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Abstract

We divide efficiently a pile of indivisible goods in common prop-
erty, using cash transfers to ensure fairness among agents with utility
linear in money. We compare three cognitively feasible and privacy
preserving division rules in terms of the guarantees (worst case utility)
they offer to the participants.

In the first version of Divide & Choose to n agents, they bid for
the role of Divider then everyone bids on the shares of the Divider’s
partition. In the second version each agent announces a partition and
they all bid to select the most efficient one.

In the Bid & Sell rule the agents bid for the role of Seller: with
two agents the smallest bid defines the Seller who then charges any
price constrained only by her winning bid.

Both rules reward subadditive utilities and penalise superadditive
ones, and B&S more so than both D&C-s. B&S is also better placed
to collect a larger share of the surplus when agents play safe.
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safe play
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1 Introduction

The fair allocation of indivisible objects is greatly facilitated if the agents
who get few good objects or many bad ones accept compensations in cash
or any other transferable and divisible commodity (workload, stocks, caviar,
bitcoin). Examples of this common practice include the classic rent division
problem ([18], Spliddit.org), the dissolution of a partnership ([13], the Texas
Shoot Out clause to terminate a joint venture1), and the NIMBY problem
(the allocation of a noxious facility between several communities [22]).

The familiar assumption that utilities are quasi-linear – each agent can
attach to each bundle of objects a personal “price” and switching from one
bundle to another is exactly compensated by the difference in their prices
– yields a versatile fair division model that the economic literature, so far,
discussed with any depth only in the special case of the assignment problem
where each of the n agents must receive at most one object (references in
section 2).

We discuss the fair division of a finite number of indivisible goods (freely
disposable objects) and money. Utilities are weakly increasing over subsets
of goods but externalities across goods are arbitrarily complex, exactly like
in the combinatorial auction problem ([14]): if we distribute the m goods in
a set A, a full description of an agent’s utility measured in money is a vector
of dimension 2|A| − 1.

We focus on two division rules, dubbed Divide and Choose and Bid and
Sell, in which the message sent by each participant is of much smaller dimen-
sion than 2|A|: for the former it is a single partition of the objects and/or a
set of transfers equalising one’s utility between the components of that par-
tition; for the latter a single bid followed by either selecting a price for each
object or choosing to purchase some goods at a given price vector. Of course
computing my optimal safe message in either rule relies on my entire utility
functions, just like in the auction context. But the information exchanged
when playing the rules remains cognitively simple, a critical requirement for
their applicability (as argued in [29]). Privacy protection is a “dual” argu-
ment against eliciting a full report, even when the number of objects is small:
revealing little of my preferences is an advantage in subsequent bargaining
interactions.

1Both parties submit sealed bids and the party who makes the higher bid buys the
company at that price.

2



Consider the “naive” division rule known as Multi Auction (MA): each
agent i places a bid βia for each good a, the highest bidder i∗ on a gets this
object and pays 1

n
βi∗a to each of the n − 1 other agents. Although MA is

compelling if all utilities over the objects are additive, in our much more
general domain of utilities its performance is very poor: this point is the
object of section 11.1 of the Appendix.

Our two division rules of interest behave much better than MA. The
first one adapts to our context with cash transfers and any number n of
agents the time honored Divide and Choose (D&C1) method: a round of bids
determines the Divider agent, who picks a partition where each lot contains
some objects (possibly none) and some cash transfer (possibly zero), after
which each Chooser places bids summing to zero on the different lots. We
also discuss in section 6 a similar but more efficient version denoted D&C2.

The second rule is the new Bid and Sell rule (B&S) where each agent can
have a role as Seller or Buyer. In the two agent case they bid first to assign
these roles, and a bid is interpreted as the price the Seller can charge for all
the goods. The agent with the smallest bid x takes that role. The Seller
then chooses a price for every good so that their sum is x and the Buyer can
buy at those prices any subset of goods, possibly all or none. The remaining
goods go the the Seller, along with the cash from the Buyer’s purchase.

We compare the performance of our two rules mostly in terms of the ex
ante guarantees each agent secures by sending a safe message. A message
by agent i is safe if it maximises i’s worst case utility when this agent only
knows the number of other agents but not their utility functions. Ensuring
a high guarantee to each participant is the main interpretation of ex ante
fairness, pioneered in Steinhaus’ work on cake cutting ([31], [32]). As in that
model, a natural guarantee is 1

n
ui(A) for agent i with utility ui, that we call

agent i’s Proportional Share (PS). But unlike in that model, this guarantee
is not unique, and does not follow when we use one of the D&C and B&C
rules.

We argue that the PS guarantee, as the definition of ex ante fairness, is
much too coarse in our rich domain of division problems: we want instead to
reward agents with subadditive utilities and penalise those with superadditive
utilities.

Example 0. We divide m ≥ 2 identical goods between two agents Frugal
(female) and Greedy (male) with the following utilities

uF (S) = 1 for all S,∅ ̸= S ⊆ A ; uF (∅) = 0
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uG(S) = 0 for all S,∅ ⊆ S ⊊ A ; uG(A) = 1

Frugal is content with any single good – her utility is maximally sub-additive
– while Greedy needs all goods to derive any utility – his utility is maximally
super-additive.

We submit that it is not fair to offer ex ante the same PS guarantee 1
2

to Frugal and Greedy. Under the veil of ignorance where we (as impartial
observer) don’t know person X who will share the goods with Frugal, we
should take into account that together Frugal and X can produce at least as
much utility surplus – and typically much more – than if X is paired with
Greedy. The guarantee 1

n
ui(A) ignores this fact.

The Responsiveness property says that we should guarantee strictly more
than her PS to Frugal, which implies that Greedy is guaranteed strictly less
than his PS (because the sum of utils of F and G is 1 for any division of the
goods and cash). The Positivity property, by contrast, protects Greedy: it
requires to give him some positive guarantee because his equal rights to the
goods should amount to something regardless of his uncompromising utility.

We compute first the guarantee offered by D&C to Greedy in Example
0. He must choose his bid x to perhaps become the Divider knowing that
there is one other bidder, but clueless about the utility – and possible bids
– of that agent. So he will compute the worst case utility that this bid can
get him.

We write (S, t) for a share with the subset S of goods and the cash transfer
t (of arbitrary sign). If x is the winning bid (that he first pays to the other
agent) his safe move as the Divider is to offer Chooser a choice between the
share (A,−1

2
) (pay me 1

2
and keep all the goods) and (∅, 1

2
) (give me all of A

and I will pay you 1
2
). In this way Greedy’s utility from his allocation is for

sure 1
2
, and his net utility is 1

2
− x. If x is the losing bid, he receives first at

least x from the winner (whose bid is no less than x) then in the worst case
faces a choice between two allocations (S, 0) and (A⧹S, 0) where both shares
are non empty so that both allocations are worth zero to Greedy. It happens
here that Frugal will actually propose such a partition to optimise her worst
case. But Greedy’s worst case analysis uses no such information: he sees
that in any other choice between (S, t) and (A⧹S,−t), for any subset S and
cash transfer t, he has a positive utility for at least one of the two allocations.

Greedy’s worst case utility if x loses and he Chooses is x. Not knowing if
he wins or loses his worst net utility is the smallest of x and 1

2
− x, which is

largest for x = 1
4
and guarantees him a gain of 1

4
. Any other bid than 1

4
may
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result in a smaller gain.
Turning to Frugal, we compute first her worst possible utility for each

of the two possible roles after the bidding. As the Divider she secures the
utility of 1 by offering a choice between (S, 0) and (A⧹S, 0) (where S and
A⧹S are both non empty). As Chooser she guarantees a net gain of 1

2
for

any choice between (S, t) and (A⧹S,−t): indeed if S is neither A nor ∅, one
of the shares has a non negative transfer so it is worth at least a utility of 1;
and if the choice is between (A,−t) and (∅, t) she guarantees max{1− t, t}
which is at least 1

2
. So Frugal’s bid of x in the first round secures the utility

1− x if she wins and 1
2
+ x if she loses: the smallest of these two is 3

4
for her

safe bid x = 1
4
(and strictly less for any other bid). The D&C rule guarantees

to Frugal three times more utility than to Greedy.
In the Bid and Sell rule, the difference between Frugal’s and Greedy’s

guarantees sensibly increases as the number m of goods grows so the con-
trast between their preferences increases. We check that Greedy’s guaranteed
utility is now 1

m+1
versus m

m+1
for Frugal.

If x is Frugal’s initial bid to become the Seller and she loses, it means that
the (unknown) other agent’s bid is smaller, and as Seller that agent must
offer at least one good for a price at most 1

m
x therefore Frugal can guarantee

the net utility 1 − 1
m
x by buying just one such good. If Frugal becomes

the Seller with the bid x, she will safely post the uniform price 1
m
x for each

good: her net utility is 1 if she sells nothing, x if she sells all the goods, and
more than 1 if she sells some but not all goods: she gets at least min{x, 1}.
Choosing now x to maximise min{1− 1

m
x,min{x, 1}}, Frugal picks x = m

m+1

and secures the net utility m
m+1

.
Next consider Greedy with the initial bid y. His safe price as the Seller

offering to an unknown Buyer is uniform at 1
m
y: he gets 1

m
y by selling at least

one good and 1 by selling nothing, which guarantees the utility min{ 1
m
y, 1}.

As the Buyer, he will pay at most y for buying all the goods, which guarantees
the utility 1 − y. His safe bid y = m

m+1
maximises min{min{ 1

m
y, 1}, 1 − y}:

it is the same as Frugal’s safe bid but only guarantees the utility 1
m+1

to
Greedy.

Contents After the literature review in section 2 and the basic definitions
in section 3, we define guarantees in section 4. There we also describe simple
auctions implementing the fixed partition guarantees, a key ingredient of the
D&C rule.
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Section 5 introduces two critical utility levels: the MaxMin utility that
an agent can secure as the Divider is an upper bound on all guarantees;
the MinMax utility that she can secure as a Chooser against an adversarial
Divider is a lower bound on all reasonable guarantees: Proposition 1.

Section 6 defines two versions of the D&C rule and computes their (dif-
ferent) safe play and (identical) guarantees: Proposition 2. Section 7 does
the same for the B&S rule: Proposition 3.

In section 8 we compare the PS, D&C and B&S guarantees. They share
several regularity and monotonicity properties (Lemma 5) as well as compu-
tational complexity. Relative to the benchmark PS, the range of the B&S
guarantee is much larger than that of the D&C one: Proposition 4. But
the coarser messages in the D&C rule can have strongly unpalatable con-
sequences: Example 3. Finally we compute explicitly our guarantees when
the m goods are identical and utility are convex or concave (Lemma 6) or
dichotomous (Lemma 7).

Section 9 evaluates some welfare consequences of implementing one of our
individual guarantees. Does it distribute at least the total utility at the worst
partition of the goods? Lemma 8 gives some partial answers and formulates
a conjecture. Proposition 5 shows that, if agent 1’s marginal utility for each
good dominates that of every other agent, then the B&S safe play achieves
full efficiency, i.e., gives all the goods to agent 1, whereas under D&C all but
a 1

n
-th share of the efficient surplus can be lost.
The concluding section 10 includes reports on numerical experiments com-

paring the efficiency of safe play for our two main rules. With B&S the ex-
pected surplus is at least 95% of the efficient one, whether utilities are both
superadditive, both subadditive, or mixed. The performance of the D&C
rule is significantly weaker.

