ID	Project First Supervisor	Project Title	Project Description	Consumables required	Students	Reading List
1	Sajjad Hussain	LLM Powered Personalised Learning	The student(s) are expected to explore the space around LLM- powered personalized learning methods and models. The focus of this project will be on creating the differentiation between general LLM and tailored LLM solutions as per the needs of the learners.	Software subscriptions.	1-2	1) https://arxiv.org/a bs/2405.11070 2) https://ieeexplore. ieee.org/documen t/10628100
2	Atif Jafri	Exploring the of IGLOO 2 FPGAs for low power DDS Implementation	IGLOO2 are power efficient FPGAs offered by Microchip. In this project, the students will develop low power Direct Digital Synthesis (DDS) circuits and evaluate different architecture of DDS for hardware used, clock speed and power utilization. They will learn the Libero SoC Design Suite which is development environment for these FPGAs.	IGLOO2 Evaluation Kit	2	https://www.micr ochip.com/en- us/development- tool/m2gl-eval-kit
3	Atif Jafri	Vitis AI for AI Inference Implementation on Ultrascale+ MPSoC	Vitis AI is framework by AMD to implement inference of AI applications on FPGA using DPU soft core. In this project students will learn this design flow to implement AI inference of vision applications on FPGA. They will have the have on experience on using the Kria KC260 vision kit.	Kria KV260 Vision Al Starter Kit	2	https://xilinx.githu b.io/Vitis- Al/3.5/html/docs/r eference/release_ documentation.ht ml https://docs.amd. com/r/en- US/pg338- dpu?tocId=3xsG1 6y_QFTWvAJKHbi sEw

4	Atif Jafri	Communication System Implementation on RFSoC	RFSoC are multiprocessor platforms with FPGA fabric and RF ADC/DACs. In this project, the students will learn to develop components of digital communication system on FPGA. They will also learn how these components can be controlled through processing systems of RFSoC using PYNQ framework.	RFSoC 4x2 Board	2	https://www.rfsoc -pynq.io/ https://pynq.readt hedocs.io/en/v2.0 /overlay_design_m ethodology/overla y_tutorial.html
5	Yihuai Zhang	Design and develop the novel microwave tools for rock fracturing	Rock fracturing is a critical process in various engineering fields, traditionally achieved through explosives or mechanical drills. Recent research suggests that microwaves can be used to heat rock, inducing thermal stress and micro-cracking, which facilitates easier breakage. This project will combine both experimental and computational methods to: 1, develop design concepts for a microwave tool optimised for rock fracturing. This phase will involve creating prototypes—potentially using computer-aided design (CAD) software—and considering factors such as microwave frequency, power output, and tool geometry to maximise efficiency and safety. 2. Make and test the prototypes on rock samples under controlled laboratory conditions. Measurements will include temperature profiles, fracture patterns, and energy consumption. Data from these	microwave generator, electrical consumables	2	https://link.spring er.com/article/10. 1007/s00603-019- 01790-z https://www.scien cedirect.com/scie nce/article/pii/S19 95822622000024 https://link.spring er.com/article/10. 1007/s00603-022- 02956-y

			tests will be used to refine the tool design and improve performance.			
6	Prof. Rami Ghannam	AI-Driven Tennis Ball Trajectory and Spin Analysis	The goal of this project is to develop a compact computer vision-based system to analyse the trajectory of a tennis ball launched from a ball machine. The system will use image processing techniques to track ball motion in real-time and apply artificial intelligence (AI) models to predict ball trajectory, speed and spin characteristics. Based on images collected from a camera and a microcontroller, an algorithm will be developed to extract ball movement data. Students will will also train machine learning models to predict ball trajectory and spin. The project team will consist of two students, who might wish to divide the work so that one focuses on image processing and tracking, while the other works on AI-based predictions and modeling.	Tennis ball machine, NVIDIA Jetson Nano Developer Kit, Logitech HD Camera	2	1) https://pmc.ncbi. nlm.nih.gov/articl es/PMC3990883/ 2) https://pmc.ncbi. nlm.nih.gov/articl es/PMC4879439/

7	Bo Liu	Al-driven design of microwave antennas: the next generation methodology	At present, antenna design is mostly carried out by highly skilled engineers. However, AI techniques can obtain designs with high performance that human designers are not able to, and also with a much shorter time-to- market. The CSI Group, University of Glasgow, has developed state- of-the-art algorithms for AI-driven antenna design and was embedded into MATLAB. In this project, you will get familiar with state-of-the-art AI-driven antenna design tools and practice them in simple antenna design cases that appear in daily life. This opportunity will lead to a final year project working on the AI-driven design of modern and advanced antennas, which may lead to publications. According to your performance, future postgraduate study training you to become a first-generation antenna design engineer armed with AI-based design methodology is possible. This project requires outstanding problem-solving skills and the student must be a quick learner. The top 5% of students are encouraged to participate.	software licenses, fabrication	4	The student can learn the related Al knowledge through UofG online course (https://www.cour sera.org/specializ ations/matlab?act ion=enroll), but it is optional.
	Kernec	radar signatures	from Victor Chen's book on rotor simulation and then emulate different targets such as drone (x2 students) and rovers (x2 student) configuration and flight path. This			ac.uk/304566/3/3 04566.pdf https://go.exlibris.l ink/SxmhjRD9

