2, we can replace the second integral by∫ s

1
2
∂2W(ξ1(s), ξ2(s))

∂ξ2
∂s (s)ds and conclude that the sum is precisely

W(ξ1(s), ξ2(s))−W(ξ1(
1

2
), ξ2(

1

2
)) = W(x1, γ

∗(x1))−W(a, a)

Step 2 We show that (22) defines a bona fide guarantee g: g(x1) + g(x2) ≤ W(x1, x2) for x1, x2 ∈
[L,H].

The identity (34) amounts to g(x1) + g(γ∗(x1)) = W(x1, γ
∗(x1)) for all x1. If we prove that

g ∈ G− this will imply it is tight. Compute

g(x1) + g(x2) = W(x1, γ
∗(x1)) + g(x2)− g(γ∗(x1)) = W(x1, γ

∗(x1)) +

∫ x2

γ∗(x1)

∂1W(t, γ(t))dt

We are left to show ∫ x2

γ∗(x1)

∂1W(t, γ(t))dt ≤ W(x1, x2)−W(x1, γ
∗(x1)) (35)

We assume without loss x1 ≤ x2 and distinguish several cases by the relative positions of a and
x1, x2 .

Case 1: a ≤ x1 ≤ x2, so that γ∗(x1) ≤ a. For every t ≥ γ∗(x1) property iii) in Lemma
7.2 implies γ+(t) ≤ γ−(γ∗(x1)) and γ(γ∗(x1)) contains x1: therefore submodularity of W implies
∂1W(t, γ(t)) ≤ ∂1W(t, x1) and∫ x2

γ∗(x1)

∂1W(t, γ(t))dt ≤
∫ x2

γ∗(x1)

∂1W(t, x1)dt = W(x2, x1)−W(γ∗(x1), x1)

Case 2: x1 ≤ a ≤ γ∗(x1) ≤ x2. Similarly for t ≥ γ∗(x1) we have γ+(t) ≤ γ−(γ∗(x1)) and
conclude as in Case 1.

Case 3: x1 ≤ x2 ≤ a, so that γ∗(x1) ≥ a. For all t ≤ γ∗(x1) we have γ−(t) ≥ γ+(γ∗(x1)) and
γ(γ∗(x1)) contains x1: now submodularity of W gives ∂1W(t, z) ≥ ∂1W(t, x2) for z between x2 and
γ∗(x1) and the desired inequality because the integral in (35) goes from high to low.
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Case 4: x1 ≤ a ≤ x2 ≤ γ∗(x1). Same argument as in Case 3.
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