The Appendix (section 11) gathers several important proofs.

2 Relevant literature

Allowing cash compensations to smooth out the indivisibility of objects has
been essentially ignored by the first four decades of the theoretical literature
on fair division, if we except the cogent discussion by Steinhaus of what we
call above the Multi Auction rule for additive utilities ([32] p. 317).

This changed with the microeconomic discussion of the assignment prob-
lem. Each agent wants at most one object and utilities are increasing in
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money but not necessarily quasi-linear; monetary compensations can restore
fairness interpreted as Envy Freeness and even a version of the competitive
equilibrium with equal incomes: [33] [1]. The quasi-linear case of the model
is discussed in [3] selecting a canonical envy free allocation, in [13] for the
dissolution of partnership, in [22] for adressing the NIMBY problem, and
currently implemented on the user-friendly Spliddit platform [19].

In the assignment problem ex ante fairness is captured by the unanimous
utility : the best equal utility in the hypothetical problem where everyone else
shares my preferences ([25], [34]). This is unambiguously the best possible
guarantee and it is compatible with Envy Freeness.

In our model the set of allocations and utilities are vastly more complex
than in an assignment problem and the unanimity utility – that we call the
MaxMin utility – is an upper bound on guarantees but not itself a feasible
guarantee. Our newfound critique of Envy Freeness (Remarks 2, 3 in section
4.3, 5 respectively) complements the normative objections developed in [25].

The search for a practical and appealing guarantee started the mathe-
matical cake cutting literature ([31], [23]) and is a prominent theme in the
vibrant 21st century algorithmic literature on fair division surveyed in [26],
[5] and [35]. There the standard model has utilities additive over objects
and no cash transfers or lotteries, so the definition of a convincing guaran-
tee is complicated by the presence of “un-smoothable” indivisibilities. Our
MaxMin and MinMax utilities are the counterpart of, respectively, the influ-
ential MaxMinShare due to Budish [11] and its dual MinMaxShare [9].2 The
MaxMinShare is almost a feasible guarantee (it is not feasible in extremely
rare configurations [30]) while the dual MinMaxShare is strongly unfeasible.
On the contrary in our model the profile of MinMax utilities is always fea-
sible (Lemma 3 section 5) while the MaxMin profile is unfeasible; this holds
as well when we divide a non atomic cake and utilities are continuous but
otherwise arbitrary: see [8], [4].

In the standard model Envy Freeness is not feasible and one way to relax
the EF requirement is to allow cash transfers provably small in a certain sense;
these can (equivalently) come as non negative subsidies from the manager’s
pocket or as a set of balanced transfers bewteen agents. The initial positive
result by [21] is strenghtened in [10], see also [12], [6].

In the first of our two n-person versions of the Divide & Choose rule

2Other definitions of guarantees are also discussed in the algorithmic literature, e. g.
[7], as are guarantees adjusted to the granularity of the utilities in [17].
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(section 6) the participants bid first for the role of Divider, which is similar to
and inspired by the auction in [15] and [16] for implementing the egalitarian-
equivalent division rule to distribute Arrow-Debreu commodities.

3 Basic definitions and notation

Objects and money The finite set A with cardinality m ≥ 2 and generic
elements a, b, · · · , contains the indivisible objects that must all be distributed
between the n agents in the set N with generic elements i, j, · · · and n ≥ 2.

With the familiar notation [n] = {1, · · · , n} a n-partition π of A is a list
π = {Sk}k∈[n] of possibly empty and pairwise disjoint subsets of A such
that A = ∪k∈[n]Sk: up to n− 1 shares can be empty. If the relevant variable
is unambiguous we write a partition simply as {Sk}[n].

The set of n-partitions is P(n;A) if the shares Sk are not assigned to
specific agents, and P(N ;A) if they are.

Money is available in unbounded quantities to perform balanced transfers
between agents t = (ti)i∈N that are balanced:

∑
N ti = 0. The set of such

transfers is T (N). An allocation is a pair (π, t) ∈ P(N ;A)× T (N).

Utilities Each agent i is endowed with a quasi-linear utility ui ∈ R2A over
shares, with the important normalisation ui(∅) = 0: her utility from the
allocation (π, t) is ui(Si) + ti. The marginal utility of object a at S ⊆ A for
utility u is ∂au(S) = u(S ∪ a)− u(S⧹a). We assume throughout the paper
that all objects are goods : ∂aui(S) ≥ 0 for all S ⊆ A; utility functions can
be any (weakly) inclusion increasing non negative function on 2A, and M+

is our notation for this domain.
The utility u is additive if for all a ∈ A the marginal ∂au(S) = ua is

independent of S; in this case we write uS =
∑

S ua instead of u(S).
We often use the following cover operation to generate examples in the

domain M+.3 Fix a subset {Sk; 1 ≤ k ≤ K} of 2A⧹∅ and K positive
utilities vk; the cover of the subset {(Sk, vk)} of 2A⧹∅× R+ is the smallest
utility u in M+ such that u(Sk) = vk for all k:

u(S) = max
k:Sk⊆S

vk ; u(S) = 0 if Sk ⊈ S for all k

3It corresponds to an XOR bid in Nisan’s terminology of bidding languages ([27]).
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For instance the Greedy utility uG in section 1 is the cover of {(A, 1)} while
the Frugal utility uF is the cover of {(a, 1); a ∈ A}.

We call u ∈ M+ subadditive if u(S) + u(T ) ≤ u(S ∪ T ) for all disjoint
S, T in A, and superadditive if the opposite inequalities hold. We write Sub
and Sup the corresponding subsets of M+; their intersection is the set Add
of additive utilities.

Efficiency A N -profile of utilities is −→u = (ui)N ∈ (M+)N and if π ∈
P(N ;A) we write −→u (π) =

∑
N ui(Si). An important special case is agent

i’s unanimity profile where all agents have the same utility ui that we write

(
n
ui), so that (

n
ui)(π) =

∑
[n] ui(Sk).

The notation
q
z for the q-vector with q identical coordinates z will be used

repeatedly.
The efficient surplus at profile −→u is W(−→u ) = maxπ∈P(N ;A)

−→u (π). Recall
an easy but critical consequence of the quasi-linearity assumption: the al-
location (π∗, t) ∈ P(N ;A) × T (N) is efficient (Pareto optimal: PO) if and
only if π∗ maximises −→u (π) over P(N ;A). Pareto optimality is independent
of the balanced cash transfers.

Implementation Given an arbitrary n-agent mechanism agent i’s strategy
is safe if it delivers to i the largest “worst case” utility against all other agents
playing adversarially against i after seeing i’s strategy. That utility is the
guarantee offered by this mechanism to agent i: it only depends upon the
mechanism, agent i’s utility function, and the number of other agents.

Several mechanisms can implement the same guarantee: an example is the
two versions of Divide & Choose in section 6. When computing guarantees we
systematically omit many tie-breaking details from the description of rules,
and the reader will find it easy to check that they (the details) never affect
the guarantee they implement.

At a given profile of utilities, in any Nash equilibrium of the game induced
by the mechanism each agent gets at least their guaranteed utility (otherwise
this agent agent would benefit from deviating to a safe strategy). Therefore
how close is the sum of individual guarantees to the efficient maximum is
an upper bound on the price of anarchy: the worst loss of efficiency at any
equilibrium.
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4 Guarantees, Positive and Responsive

Definition 1: An n-person guarantee is a mapping M+ ∋ u → Γn(u) ∈ R+

such that ∑
N

Γn(ui) ≤ W(−→u ) for all −→u ∈ (M+)N (1)

The set of n-guarantees on A is written G(A;n).
By inequality (1) it is feasible at any utility profile −→u to give to each

agent i a share of surplus weakly larger than Γn(ui).
Guarantees are anonymous by construction: they do not discriminate

between agents on the basis of their name. The three guarantees getting
most of our attention, Proportional Share, Bid & Sell and Divide & Choose,
are also neutral, i. e., oblivious to the name of the objects in A. So these
guarantees only depend upon the numbers of objects and agents, and the
utility function of the concerned agent.

To any partition π = {Sk}k∈[n] ∈ P(n;A) we associate the π-guarantee
denoted

Γπ
n(u) =

1

n
(
n
u)(π) =

1

n

∑
[n]

u(Sk) for all u ∈ M+

We check that Γπ
3 meets inequality (1) at an arbitrary profile −→u =

(u1, u2, u3); for a general n the argument is quite similar. By definition
of the efficient surplus the three sums

u1(S1)+u2(S2)+u3(S3) ; u1(S2)+u2(S3)+u3(S1) ; u1(S3)+u2(S1)+u3(S2)

are bounded above by W(−→u ). Taking the average of these three inequalities
gives the desired one: Γπ

3 (u1) + Γπ
3 (u2) + Γπ

3 (u3) ≤ W(−→u ).
We speak of a generic π-guarantee (when π is not specified) as a fixed

partition guarantee. The fixed partition guarantee corresponding to the

bundling partition πPS = {A,
n−1
∅ } is the familiar Proportional Share (PS)

ΓPS
n (u) = 1

n
u(A).

4.1 Implementing the π-guarantees

The simple Bundle Auction (BA) implements ΓPS
n . Each agent i submits

a non negative bid βi that the rule interprets as this agent’s utility for the
entire set A; (one of) the highest bidder(s) i∗gets A and pays 1

n
βi∗ to each of

the n− 1 other agents.
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The only safe bid in BA is the truthful one βi = ui(A): it guarantees to
agent i her PS 1

n
ui(A) while any other bid risks delivering a smaller benefit:

this is clear for a winning overbid, and for an underbid losing to a bid between
βiand ui(A).

4

We generalise BA to the π-auction implementing the π-guarantee Γπ
n for

any partition π of A. Given π = {Sk}[n] and the set N , each agent i reports
a vector ti = (tik)[n] ∈ T (n) of balanced transfers over those shares. The
mechanism interprets ti as equalising agent i’s utility accross the different
shares:

for all k, ℓ ∈ [n] : ui(Sk) + tik = ui(Sℓ) + tiℓ = Γπ
n(ui) (2)

which reveals the utilities ui(Sk) up to an additive constant.
An assignment of π is a bijection σ of N into [n], and their set is C.

An assignment σ∗ is optimal at −→u if it maximises
∑

N uiσ(i) over C. If each
utility ui meets equation (2) this is the same as minimising the “slack” δ(σ) =∑

N tiσ(i) over C.
Because each ti is balanced we have

∑
C δ(σ) = 0, therefore the minimal

slack δ(σ∗) is negative or zero. After each agent j receives tjσ∗(j) (a cash

handout if tjσ∗(j) > 0, a tax if tjσ∗(j) < 0) the remaining cash surplus |δ(σ∗)| is
divided equally between all agents. Agent i’s final allocation is (Sσ∗(i), t

i
σ∗(i)+

1
n
|δ(σ∗)|) for which her utility is Γπ

n(ui) +
1
n
|δ(σ∗)|.

We illustrate the π-guarantees and their implementation with a three
good, three agent example, on which we apply more concepts and results
until section 7.

Example 1 Three agents X, Y, Z share three goods a, b, c and their util-
ities are

a b c ab ac bc abc
X 9 6 0 15 12 15 15
Y 15 15 15 15 18 18 18
Z 6 3 0 6 6 6 21

(3)

Note that Y’s utility is almost Frugal, while Z’s is somewhat Greedy.
Consider the partition π = {ac, b,∅} with corresponding utilities (12, 6, 0)

for X. The report tX = (−6, 0,+6) of balanced transfers defined by (2) is X’s
unique safe report securing the utility Γπ

3 (uX) = 6 for each of the three shares
(ab,−6), (b, 0), (∅,+6). Lemma 1 below proves this for a general problem.

4The tie break rule is irrelevant. The safe strategy and guarantee do not change if the
winner only pays 1

n -th of the second highest price to each loser.
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Computing similarly the balanced transfers equalising Y’s (resp. Z’s)
utilities for the shares (ab, tac), (b, tb), (∅, t∅) gives:

tac tb t∅
X −6 0 +6
Y −7 −4 +11
Z −3 0 +3

(4)

from which we get the individual guarantees

(Γπ
3 (uX),Γ

π
3 (uY ),Γ

π
3 (uZ)) = (6, 11, 3) (5)

Upon comparing in matrix (4) the slack of the six assignments of the
shares ac, b and ∅ to the agents X,Y and Z, we find that σ∗ giving ac
to X, b to Y and nothing to Z is efficient: it generates the smallest slack
δ(σ∗) = −6− 4 + 3 = −7. Then we rebate to each agent 1

3
of |δ(σ∗)|, that is

21
3
. The final allocation and utility profile are

X : (ac,−3
2

3
), Y : (b,−1

2

3
), Z : (∅, 5

1

3
) (6)

(uX , uY , uZ) = (8
1

3
, 13

1

3
, 5

1

3
)

This is the profile of utilities when each agent reports safely (hence truth-
fully). Here and in general this is much more than their guaranteed utility.
Indeed the π-auction implements the most efficient assignment of π. In par-
ticular if all agents report safely (i. e., truthfully) the final allocation will be
efficient over all partitions if and only if π happens to be an efficient parti-
tion. Agent i’s lower utility Γπ

3 (ui) is reached only when the other two agents
report “adversarial” transfers resulting in a null slack.

Lemma 1 The π-auction implements the π-guarantee, and the unique
safe play is to report the transfers equalising one’s utility across the shares
of π (as in (2)).

Proof We fix t1 ∈ T (n) and compute agent 1’s worst utility after report-
ing t1.

Check first that any σ in C can be selected as uniquely optimal for some
reports of the other agents. Suppose that all other agents j report t1 as well:
then

∑
i∈N t1τ(i) = 0 for any assignment τ so they are all equally optimal.

12



For each agent j ̸= 1, assigned Sσ(j) by the given σ, we modify j’s report as
follows

tjσ(j) = t1σ(j) − ε ; tjℓ = tiℓ +
1

n− 1
ε for all ℓ ̸= σ(j)

indicating that j likes the share Sσ(j) relative to the other shares n
n−1

ε more

than 1 does. The slack of assignment σ is now δ(σ) =
∑

N tiσ(i) = −(n− 1)ε,
smaller than for any other assignment in which at least one corrective term is
positive. So σ is selected as announced, and results in agent 1’s final utility
u1(Sσ(1)) + t1σ(1) +

n−1
n
ε.

As σ and ε were arbitrary we see that i’s utility could be as low as
mink∈[n] ui(Sk)+tik. The unique choice of t

1 maximising the latter equalises i’s
utility across these shares as in (2), and secures the utility 1

n

∑
k∈[n] ui(Sk) =

1
n
(
n
ui)(π), while any other report is unsafe. ■

4.2 The averaging auction

The set G(A;n) of n-guarantees is clearly convex.
For an arbitray finite set {πr} of partitions in P(N ;A) indexed by r ∈ R

we describe the canonical implementation of the average guarantee 1
|R|

∑
R Γr

n,
which we call the averaging-auction. This is a key component of the second
Divide & Choose rule in section 6.

Each agent i reports balanced transfers ti = (tir)R ∈ T (R) over those
guarantees, interpreted as equalising the utilities Γr

n(ui):

for all r, s ∈ R: Γr
n(ui) + tir = Γs

n(ui) + tis =
1

|R|
∑
R

Γr
n(ui) (7)

Then we select a guarantee Γr∗
n at which the sum of the corresponding

transfers is minimal:

r∗ ∈ argmin
R

∑
N

tir = argmax
R

∑
N

Γr
n(ui)

Call θ(r) =
∑

N tir the slack of partition r in R and note that
∑

R θ(r) = 0
implies θ(r∗) ≤ 0. We divide the surplus |θ(r∗)| equally and the net transfer
to agent i is tir∗ + 1

n
|θ(r∗)|. Finally Γr∗

n is implemented and agent i’s net
utility is at least Γr∗

n (ui) + tir∗ +
1
n
|θ(r∗)|.

From equation (7) and the fact that if we fix ui some choices of the other
agents’ utilities generate the slack θ(r) = 0 for all r, we conclude that i’s
guaranteed utility is exactly 1

|R|
∑

R Γr
n(ui) as desired.
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Example 1 (continued) We describe the implementation of the average
1
2
ΓPS
3 + 1

2
Γπ
3 where π = {ac, b,∅} as above. From the earlier computation of

Γπ
3 for this example, and ΓPS

n (ui) =
1
3
ui(A), we compute the two guarantees

and corresponding transfer vectors given by equation (7):

ΓPS
3 (ui) Γπ

3 (ui)
X 5 6
Y 6 11
Z 7 3

=⇒

tΓPS
3

tΓπ
3

X 0.5 −0.5
Y +2.5 −2.5
Z −2 +2

θ(r) +1 −1

As tΓπ
3
< tΓPS

3
we see that the π-auction brings more surplus than the

bundle auction. So X and Y compensate Z as shown in the column tΓπ
3
, and

an equal share of the slack, 1
3
, is rebated to everyone. Then we implement

Γπ
3 and the final utilities are (uX , uY , uZ) = (55

6
, 85

6
, 51

3
). Comparing with (5)

Z is much better off than under Γπ
3 whereas X,Y are worse off.

Lemma 2 The averaging-auction implements the average guarantee 1
|R|

∑
R Γr

n.
The unique safe play is to report the transfers equalising one’s utility across
guarantees (as in (7)).

The straightforward proof, similar to that of Lemma 1, is omitted.

Remark 1 It is just as easy to implement any convex combination of
guarantees

∑
R λrΓ

r
n where each λr is positive and

∑
R λr = 1. Each agent

i reports a vector of λ-balanced transfers ti,
∑

R λrt
i
r = 0, and the rule

proceeds as before: it implements Γr∗
n where r∗ minimises

∑
N tir so the slack

θ(r∗) =
∑

i∈N tir∗ is still non positive and i receives tir∗ +
1
n
|θ(r∗)|. The safe

strategy is to choose λ-balanced transfers ti equalising utilities as in (7).

4.3 Positivity and Responsiveness

The next two properties generalise the argument developed in Example 0 in
the Introduction. Recall the Frugal utility, uF : uF (S) = 1 for S ̸= ∅, and
Greedy one, uG : uG(S) ≡ 0 for S ̸= A, uG(A) = 1.

Definition 2 The n-guarantee Γn ∈ G(n,A) is
Positive if for all u ∈ M+ : u(A) > 0 =⇒ Γn(u) > 0
Responsive if Γn(uF ) >

1
n
> Γn(uG)

If Positivity fails at the utility u of agent i, the goods are the common
property of all the agents and yet deliver no benefit to agent i to whom they
are valuable: this normative position is untenable.

14



For Responsiveness we observe first that the inequality Γn(uF ) >
1
n
im-

plies Γn(uG) < 1
n
, because the efficient surplus is 1 when (n − 1) Greedy

agents share A with a single Frugal agent. So Responsiveness boils down to
Γn(uF ) >

1
n
.

We justify the latter inequality by comparing the contributions to the
efficient surplus of a Frugal versus a Greedy agent. Fix a (n − 1)-profile
u−1 ∈ (M+)n−1 and note that W(uF , u−1) ≥ W(uG, u−1). If this is an
equality we pick a partition π = {Si}N efficient at (uG, u−1) and we have

uG(S1) +
∑
i≥2

ui(Si) = uF (S1) +
∑
i≥2

ui(Si)

implying that S1 is ∅ or A.
If S1 = ∅ both versions of agent 1 contribute nothing to the efficient

surplus, and if S1 = A all (n − 1) other agents are equally useless. Hence
replacing a Greedy agent by a Frugal one always brings more surplus if there
is at least one efficient allocation of the goods where Frugal shares the goods
with the (n− 1) others, whoever they are.

Among the fixed partition guarantees, only ΓPS
n is Positive. All fixed

partition guarantees are Responsive, with the single exception of ΓPS
n . Thus

a convex mixture of ΓPS
n with any other π-guarantees meets both properties.

Remark 2 The standard interpretation of ex post fairness in our model
is Envy Freeness (EF): the allocation (π, t) is EF if ui(Si) + ti ≥ ui(Sj) + tj
for all i, j ∈ N . Surprisingly, Positivity and Responsiveness are not together
compatible with Envy Freeness! If the n-guarantee Γn in M+ is Positive and
Responsive, then a rule implementing it cannot choose an envy-free allocation
at all utility profiles.

Proof by contradiction. We fix such a guarantee Γn implemented by a
rule selecting at each utility profile an EF allocation. At the profile with
(n − 1) Greedy agents and a single Frugal we assume first that some agent
gets all of A, with identical value 1 for everyone. By EF that agent pays 1

n
to

everyone else and all end up with utility 1
n
: this contradicts Responsiveness

for Frugal. If the goods are split between at least two agents, by Positivity
every Greedy one gets some positive transfer, and by EF all get the same
transfer t, so Frugal pays (n−1)t. But then Frugal envies at least one Greedy
agent who gets some good.
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5 MaxMin and MinMax utilities

The recent literature on fair division pays close attention to these two canon-
ical utility levels inspired by Divide & Choose for cake-cutting, but playing a

role in many other models. Recall the notation (
n
u) for the unanimity profile

where all n agents have utility u.

Definition 3 Fix A,n and u ∈ M+.

i) The MaxMin utility at u is MaxMinn(u) = 1
n
maxπ∈P(n;A)(

n
u)(π): the

largest utility agent u can secure by choosing an (anonymous) allocation
(π, t) ∈ P(n;A) × T (n) and eating his worst share (Sk, tk) of that alloca-
tion.
ii) The MinMax utility at u is MinMaxn(u) = 1

n
minπ∈P(n;A)(

n
u)(π): the

largest utility agent u can secure by picking her best share in the worst possible
(anonymous) allocation (π, t) ∈ P(n;A)× T (n).

Given an n-partition π = {Sk}[n] of A, the π-auction guarantees the

utility 1
n
(
n
ui)(π) to each agent i (Lemma 1) therefore i reaches her MaxMin

utility if she can choose π, and at least her MinMax one if the choice of π
is adversarial.

Example 1 (continued)

Consider agent X. The partition π1 = {bc, a,∅} gives (
n
uX)(π1) = 24, and

every other partition gives her less. By attaching balanced transfers to the
shares agent X ensures that all three shares are worth 24

3
= 8, thus maximis-

ing her utility for the worst share: MaxMin3(uX) = 8. For MinMax3(uX)

note that the three partitions {abc,∅,∅}, {a, b, c}, {ab, c,∅}minimise (
n
uX)(π)

at the level 15. The worst balanced transfers attached to any such partition
make all the shares worth 5 to X and any other choice allows at least one
share to give X more utility: MinMax3(uX) = 5.

Similar computations for Y and Z give

MaxMin3 MinMax3

X 8 5
Y 11 6
Z 7 2

(8)

Lemma 3 In the domain M+

i) If A contains at least two goods, the mapping u → MaxMinn(u) is not a
n-guarantee (property (1) fails)
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but it is an upper bound for every guarantee Γn ∈ G(A;n):

Γn(u) ≤ MaxMinn(u) for all u ∈ M+

ii) The mapping u → MinMaxn(u) is a n-guarantee: MinMaxn(·) ∈
G(A;n)

Proof For i) we fix an arbitrary guarantee Γn and utility u. Inequality

(1) at the unanimity profile (
n
u) is nΓn(u) ≤ maxπ∈P(n;A) u(π) as desired.

To check that MaxMin is not a guarantee we have

MaxMinn(uF ) = min{1, m
n
} and MaxMinn(uG) =

1

n

because if n ≤ m Frugal can choose the partition with n shares containing
a single object, but if n > m she can only offer m such shares. The only
valuable partition to Greedy bundles A as a single share.

At the n-profile −→u with one uF and n − 1 others uG we have W(−→u ) =
1 therefore inequality (1) fails. Note that this failure is not a knife edge
situation: the set of profiles where the corresponding profile of MaxMin
utilities is not feasible is open in R2A

+ .

For ii) pick any partition π and check the inequality Γπ
n(u) =

1
n
(
n
u)(π) ≥

MinMaxn(u) for all u. ■

We note that both statements in Lemma 3 hold in the cake-cutting model
with very general preferences ([8]) but there the proof of ii) is much harder!

Our next result, technically very simple, shows an important benefit of
choosing a guarantee in the “duality interval” [MinMaxn(u),MaxMinn(u)].

Recall from section 3 (second paragraph) the notation Sub and Sup for
the sets of sub- and super-additive functions. For instance in Example 1 Y’s
utility is subadditive, Z’s is superadditive and X’s is neither.

Proposition 1 Suppose the guarantee Γn ∈ G(A;n) is such that

Γn(u) ∈ [MinMaxn(u),MaxMinn(u)] for all u ∈ M+ (9)

Then Γn(u) =
1
n
u(A) if u ∈ Add; Γn(u) ≥ 1

n
u(A) if u ∈ Sub; and Γn(u) ≤

1
n
u(A) if u ∈ Sup.
Proof If u ∈ Sub (resp. u ∈ Sup) we have u(A) = minπ∈P(n;A)(

n
u)(π)

(resp. u(A) = maxπ∈P(n;A)(
n
u)(π)) hence 1

n
u(A) = MinMaxn(u) (resp.

MaxMinn(u)) therefore (9) implies the desired inequalities. ■
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If u is additive MaxMinn(u) = 1
n
u(A), so by statement i) in Lemma

3 the Proportional Share is the best possible guarantee and the compelling
interpretation of ex ante fairness.

Note that property (9) is not very restrictive: it is clearly satisfied by the
Proportional Share, the fixed partitions guarantees Γπ

n, the D&C and B&S
guarantees defined shortly, and their convex combinations.

In subsection 11.1 of the Appendix we show that the guarantee of the
naive Multi Auction rule (auctioning objects one by one, see 5-th paragraph
in section 1) falls below the duality interval: it is often much smaller than
the MinMax guarantee. We dismiss MA for this very reason.

Remark 3 There is a precise connection between the duality interval in
(9) and Envy Freeness, confirming the trade-off between ex ante and ex post
fairness in Remark 2 above. At an envy free allocation, it is clear that every
agent i gets at least her MinMaxn(ui) utility. Conversely if the single-valued
rule (M+)N ∋ −→u → (π, t) ∈ P(N ;A) × T (N) is efficient and envy-free, it
must implement precisely the MinMax guarantee: we check that for each
utility function ui we can complete a profile (ui, u−i) at which the rule gives
to agent i precisely his MinMaxn(u) utility.

Fix u1 ∈ M+, π = (Sk)
n
k=1 achieving minπ∈P(n;A)[u1](π), and a positive

number δ. Construct a profile where the common utility v of the n − 1
other agents is the cover of the sequence {(Sk, u1(Sk) + α); k ∈ [n]}. If α is
very large any assignment of the shares Sk to the agents is efficient (and any
other efficient partition distributes the same utilities pre-transfers). By the
construction of utility v, at an envy free and efficient allocation the transfers
make agent 1 indifferent between all the shares so her utility is minMaxn(u).

6 Two Divide&Choose rules

The two rules have the same guarantee and their building blocks are the
π-auction and averaging-auction in section 4.

Definition 4 Divide&Choose1n
Stage 1: run a simple auction for the role of Divider; the winner i∗ is (one
of) the highest bidder(s) with a bid βi ≥ 0;
Stage 2: agent i∗ pays 1

n
βi to every other agent and picks a partition π∗ =

{Sk}nk=1 in P(n,A);
Stage 3: run the π∗-auction between all agents.

Definition 5 Divide&Choose2n
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Stage 1: each agent i picks a partition πi in P(n,A);
Stage 2: run the averaging auction between the guarantees Γπi

n , i ∈ N .

The D&C2
n rule takes longer to run than D&C1

n because the averaging

auction will first identify a partition πî maximising
∑

i∈N Γπj

n (ui) over j before

running the πî-auction.

Proposition 2
In the D&C 1

n rule, agent i’s play is safe if and only if he bids βi =
MaxMinn(ui)−MinMaxn(ui) in stage 1; chooses if he wins a partition π∗

maximising (
n
ui)(π) in stage 2, and reports truthful equalising transfers across

the shares of π∗ in stage 3.
In the D&C 2

n rule, agent i’s play is safe if and only if she proposes a

partition πi maximising (
n
ui)(π) in stage 1, then reports truthful equalising

transfers across the guarantees Γπj

n (ui), j ∈ N , and finally reports truthful

transfers in the final πî-auction.
Both rules implement the guarantee

ΓDC
n (u) =

1

n
MaxMinn(u) +

n− 1

n
MinMaxn(u)

=
1

n2
max

π∈P(n,A)
u(π) +

n− 1

n2
min

π∈P(n,A)
u(π) (10)

The guarantees ΓDC
n is Positive, Responsive, and in the duality interval (9).

Proof For D&C 1
n. In the π-auction agent i guarantees the utility 1

n
(
n
u)(π)

(Lemma 1). So as the Divider her best choice of π guarantees the utility

maxπ
1
n
(
n
u)(π) = MaxMinn(ui) (Definition 3). As a Chooser, the worst pos-

sible choice of π by the Divider gives minπ
1
n
(
n
u)(π) = MinMaxn(ui) to our

agent. So the worst drop in guaranteed utility between the roles of Divider
and Chooser is δi = MaxMinn(ui)−MinMaxn(ui).

Her bid xi in stage 1 secures the utility MaxMinn(ui)− n−1
n
xi if it wins,

and MinMaxn(ui) +
1
n
xi if it loses: bidding δi maximises the smallest of

these two, and her final guarantee is as announced in (10).

For D&C 2
n. Agent i’s guaranteed utility in stage 2 is 1

n

∑
j∈[n]

1
n
(
n
ui)(π

j)

(Lemma 2 ) so the worst case is when (
n
ui)(π

j) = minπ∈P(n;A)(
n
ui)(π) for

each j ̸= i. Therefore proposing in stage 1 an optimal partition πi securing

maxπ
1
n
(
n
u)(π) delivers the same guarantee (10).

We omit the easy proof that no other play is safe in either version of
D&Cn. ■
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Example 1 (continued) for D&C1
3

From the MaxMin and MinMax values in (8) we have

ΓDC
3 (uX) ΓDC

3 (uY ) ΓDC
3 (uZ)

6 72
3

32
3

We compute the allocation reached by the safe play of all three agents.
In D&C1 the bids in stage 1 are (3, 5, 5) for X,Y and Z respectively. The

way we break ties between Y and Z is now critical. If Z is chosen as the
Divider, he pays 12

3
to X and to Y, then picks the bundle partition πPS

where his safe bid of 21 wins and he gives an extra 7 to X and to Y. Final
allocation and utilities are

X Y Z
(∅, 82

3
) (∅, 82

3
) (A,−171

3
)

82
3

82
3

32
3

where Z gets nothing more than his guaranteed utility.
If instead Y wins stage 1, in stage 2 she pays 12

3
to X and to Z then can

safely divide A either as π∗ = {ac, b,∅} or π∗∗ = {bc, a,∅}. Say she chooses
π∗. We computed in subsection 4.1 the corresponding (safe and truthful)
transfer reports (4) and the resulting allocation (6). To the latter we add the
payments in stage 2. Final allocation and utilities

X Y Z
(ac,−2) (b,−5) (∅, 7)

10 10 7

a serious Pareto improvement over the choice of Z as winner in stage 1,
reflecting the fact that π∗ delivers 6 more units of total surplus than πPS.

If agent Y after winning stage 1 chooses instead the efficient (unbeknownst
to her) partition π∗∗ we let the reader check the final result

X Y Z
(bc,−3) (a,−5) (∅, 8)

12 10 8

yet another Pareto improvement over the previous choice of Y.

Example 1 (continued) for D&C2
3
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To agent Z the partition with the best guarantee is the bundle πPS. For
X the best choice is π∗∗ = {bc, a,∅} with a guarantee of 8, but Y has a choice
between π∗ = {ac, b,∅} and π∗∗.

Assuming that Y picks π∗ in stage 1, we compute the 3 × 3 matrix of

guarantees Γπ
3 (ui) =

1
3
(
3
ui)(π) and the corresponding safe balanced transfers:

[
1

3
(
3
ui)(π)] :

π∗∗ π∗ πPS

X 8 6 5
Y 11 11 6
Z 4 3 7

=⇒ [tπi ] :

π∗∗ π∗ πPS

X −12
3

+1
3

+11
3

Y −12
3

−12
3

+31
3

Z +2
3

+12
3

−21
3

The surplus maximising partition is π∗∗: the sum of its column in the
right (resp. left) matrix is minimal at −22

3
(resp. maximal at 23). So

before running the π∗∗-auction, we perform transfers τ as in the π∗∗ column,
augmented by a share 1

3
|22

3
| of the slack for each agent: τ = (−7

9
,−7

9
,+15

9
).

Then the π∗∗-auction delivers the allocation X: (bc,−42
3
); Y: (a,−12

3
); Z:

(∅, 61
3
) which we finally combine with τ :

X Y Z
(bc,−54

9
) (a,−24

9
) (∅, 78

9
)

95
9

125
9

78
9

We conclude that safe reporting in the two versions of D&C delivers
significantly different allocations, all the more so if some agents have several
choices of optimal partitions.

Finally we comment on an unappealing feature of D&C1,2. In the report-
ing stages common to both rules each agent only reveals the relative utilities
between the shares of certain partitions but the level of his absolute utility
remains private: this increases privacy but is detrimental to efficiency.

For instance if utility u is additive the safe bid in D&C1 is zero and any

partition is a safe proposal in both rules (because (
n
u)(π) = u(A) for any π).

Then if u is so much higher than other utilities that efficiency requires to
give this agent all the goods, her bid in D&C1 is still zero and some agent
2 with non additive utility will become the Divider; if 2 does not bundle all
goods in one share, the final allocation is for sure inefficient.

On the contrary in the Bid&Sell rule to which we now turn, individual
messages are related to the absolute utilities and avoid this type of inefficien-
cies: this is formally proven by Proposition 5 in section 9.
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7 The Bid&Sell rule

For a non negative price vector p ∈ RA
+ we use the same notation pS =∑

a∈S pa as if p described an additive utiltity. We write ∆(x) for the simplex
of prices such that pA = x. Because the recursive definitions of the B&S rule
and its guarantee work over shrinking subsets of objects, we make explicit
their dependence on the set A.

Definition 6 Bid&Sell for two agents : B&S2(A)
stage 1: each agent i bids xi (a non negative real number) to become the
Seller; (one of) the lowest bidder(s) with bid x becomes the Seller;
stage 2: the Seller chooses a price p in ∆(x);
stage 3: the Buyer can buy any share S of objects (possibly ∅ or A) at price
p; the Seller cashes the revenue and enjoys the unsold goods.
Final allocation: Buyer (S,−pS) ; Seller (A⧹S, pS).

To understand how to bid safely we compute first the safe utilityW2(u;x|A)
an agent with utility u becoming the Seller after bidding x can secure by
choosing optimally the price offered to the Buyer and expecting the worst
purchase from that agent:

W2(u;x|A) = max
p∈∆(x)

min
∅⊆T⊆A

(u(T )+pA⧹T ) = x+ max
p∈∆(x)

min
∅⊆T⊆A

(u(T )−pT ) (11)

We compare it with the safe utility L2(u;x|A) this agent can secure if her
bid x loses by a hair (to a bid just below x) so she becomes the Buyer and
is offered the worst possible price such that the whole bundle A costs x:

L2(u;x|A) = min
p∈∆(x)

max
∅⊆S⊆A

(u(S)− pS) (12)

Clearly W2(u;x|A) increases in x while L2(u;x|A) decreases hence the
safe bid in stage 1 is x∗ such that W2(u;x

∗|A) = L2(u;x
∗|A), which we

show below is well defined. This common value is the Bid & Sell guarantee
ΓBS
2 (u|A).
Even with three goods and two agents the computation of the bid func-

tions W2 and L2 is a linear program harder to solve than computing the
MaxMin and MinMax partitions as in section 5.

In the next computation and in Example 2 after Definition 7 we use the
familiar notation

(z)+ = max{z, 0} ; (z)− = min{z, 0}
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Example 1 (continued)
For agent X involved in a two person division of A the guaranteed utility

after a winning bid x is

W2(uX ;x|A) = x+ max
p∈∆(x)

min{0, 9−pa, 6−pb,−pc, 15−pab, 12−pac, 15−pbc, 15−x}

We can drop the two dominated terms 15− pab and 15− pbc, then check
that for p = (3

5
x, 2

5
x, 0) the maxmin term is (15− x)− and that this price is

optimal. Therefore W2(uX ;x|A) = min{x, 15}.
Next we compute L2(uX ;x|A), the guaranteed utility after a losing bid x:

L2(uX ;x|A) = min
p∈∆(x)

max{0, 9−pa, 6−pb,−pc, 15−pab, 12−pac, 15−pbc, 15−x}

where we can only drop the term 15− x.
For x ≤ 3 the price p = (x, 0, 0) is optimal and L2(uX ;x|A) = 15 − x.

For x ≥ 3 the optimal price solves 15 − pab = 12 − pac = 15 − pbc and
L2(uX ;x|A) = (14− 2

3
x)+. Finally the two functions intersect at the safe bid

x∗ = 82
5
, guaranteeing to agent X the utility uX = 82

5
.

Similar computations, omitted for brevity, give for Y:

W2(uY ;x|A) = min{x, 18}

L2(uY ;x|A) = 18−x on [0, 3] ; = 16
1

2
− 1

2
x on [3, 9] ; = (18− 2

3
x)+ above 9

and these two functions intersect at the safe bid x∗ = 111
4
guaranteeing the

utility 111
4
.

For agent Z we find similarly

W2(uZ ;x|A) = x on [0, 6] ; =
1

2
x+ 3 on [6, 18] ;

=
1

3
x+ 6 on [18, 45] ; = 21 above 45

L2(uZ ;x|A) = (21− x)+

so that Z’s safe bid is x∗ = 12 for the guaranteed utility 9.
We find that the B&S guarantees improve those of the D&C2 rule in a

two person division of A (Proposition 2) for all three agents

ΓDC
2 ΓBS

2

X 61
2

82
5

Y 81
2

111
4

Z 41
2

9
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This pattern is of course not a general feature of the comparison between
D&C and B&S.

For a larger number n of agents, the rule B&Sn(A) is defined recursively,
through at most n−1 rounds of bidding: in each round one agent is the Buyer
and the remaining other agents are Sellers; the Buyer leaves after buying
some goods (perhaps none) from all the Sellers. Naturally the computational
difficulty increases sharply.

Definition 7 B&Sn(A): Bid&Sell for n ≥ 3
Suppose the rule B&Sυ(B) is already defined for |B| ≤ n − 1 and define
B&Sn(A) as follows.

Stage 1: each agent i bids xi to become Seller or Buyer; (one of) the
highest bidder(s) becomes the Buyer;
Stage 2: each of the n− 1 Sellers j chooses a price pj in ∆(xj);
Stage 3: the Buyer buys a share S of goods by paying pj(S) to each Seller
and leaves; the rule stops if S = A, otherwise we go to
Stage 4: the remaining agents play B&Sn−1(A⧹S).

The worst utility Wn(u;x|A) from becoming a Seller after bidding x is
now

Wn(u;x|A) = max
p∈∆(x)

min
∅⊆T⊆A

(ΓBS
n−1(u|T )+pA⧹T ) = x+ max

p∈∆(x)
min
∅⊆T⊆A

(ΓBS
n−1(u|T )−pT )

(13)
and the worst utility as a Buyer after bidding x is

Ln(u;x|A) = min
p∈∆((n−1)x)

max
∅⊆S⊆A

(u(S)− pS) = min
p∈∆(x)

max
∅⊆S⊆A

(u(S)− (n− 1)pS)

(14)
because the worst case is when the n− 1 other bids are just below x.

Lemma 4 For any non null utility u ∈ M+ the recursive programs
(13),(14), together with the initial pair (11), (12), define unambiguously
the function Wn(u;x|A) concave and strictly increasing in x from 0 to u(A);
the function Ln(u;x|A) convex and strictly decreasing in x from u(A) to 0;
and the guarantee ΓBS

n (u) at their intersection: Wn(u;x
∗|A) = Ln(u;x

∗|A) =
ΓBS
n (u|A).
These properties imply: 0 < ΓBS

n (u|A) < u(A). In particular the buyer
in stage 3 buys at least one good.

Proposition 3 The guarantee ΓBS
n is Positive, Responsive, and in the

duality interval ( 9).
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The proof of the key Lemma 4 and its corollary Proposition 3, in sub-
section 11.2 of the Appendix, is a non trivial application of the minimax
theorem.

We illustrate the recursion defining the B&S3 rule in a simpler instance
than Example 1.

Example 2 Three agents F, H, K share three identical goods and their
utilities are

# of goods 1 2 3
F 5 5 5
H 0 4 6
K 1 3 6

So F is a Frugal agent who needs not more than one good, K is superad-
ditive and H is neither sub- nor super-additive.

As the goods are identical, we use the fact that the optimal price p in
(13), (14) can be taken symmetric over the goods (Lemma 10 in section 11.3).

Before computing the two functionsW3, L3 for a utility u we must retrieve
the two person guarantees ΓBS

2 (u|k) when only k goods are available, k =
1, 2, 3. We computed this for the Frugal agent in Example 0 section 1: after
scaling up 5 times those earlier results we have

ΓBS
2 (F |3) = 3

3

4
; ΓBS

2 (F |2) = 3
1

3
; ΓBS

2 (F |1) = 1
2

3

then we can apply (13), (14):

W3(F ;x|3) = min{x, 5
3
+

2

3
x,

10

3
+

1

3
x,

15

4
} = min{x, 33

4
}

L3(F ;x|3) = max{0, 5− 2

3
x, 5− 4

3
x, 5− 2x} = (5− 2

3
x)+

Agent F’s safe bid in Stage 1 of B&S3, at the intersection of these two
functions, is x∗

F = 3. Her guaranteed surplus is also ΓBS
3 (F ) = 3.

The same computations for agent H start with the two person problems
with 1, 2 or 3 goods. For instance the two functions

W2(H;x|3) = min{x, 2
3
x, 4 +

1

3
x, 6} = min{2

3
x, 6}

L2(H;x|3) = max{0, 4− 2

3
x, 6− x} = (6− x)+
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intersect at x = 18
5

and ΓBS
2 (H|3) = 12

5
. We find similarly ΓBS

2 (H|2) = 4
3
,

ΓBS
2 (H|1) = 0. Then we compute

W3(H;x|3) = min{2
3
x,

4

3
+

1

3
x,

12

5
} = min{2

3
x,

12

5
}

L3(H;x|3) = max{0, 4− 4

3
x, 6− 2x} = (6− 2x)+

and conclude that H’s safe bid in stage 1 of B&S3 is x∗
H = 21

4
guaranteeing

ΓBS
3 (H) = 11

2
.

Agent K two person guarantees are computed as ΓBS
2 (K|3) = 3, ΓBS

2 (K|2) =
11
2
, ΓBS

2 (K|1) = 1
2
, and her safe bid is x∗

K = 2 1
16

guaranteeing ΓBS
3 (K) = 17

8
.

The largest bid in stage 1 is x∗
F 5 = 3 so F is the first buyer. In stage

2 agents H,K choose equal unit prices for the 3 goods, respectively pH =
1
3
x∗
H = 3

4
and pK = 1

3
x∗
K = 11

16
. In stage 3 agent F pays 1 7

16
for one good and

her final utility is 5− 1 7
16

= 3 9
16
.

In stage 4 agents H and K play B&S2 for the two remaining goods. Agent
H bids 22

3
, larger than K’s bid 1

2
so H is the next buyer: he buys both goods

and pays 11
2
to K. The final allocation is efficient: one good to F and two to

H, for the final utilities

F : u = 3
9

16
; H : u = 3

1

4
; K : u = 2

3

16

where F’ and K’s share of surplus are less than 20% larger than their respec-
tive guaranteed shares (respectively ΓBS

3 (F ) = 3 and ΓBS
3 (K) = 130

16
) whereas

H more than doubles his guarantee ΓBS
3 (H) = 11

2
.

8 Comparing the B&S, D&C, and PS guar-

antees

8.1 More common properties

We already know that all three guarantees are Positive and in the duality
interval, and that ΓBS and ΓDC (the same guarantee for both D&C rules)
are Responsive.

Lemma 5
i) The guarantees ΓBS

n ,ΓDC
n and ΓPS

n are continuous and weakly increasing
in the individual utility u.
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ii) They are also scale invariant (Γn(λu) = λΓn(u) for λ > 0), weakly
increasing in A and weakly decreasing in n. For all A, n, u we have

Γn(u|A) ≤ Γn(u|A ∪ a) and Γn+1(u|A) ≤ Γn(u|A)

Proof Statement i) is clear for ΓDC
n and ΓPS

n . For ΓBS
n both functions

Wn(u; ·) and Ln(u; ·) increase weakly in u, so their intersection does too.
Statement ii) for ΓDC

n

Scale invariance is clear. For the monotonicity in A one checks easily that
both MaxMinn(u|A) and MinMaxn(u|A) increase weakly in A. For the
monotonicity in n we fix π∗ ∈ P(n + 1;A) and pick a share S in π∗ such

that u(S) ≤ 1
n+1

(
n+1
u )(π∗|A) (e. g. an empty share, if any). This im-

plies n
n+1

(
n+1
u )(π∗|A) ≤ (

n+1
u )(π∗|A) − u(S) ≤ maxP(n;A)(

n
u)(π|A) and that

MaxMinn(u) decreases weakly in n. Pick next π̂ ∈ P(n;A) such that

(
n
u)(π̂|A) = minP(n;A)(

n
u)(π|A) and note that (

n
u)(π̂|A) = (

n+1
u )(π̃|A) for the

partition π̃ adding an empty share to π̂, therefore

nMinMaxn(u|A) = (
n
u)(π̂|A) = (

n+1
u )(π̃|A) ≥ (n+ 1)MinMaxn+1(u|A)

implying that MinMaxn(u) is also weakly decreasing in n.
Statement ii) for ΓBS

n

Checking Scale Invariance is routine. The monotonicity in A is proven in
subsection 11.2 in the second paragraph of the proof of Lemma 4.

For the monotonicity in n: taking T = A in the minimisation part of pro-
gram (13) gives Wn(u;x) ≥ ΓBS

n−1(u|A) for all x, and this holds in particular
at the x∗ optimal in the problem with n agents. ■

For an additive utility u the three rules share the guarantee 1
n
u(A) (Propo-

sition 1). For B&Sn, just like for BAn, the only safe bid is x∗(u) = 1
n
u(A) =

ΓBS
n (u); and if this makes you the Seller the price pa = 1

n
u(a) is uniquely

safe. The omitted proof checks by induction that Wn(u;x) = min{x, u(A)}
and Ln(u;x) = (u(A)− (n− 1)x)+.

Recall from the discussion at the end of section 6 that, on the contrary,
in D&C1

n the safe bid is zero so that any partition is a safe choice for both
versions of the rule.

Computational complexity The recursive computation of ΓBS
n (u|A) from

ΓBS
n−1 solves the two LPs (13), (14) of size 2m. For a general n we solve a pair
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of LPs for each agent to go from n− 1 to n and this may happen in each of
the n− 1 steps of the full recursive algorithm. Therefore the number of LPs
grows as n2 so the complexity remains polynomial as long as the number of
objects is fixed. We already noticed that it is exponential in the number of
goods unless the goods are identical, as follows from the general result in [28].
The same conclusions apply to either D&C rule, where the only hard step is

to identify the partitions π minimising or maximising the utilities (
n
u)(π).

The easy case of identical goods is discussed in subsections 8.4 below and
11.3 in the Appendix.

8.2 Divergence from the Proportional Share

We turn to a different effect already illustrated in Examples 0 and 1: as the
utility function becomes more sudadditive or more superadditive, the B&Sn

guarantee deviates more from the Proportional Share than the D&Cn does.

Proposition 4 For all n and all u ∈ M+ we have

n

(n− 1)m+ 1
≤ ΓBS

n (u)
1
n
u(A)

≤ n×m

n+m− 1

1

n
≤ ΓDC

n (u)
1
n
u(A)

≤ min{m,n}+ n− 1

n

In both cases the bounds are achieved at uG and uF respectively.

We see that the upper bound of ΓBS
n

ΓPS
n

is strictly larger than that of ΓDC
n

ΓPS
n

,

with a single exception at n = m = 2. And the lower bound of ΓBS
n

ΓPS
n

is strictly

lower than that of ΓDC
n

ΓPS
n

if m ≥ n + 2, strictly larger if m ≤ n, and equal if
m = n+ 1.

Moreover the ratio ΓDC
n

ΓPS
n

is always below 2, while ΓBS
n

ΓPS
n

can be arbitrarily
large.

Proof We apply Lemma 5 twice. Every utility u in M+ s. t. u(A) = 1
satisfies uG ≤ u ≤ uF and ΓBS

n ,ΓDC
n increase weakly in u, therefore

ΓM
n (uG) ≤ ΓM

n (u) ≤ ΓM
n (uF ) where M is D&C or B&S

By scale invariance it is enough to show that uG and uF achieve the
announced bounds for the two rules. If M = D&C it follows by Proposition
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2 after checking maxπ(
n
uG)(π) = 1, minπ(

n
uG)(π) = 0 and

max
π

(
n
uF )(π) = min{m,n} ; min

π
(

n
uF )(π) = 1

ForM = B&C we use the more general result about dichotomous utilities
in Lemma 7 two subsections below. ■

8.3 A revealing example

Here the D&C guarantee is unpalatable because it ignores important aspects
of the externalities across objects. This critique is more subtle than –but
similar to –that of the Proportional Share by the way it treats Greedy and
Frugal.

Example 3 Two agents, Abstemious and Choosy, share 4ℓ goods parti-
tioned as four subsets, each with ℓ objects: A = R ∪ R∗ ∪ L ∪ L∗. Think of
two types of right gloves and two types of left gloves.

Abstemious is happy with any pair of one right and one left glove: her
utility is the cover of {((r, ℓ), 1)} over the whole set (R ∪ R∗) × (L ∪ L∗).
Choosy wants no less than all gloves in R ∪L or all in R∗ ∪L∗: his utility is
the cover of {(R ∪ L, 1), (R∗ ∪ L∗, 1)}.

For both agents MinMax2(u) = 0, MaxMin2(u) = 1, so ΓDC
2 gives 1

2
to

both agents: the D&C guarantee is shockingly coarse, the more so as ℓ grows.
By contrast we check that the optimal bid in the B&S2 rule is x∗ = 2ℓ

ℓ+1
for

both agents (almost twice larger than u(A)). To Abstemious this guarantees
ℓ

ℓ+1
because her worst case as Seller is to sell exactly R∪R∗ or exactly S∪S∗

for a net utility x
2
; and as Buyer there will be at least one pair costing at

most 2x
m
.

And to Choosy the B&S2 guarantee is
1

ℓ+1
because his worst case as Seller

is to sell exactly one glove in R ∪ R∗ and one in S ∪ S∗ for a net utility 2x
m
;

and as Buyer he will have to pay x
2
to get any benefit.

8.4 Identical goods

Here the utility u(S) depends only on the cardinality s of the subset S of
goods: it is an increasing function s → us from [m] into R+. The median of
u, written umed is um

2
if m is even, and umed =

1
2
(um−1

2
+ um+1

2
) if m is odd.

In this rich class of utilities computing the D&C1
2 safe bid and guarantee

is fairly simple because MaxMin2(u) and MinMax2(u) are respectively the
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maximum and minimum of us + um−s over s. More work is needed to com-
pute them for the B&S2 rule without restrictions on the sequence (us)[m]:
the still simple programs are described in Lemma 11, section 11.3 of the
Appendix. Here we apply this result to describe ΓBS

2 for convex or concave
utility functions, and compare it to ΓDC

2 .

Lemma 6
i) Suppose u is either convex or concave. Then the optimal bid and guarantee
in the D&C 2 rule are

x∗ = |1
2
um − umed| ; ΓDC

2 (u) =
1

2
umed +

1

4
um

ii) If u is convex the optimal bid and guarantee in the B&S 2 rule are

x∗ = max
0≤s≤m

{ m

m+ s
(um − um−s)} ; ΓBS

2 (u) =
m

m+ s∗
um−s∗ +

s∗

m+ s∗
um

iv) If u is concave they are

x∗ = max
0≤s≤m

m

m+ s
us ; Γ

BS
2 (u) =

m

m+ s∗
us∗

Statement i) is clear once we check that for a convex u: MaxMin2(u) =
1
2
um and MinMax2(u) = umed; and vice versa if u is concave.

Finally we generalise Example 0 to the sequence of dichotomous utilities
connecting the Frugal and Greedy ones: we compute explicitly the D&C and
B&S guarantees and bids for arbitrary n and m.

For each integer θ ∈ [m] the dichotomous utility uθ is satisfied with no
less and no more than θ goods:

uθ(S) = 1 if |S| ≥ θ ; uθ(S) = 0 if |S| < θ

Here u1 = uF and um = uG.

Lemma 7 For the dichotomous utilities above
i) The optimal bid and guarantee in the D&C 1

n rule are5

θx∗ = 1− 1

n
; ΓDC

2 (uθ) =
1

n
(2− 1

n
) if θ ≤ m

n

5We omit for easy reading the case m
n < θ < m

n + 1 where θx∗ = 1
n (⌊

m
θ ⌋ − 1) and

ΓDC
2 (uθ) = 1

n2 (⌊m
θ ⌋+ n− 1).
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θx∗ =
1

n
⌊m
θ
⌋ ; ΓDC

2 (uθ) =
1

n2
⌊m
θ
⌋ if θ ≥ m

n
+ 1

ii) The optimal bid and guarantee in the B&Sn rule are

x∗ =
m

m+ 1 + (n− 2)θ
; ΓBS

n (uθ) =
m+ 1− θ

m+ 1 + (n− 2)θ

For instance with five agents and twenty goods ΓBS
5 dominates ΓDC

5 for
all values of θ except 18, 19 and 20 when they are both less than a quarter

of the Proportional guarantee. The ratio
ΓBS
5

ΓPS
5

decreases regularly from 4 3
20

while
ΓDC
5

ΓPS
5

is never above 14
5
.

The proof of statement i) is routine once we compute

MaxMin5(u
θ) = min{1, 1

n
⌊m
θ
⌋}

MinMax(uθ) =
1

n
if θ <

m

n
+ 1 ; = 0 if θ ≥ m

n
+ 1

That of statement ii) is in section 11.3 of the Appendix.

9 Guaranteed collective welfare

9.1 Reducing the bargaining gap

At any n-profile of utilities −→u the n-person guarantee Γn ensures a collec-
tive welfare not smaller than

∑
N Γn(ui). We can evaluate the bite of our

guarantee by measuring the difference between the efficient surplus W(−→u ) =
maxπ

−→u (π) and that sum, relative to the largest efficiency loss resulting from
a misallocation of the objects.

We call the interval [minP(N ;A)
−→u (π),maxP(N ;A)

−→u (π)] the bargaining gap
of the problem (A,N,−→u ) and we say that the guarantee Γn reduces the bar-
gaining gap if

min
π∈P(N ;A)

−→u (π) ≤
∑
N

Γn(ui) ≤ max
π∈P(N ;A)

−→u (π) for all −→u ∈ (M+)N (15)

The right hand inequality is just the definition (1) of a guarantee, but the
left hand inequality is not necessarily true.
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Recall from Proposition 1 that ΓBS, ΓDC and ΓPS are not less than
MinMaxn(ui), therefore they guarantee the collective welfare

∑
N MinMaxn(ui).

This lower bound is not logically related to minπ∈P(N ;A)
−→u (π).6 However,

the PS guarantee 1
n
u(A) clearly meets (15): by Proposition 1 again, so do our

guarantees ΓBS and ΓDC if the utilities are subadditive.

Lemma 8
i) With two agents, n = 2, the Bid & Sell and Divide & Choose guarantees
reduce the bargaining gap.
ii) With three or more agents, the Divide & Choose guarantee may not reduce
the bargaining gap.

Proof
Statement i)

Step 1: for B&S. Fix a profile u, v where u’s optimal bid x∗ wins against
v’s larger optimal bid y∗. Let p ∈ ∆(x∗) be such that ΓBS

2 (u) = L(u;x∗) =
max∅⊆S⊆A(u(S) − pS). We increase p to some q ∈ ∆(y∗) so that ΓBS

2 (u) ≥
max∅⊆S⊆A(u(S)− qS).

Also ΓBS
2 (v) = W (v; y∗) = min∅⊆S⊆A(v(S) − qS) + y∗ = v(S) − qS + y∗

for some S. Then ΓBS
2 (u) ≥ u(S

c
)− qSc so ΓBS

2 (u) + ΓBS
2 (v) ≥ u(S

c
) + v(S).

Step 2: for D&C. Fix a profile u, v and let S, T be such that minπ(
n
u)(π) =

u(S) + u(Sc) and minπ[v](π) = v(T ) + v(T c). The computation of ΓDC
2

(Proposition 1) implies

ΓDC
2 (u) ≥ 1

4
(u(T ) + u(T c) + u(S) + u(Sc))

and a similar lower bound for ΓDC
2 (v). Summing up these inequalities and

rearranging gives the desired inequality (15).

Statement ii) Recall the dichotomous utilities uθ and their guarantees in
Lemma 7. A simple three person profile violating (15) for ΓDC

3 has three
goods and the profile −→u = (u2, u2, u1):

ΓDC
3 (u2) =

1

9
, ΓDC

3 (u1) =
5

9
but min

π∈P(N ;A)

−→u (π) = 1

■
6If A = {a, b, c, d}, u1 is the cover of {ab, bc, cd, ad} and u2 is the cover of {ac, ad, bc, bd}

(all with value 1), then MinMax2(ui) = 0 for i = 1, 2, but minπ
−→u (π) = 1 for all π. If

A = {a, a′, b, b′}, u1 is the cover of {a, a′} and u2 is the cover of {b, b′}, (all with value 1)
then −→u (π) = 0 if each agent gets useless goods, but MinMax2(ui) =

1
2 for i = 1, 2.
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We conjecture that the B&S guarantee reduces the bargaining gap for
any n.

Our intuition comes again from the equation ΓBS(uθ) = m+1−θ
m+1+(n−2)θ

in

Lemma 7. At a profile (uθi)N the equality minπ
−→u (π) = 1 holds if and only

if
∑n

i=1 θi ≤ m + n − 1. Then the left inequality in (15) follows from the
convexity of θ → ΓBS(uθ) and is tight.

9.2 When an agent’s utility dominates

For any two u, v ∈ M+ we say that u dominates v (resp. dominates strictly)
if we have

max
∅⊆S⊆A

∂av(S) ≤ min
∅⊆S⊆A

∂au(S) (resp. a strict inequality) for all a ∈ A

If in the profile −→u = (ui)
n
i=1 utility u1 dominates each ui, i ≥ 2, it is

efficient to give all the goods to agent 1, strictly so if each domination is
strict. This follows by repeated application of the inequality u1(S)+ui(T ) ≤
u1(S ∪ a) + ui(T⧹a) when S, T are disjoint and a ∈ T .

Our last result reveals another serious advantage of the Bid & Sell rule
over the Divide&Choose rules.

Proposition 5 Fix a profile −→u = (ui)
n
i=1 where utility u1 dominates

strictly ui for each i ≥ 2.
i) The B&Sn division rule where all agents play safely implements the effi-
cient outcome where agent 1 eats all the goods.
ii) The outcome of safe play in the D&C rules may only collect 1

n
-th of the

efficient surplus.

Proof of statement i) in subsection 11.4.
For statement ii) suppose for simplicity m = n, all goods are identical,

agent 1 has the additive utility u1(S) = |S| and all utilities ui for i ≥ 2 have
marginals ∂aui(|S|) below ε, with ε < 1, and strictly decreasing in |S|. In
D&C1

n agent 1 bids zero and the others bids are positive. The Divider will
offer the partition of A in n = m singletons and the surplus collected will be
1 + (n− 1)ε, but the efficient surplus is n.

10 Conclusion

Our interpretation of ex ante fairness in terms of an individual guarantee for
each agent ui inside the benchmark interval [MinMaxn(ui),MaxMinn(ui)]
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delivers the desired correction to the coarse Proportional Share: a reward to
a subadditive utility and a penalty to a superadditive one (Proposition 1).

The Bid & Sell and Divide & Choose rules implement such guarantees
(Propositions 2 and 3), with B&S responding more strongly than D&C to
sub- and super-additivity (Proposition 4). It strongly outperforms D&C
when one agent values each subset of goods much more than any other agent
(Proposition 5).

All agents playing safe in either rule does not in general extract the effi-
cient surplus because the messages reveal much less than full utilities.Yet the
price message in B&S reveals more of the shape of the Seller’s utility than
the partition in D&C does of the Divider’s. This suggests that the safe play
in B&S captures more of the efficient surplus than D&C, at least on average.

Numerical experiments with two agents sharing up to seven goods in
[2] confirm this intuition. The B&S rule captures on average between 95-
99% of the efficient surplus whether both utilities are superadditive, both
subadditive, or one of each type. The corresponding range for the D&S
rule (version 1 or 2) is 80-90% for two subadditive agents, 65-75% for two
superadditive ones, and 45-60% for a mixed pair.

11 Appendix: missing proofs

11.1 The Multi Auction rule

Recall from section 1 that the MA simply runs m independent Bundles Auc-
tions, one for each good. Each agent i submits a profile of bids βi ∈ RA

+; for
each good a (one of) the highest bidder(s) on a, agent i∗, gets a and pays
1
n
βi∗a to every other agent.
If utility ui is additive under MA the truthful bid uia on each a is the

unique safe play and implement the PS guarantee. If all utilities are additive
the safe play by all picks an efficient allocation (that is even Envy Free).

If the rule MA is used for general utilities in M+ the marginal utility of
adding a to a subset of goods varies, so there is no “truthful” bid on a. For
any utility u ∈ M+ the safe vector of bids solves the program:

ΓMA
n (u) = max

β∈RA
+

{ min
∅⊆S⊆A

(u(S)−n− 1

n
βS+

1

n
βSc} = max

β∈RA
+

min
∅⊆S⊆A

(u(S)−βS)+
1

n
βA

(16)
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If our agent wins the auctions for the goods in S and those only, she pays
n−1
n
βa for each a in S, and gets in the worst case 1

n
βa for each a outside S.

The guarantee ΓMA
n is neither Responsive nor Positive: ΓMA

n (uG) = 0 <
1
n
= ΓMA

n (uF ). Indeed if Greedy’s bid β is not zero, pick a such that βa =
minb∈A βb, suppose Greedy wins all auctions except a and check that his
worst utility is negative or zero. Next Frugal’s safe bid of 1

n
on every good

secures utility 1
n
in the worst cases where she wins all auctions or none of

them.
Moreover ΓMA

n is dominated by the MinMax guarantee, often strictly so.
To check the first claim pick u ∈ M+, a partition π = {Sk}k∈[n] of A and an
optimal bid β of u in (16). Then ΓMA

n (u) ≤ (u(Sk)−βSk
)+ 1

n
βA for all k and

the sum of these inequalities is ΓMA
n (u) ≤ 1

n
(
n
u)(π).

An example where domination is strict is the utility u = uF + uG when
m ≥ 3. One checks easily that MaxMin2(u) = MinMax2(u) = 1 but
ΓMA
n (u) = m

2(m−1)
.

11.2 Proof of Lemma 4 and Proposition 3

Fixing A and a single utility u ∈ M+, our first step is to rewrite the programs
(11) (12) in a more compact though less transparent format using a well
known combinatorial concept.

A vector δ = (δS) ∈ R2A⧹∅
+ is a balanced (set of) weights if for all a ∈ A

we have
∑

S:S∋a δS = 1. We call δ minimal if it is an extreme point of the
convex compact set of balanced weights, and write Bm the set of minimal
balanced weights for m goods.7 The simplest elements of Bm come from the
true partitions {Sk} of A: those where each Sk is non empty, δSk

= 1 for each
k, and all other weights are 0. Let B∗

m be Bm minus the balanced weights
coming from the trivial partition {A} (δA = 1 and other δS = 0).

Write the total weight of δ as δ =
∑

∅̸=S⊆A δS. Then δ > 1 for each δ in

B∗
m. The smallest of these sums is δ = m

m−1
when δA⧹a = 1

m−1
for all a (all

other weights are zero), and the largest one is δ = m when δa = 1 for all a.
Both claims follow from the identity

∑
S⊊A |S| × δS = m.

Lemma 9

7The size of B grows astronomically fast with m: |B| = 2 for m = 2, = 6 for m = 3,
= 27 for m = 4 and more than 15, 000 for m = 5: see [20].
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The programs (11) (12) can be rewritten as follows:

W2(u;x) = min{x, u(A),min
B∗
m

1

δ
(δ · u− x) + x} (17)

L2(u;x) = max{0, u(A)− x,max
B∗
m

1

δ
(δ · u− x)} (18)

Proof.
We write ∇(Z) for the set of convex weights on Z, and first rewrite the
MaxMin expression in (11):

W2(u;x)− x = max
p∈∆(x)

min
∅⊆T⊆A

(u(T )− pT ) = max
p∈∆(x)

min
ξ∈∇(2A)

∑
T∈2A

ξT (u(T )− pT )

where ξ has two coordinates ξA and ξ∅.
Note that the mapping ∇(2A) ∋ ξ → ζ ∈ RA : ζa =

∑
T :a∈T ξT is onto

[0, 1]A, and apply the minimax theorem to rewrite the last maxmin term
above as

min
ξ∈∇(2A)

max
a∈A

∑
T∈2A

ξTu(T )−xζa =⇒ W2(u;x) = min
ξ∈∇(2A)

∑
T∈2A

ξTu(T )+x(1−min
a

ςa)

(19)
We check now that for an optimal ξ in the minimisation program above,

ζa is independent of a. Assume ζa > minb ζb where the minimum is achieved
by some good b∗. We can choose S containing a but not b∗ and such that
ξS > 0: if this was impossible ζa ≤ ζb∗ would follow. For ε small enough we
construct ξ′ ∈ ∇(2A) identical to ξ except for ξ′S = ξS−ε, ξ′S⧹{a} = ξS⧹{a}+ε.

By construction the net change in the objective is −εu(S)+εu(S⧹{a}) ≤ 0;
moreover ζ ′ and ζ coincide everywhere except at a where ζ ′a = ζa−ε. We can
now choose ε such that either ζ ′a = minb ζb or ξS = 0 and still ζ ′a > minb ζb.
Then we repeat the construction until all coordinates of ζ coincide.

If ξ is deterministic on ∅ or on A, we get the first two terms in (17). For
any other ξ we can assume in (19) that ξ puts no weight on ∅ or on A, and
write ζ ∈ [0, 1] for the common value ζa. Setting δ = 1

ζ
ξ defines a balanced

set of weights and
∑

T ξTu(T ) + x(1− ζ) = ζ(δ · u) + (1− ζ)x. Without loss
we can minimise over minimal balanced weights. Finally δ = 1

ζ
and the proof

of (17) is complete.
The similar argument for (18) starts with
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L2(u, x) = min
p∈∆(x)

max
ξ∈∇(2A)

∑
T∈2A

ξT (u(T )−pT ) = max
ξ∈∇(2A)

{
∑
T∈2A

ξTu(T )−x(max
a∈A

ζa)}

The critical argument that we can take ζa independent of a assumes ζa <
max ζ = ζ, picks S s. t. ξS > 0 and containing b∗ but not a and changes ξ by
ξ′S = ξS − ε, ξ′S∪a = ξS∪a + ε: for ε small enough the max ζ does not change
and the net change on the objective is at least−εuS + εuS∪a ≥ 0. ■

Proof of Lemma 4. Equation (17) defines a concave function. Each
term in x increases strictly because δ > 1 and reaches u(A) for x large enough,
therefore W2(u;x) increases strictly up to u(A). Similarly in (18) L2(u;x) is
convex and strictly decreasing as long as all terms in x are positive, which
terminates for x large enough. So the intersection of W2(u; ·) and L2(u; ·) as
ΓBS
2 (u|A) is well defined.
We proceed now by induction after checking that the function S →

ΓBS
2 (u|S) is in M+(A). Going back to the definition (11) we see that

W2(u;x|S) increases weakly in S because agent u can choose in the prob-
lem augmented to S ∪ a a price s. t. pa = 0; and so does L2(u;x|S) by (12)
because in the augmented problem the agent can choose only among subsets
not containing a. Both W2(u;x|S) and L2(u;x|S) increase weakly in S, so
their intersection in x increases too.

The induction step applies Lemma 9 to ΓBS
n−1(u|·) ∈ M+(A) and gives

Wn(u;x|A), Ln(u;x|A) by the two programs

Wn(u;x|A) = min{x, u(A),min
Bm

1

δ
(δ · ΓBS

n−1(u|·)− x) + x} (20)

Ln(u;x|A) = max{0, u(A)− (n− 1)x,max
Bm

1

δ
(δ · u− (n− 1)x)} (21)

with the properties announced in Lemma 5, and their intersection ΓBS
n (u|·)

as a function in M+(A).

Proof of Proposition 3. If u(A) > 0 both functions Wn(u;x), Ln(u;x)
are strictly positive for x small enough, proving Positivity. For Responsive-
ness we compute formally ΓBS

2 (uF ) (more rigorously than in the Introduc-
tion). First (17) gives W2(uF ;x) = min{x, 1} because the smallest δ in B∗

m

is m
m−1

and L2(uF ;x) = max{0, 1 − 1
m
x} because the largest δ in B∗

m is m.

This shows ΓBS
2 (uF |S) = |S|

|S|+1
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We omit the straightforward induction argument giving ΓBS
n (uF |S) =

|S|
|S|+n−1

.

It remains to check ΓBS
n (u) ≥ MinMaxn(u) for all u and n. This is

true for n = 1. Assume next it holds for ΓBS
n−1 and pick any u ∈ M+(A)

with optimal bid x∗ where Wn and intersect. Choose p ∈ ∆(x∗) optimal in
program (14) so that Ln(u;x

∗|A) = max∅⊆S⊆A(u(S)− (n− 1)pS). Then (13)
and the inductive argument imply

Wn(u;x
∗) ≥ min

∅⊆S⊆A
(ΓBS

n−1(u|S)− pS) + x∗ = ΓBS
n−1(u|T )− pT + x∗ for some T

=⇒ Wn(u;x
∗) ≥ 1

n− 1
(
n
u)(π)−pT+x∗ where π is some (n−1)-partition of T

We can now combine this lower bound for (n− 1)Wn(u;x
∗) with Ln(u;x

∗) ≥
u(T c) − (n − 1)pT c to get nΓBS

n (u) ≥ (
n
u)(π) + u(T c) which completes the

proof.

11.3 Proofs for identical goods

We say that the goods a, b are symmetric in u if we have

u(S − b+ a) = u(S) for all S s. t. a /∈ S ∋ b

Lemma 10 If two goods a, b are symmetric in u their optimal (safe)
prices in Wn(x;u|A) and their worst prices in Ln(x;u|A) can be taken equal
when we compute the safe bids in B&Sn.

Proof For brevity we give the argument for n = 2 and omit the obvious
induction argument.

Fix u ∈ M+ and assume u is symmetric in the goods a, b. In the pro-
gram (12) defining L2(u;x) assume the worst price p has pa < pb. Let q
obtains from p by averaging pa and pb and changing nothing else. Then
max∅⊆S⊆A(u(S) − pS) differs from max∅⊆S⊆A(u(S) − qS) only in pairs of
terms of the form u(S)− pS, u(S − b+ a)− pS−b+a. Replacing p by q lowers
the largest of these two terms, so q is still optimal in the program (12). The
argument for W2(x;u) is identical. ■

In order to compute now ΓBS
2 when the all the goods are identical (without

assuming convexity or concavity of the utility) we use the notation ∂kuℓ =
uℓ+k − uℓ.
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Lemma 11 Fix a utility u for identical goods. Agent u’s optimal bid in
the B&S 2 rule is

x∗ = max{ m

m+ k
∂kuℓ|0 ≤ k, ℓ ≤ m and 0 ≤ ℓ+ k ≤ m} (22)

If x∗ = m
m+k∗

∂k∗uℓ∗ his guarantee is

ΓBS
2 (u) =

ℓ∗ + k∗

m+ k∗uℓ∗ +
m− ℓ∗

m+ k∗uℓ∗+k∗ (23)

Proof By Lemma 9 in section 11.2 the programs (11) and (12) simplify
to

W2(u;x) = min
0≤s≤m

{us +
m− s

m
x} ; L2(u;x) = max

0≤s≤m
{us −

s

m
x}

The optimal bid x∗ solves W2(u;x
∗) = L2(u;x

∗). Because W2 increases
and L2 decreases, both strictly, the inequality x ≥ x∗ is equivalent toW2(u;x) ≥
L2(u;x). If s

′ ≤ s the inequality us+
m−s
m

x ≥ us′− s′

m
x is automatic, therefore

x ≥ x∗ amounts to

uℓ +
m− ℓ

m
x ≥ uℓ+k −

ℓ+ k

m
x for all k, ℓ ≥ 0 s. t. ℓ+ k ≤ m

⇐⇒ x ≥ max
0≤ℓ+k≤m

m

m+ k
(uℓ+k − uℓ)

which proves (22) and in turn (23). ■

Lemma 6 follows at once from this result.

Proof of statement ii) in Lemma 7
For t ∈ [m] write Γn(θ|t) = ΓBS

n (uθ|T ) the n person B&S-guarantee when
there are only t (identical) goods to distribute. Note that Γn(θ|t) = 0 if
t < θ. We compute first Γ2(θ|t) for t ≥ θ:

W2(θ;x|t) = min{1, t− θ + 1

t
x} ; L2(θ;x|t) = max{0, 1− t

m
x}

=⇒ Γ2(θ|t) =
t− θ + 1

t+ 1
for θ ≤ t ≤ m

For n = 3 equation (14) is simply: L3(θ;x|m) = max{0, 1 − 2θ
m
x}. By the

concavity of t → Γ2(θ|t) (13) becomes

W3(θ;x|m) = min
θ−1≤t≤m

{Γ2(θ|t)+
m− t

m
x} = min{m− θ + 1

m
x,

1

θ + 1
+
m− θ

m
x}
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after which one checks that the graph of L3 intersects that of W3 on the line
x → m+1−θ

m
x, and finally Γ3(θ|m) = m+1−θ

m+1+θ
with the optimal bid x∗ = m

m+1+θ
.

The general inductive step works in exactly the same way with the recursive
equations (13),(14).

11.4 Proof of Proposition 5 statement i)

We assume n = 2 and omit for brevity the straightforward induction argu-
ment extending the result to any n.

Fix any u ∈ M+; from the proof of Lemma 4 (and Lemma 9 in that
proof) we know that W2(u;x) reaches u(A) at some finite value denoted
x̃(u): W2(u; ·) increases strictly up to x̃(u) after which it is flat. Agent
u’s optimal bid x∗(u) in B&S is strictly below x̃(u) (because W2(u; x̃(u)) =
u(A) > L2(u; x̃(u)).

Write now for brevity ∂+
a u = max∅⊆S⊆A ∂au(S) and ∂−

a u = min∅⊆S⊆A ∂au(S).

Step 1 Fix u and x ≤ x̃(u) and suppose that in the program (11) an optimal
price is p ∈ ∆(x). Then pa ≤ ∂+

a u for all a.
Proof by contradiction: we assume pa > ∂+

a u for some a and define a new
price p′ s. t. p′a = pa−ε and p′b = pb otherwise; we choose ε > 0 small enough
that p′a > ∂+

a u still holds. For some T ∈ 2A we have min∅⊆S⊆A(u(S)− p′S) =
u(T )− p′T . This implies a ∈ T otherwise adding a to T would contradict the
optimality of T . We compute now

W2(u;x− ε) ≥ u(T )− p′T + (x− ε) = u(T )− pT + x

≥ min
∅⊆S⊆A

(u(S)− pS) + x = W2(u;x)

We see that W2(u; ·) is flat before x therefore x > x̃(u) contradicting the
choice of x.

Step 2 Assume u1 dominates u2 strictly.
A first consequence is L2(u1;x) > L2(u2;x) for all x ≤ x∗(u2). Indeed

u1(S)− pS > u2(S)− pS for all non empty S and p ∈ ∆(x), and L2(u2;x) is
positive therefore for any p ∈ ∆(x) the maximum of u2(S) − pS is achieved
at some non empty S.

Next we pick p ∈ ∆(x∗(u2)) optimal in (11) for u2. By step 1 and inequal-
ity x∗(u2) < x̃(u2) we have pa ≤ ∂+

a u2 < ∂−
a u1 for all a, implying u1(S) > pS

for all non empty S. Therefore

W2(u1;x
∗(u2)) ≥ min

∅⊆S⊆A
(u(S)− pS) + x∗(u2) = x∗(u2)
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Because W2(u1; y) ≤ y for all y we see that W2(u1; y) = y ≥ W2(u2; y) for
all y ≤ x∗(u2).

Gathering the first and last statements in this step we conclude that
L2(u1; ·) and W2(u1; ·) intersect beyond x∗(u2) so agent u1’s safe bid makes
her the Seller in stage 2. We showed a few lines ago u1(S) > pS for any S
and any possible price charged by agent u2 therefore agent u1 will buy all
the goods and the proof is complete. ■
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