9	Julien Le	From motion capture to radar	can evolve to a 4D radar simulator where the code for it can be found on Github https://github.com/JASONZ777/4D _radar_simulator_PointNet In this project, 2 students will work	None	2	https://eprints.gla.
	Kernec	emulation	on getting motion capture data integrated in the victor chen simulation framework and then move to 4D radar if time allows.			ac.uk/304566/3/3 04566.pdf https://go.exlibris.l ink/SxmhjRD9
10	Julien Le Kernec	Development of a phone app for digital biomarker of mental fatigue	Mental fatigue is an important aspect of alertness and wellbeing. Existing fatigue tests are subjective and/or time- consuming. Here, we show that smartphone-based gaze is significantly impaired with mental fatigue, and tracks the onset and progression of fatigue. A simple model predicts mental fatigue reliably using just a few minutes of gaze data. These results suggest that smartphone-based gaze could provide a scalable, digital biomarker of mental fatigue. You role would be to develop the app towards reproducing those results (x2 students)	None	2	https://www.natur e.com/articles/s41 746-021-00415-6
11	Julien Le Kernec	Measuring HERM lines with radar using a mechanical rotor	The increasing access to drone technology over the past decade has resulted in new technological adaptions that are beneficial in many sectors. However, this has led to an increased risk of this technology being exploited for malicious purposes. This has also caused an increased presence of	None	2	https://research.b irmingham.ac.uk/ en/publications/m ulti-rotor-drone- micro-doppler- simulation- incorporating- genuine-

	drones in civilian airspace and		
	interference with the day-to-day		
	operation of airports. Events such	1	
	as the closure of Gatwick in		
	December of 2018 and a hostile		
	drone attack in Saudi Arabia in		
	September 2019 have publicized		
	the need for counter-drone		
	technology. A key component of		
	counter-drone technology is the		
	noncooperative detection of		
	drones. It is important to be able		
	to discriminate between birds an	d	
	drones to avoid too many false		
	alarms. One of the components		
	that distinguish the 2 is HERM		
	lines. Small airborne targets have		
	been shown to exhibit		
	distinguishing features in their		
	frequency domain spectra that		
	relate to their micro-Doppler		
	signatures. Drones that have		
	rotating blades cause a		
	modulation in addition to the ma	n	
	body Doppler, resulting in multip	e	
	micro-Doppler components. In		
	contrast, birds that otherwise ha	/e	
	a similar echo strength to drones		
	tend to present with one or two		
	components in their micro-		
	Doppler responses due to the		
	beating effect of their wings. Bird	3	
	can also fly in flocks, which resul		
	in Doppler signatures that may		
	closely resemble a drone target.	n	
	this project, you will work on the		
	effect of polarisation and		
	interferometry in the detection of		
L I			

			HERM lines for a hovering drone and then move towards some more realistic flight parameters with different attitudes to study the evolution of HERM lines in radar micro-Doppler to devise effective detection comparing machine learning versus rule- based approaches. You will work with an X band component of the shelf radar for frequency diversity and polarisation effects on drone HERM lines from an FMCW radar.			
12	Julien Le Kernec	Classification of motion capture data and emuated radar signatures with machine learning techniques	The 2 students will look at the classification accuracy difference between motion capture and emulated radar signatures using the victor chen framework	None	2	https://eprints.gla. ac.uk/304566/3/3 04566.pdf https://go.exlibris.l ink/SxmhjRD9
13	Lianping Hou	Widely Tunable Photonic Filters for Next-Generation Optical Communication	Project Overview This summer school project will introduce undergraduate students to cutting-edge research in widely tunable photonic filters, a key technology for advanced optical communication and microwave photonics. Based on the recent work by Zhu et al. (2025) on equivalent chirped four-phase- shifted sampled Bragg gratings (EC-4PS-SBGs), students will explore novel photonic filter designs, their fabrication processes, and practical applications. Objectives • Understand the fundamental	Optical fibers, electrical test probes, FDTD, and COMSOL simulation tools	2	S. Zhu, B. Yuan, M. Al-Rubaiee, Y. Sun, Y. Fan, A. S. Hezarfen, S. J. Sweeney, J. H. Marsh, and L. Hou, "Widely Tunable Photonic Filter Based on Equivalent Chirped Four- Phase-Shifted Sampled Bragg Gratings," ACS Photonics, 2025. (https://doi.org/10 .1021/acsphotoni cs.4c01899)

principles of photonic filters and their role in modern communication networks.• Analyze the design and operational characteristics of EC- 4PS-SBG-based filters.• Gain hands-on experience with optical simulation tools such as Lumerical and MATLAB.• Conduct experimental measurements of filter responses using optical test setups.• Investigate potential applications in microwave photonics and signal	
Expected Outcomes • A strong foundational understanding of tunable photonic filters. • Practical skills in simulation, experimental characterisation,	
 and data analysis. Enhanced technical communication through report writing and presentations. Potential contributions to ongoing research in photonic integrated circuits. 	
Conclusion This project provides an excellent opportunity for undergraduate students to engage in state-of-the- art photonics research, develop hands-on skills, and contribute to advancing optical communication technologies. Exceptional	

			students may be encouraged to pursue further research opportunities or co-author conference presentations based on their findings. This project is not subject to export control as it builds upon the work published in our paper: S. Zhu, B. Yuan, M. Al-Rubaiee, Y. Sun, Y. Fan, A. S. Hezarfen, S. J. Sweeney, J. H. Marsh, and L. Hou, "Widely Tunable Photonic Filter Based on Equivalent Chirped Four- Phase-Shifted Sampled Bragg Gratings," ACS Photonics, 2025. (https://doi.org/10.1021/acsphoto nics.4c01899).			
14	Lianping Hou	Generation and Applications of Optical Frequency Combs Using Mode-Locked Lasers	Project Overview This summer school project will introduce undergraduate students to the concept of optical frequency combs and their generation using passively mode- locked lasers. Based on the work by Hou et al. (2020) on asymmetric multiple quantum well (MQW) passively mode-locked lasers for 100 GHz frequency comb generation, students will explore the design, simulation, and characterization of frequency combs and their applications in optical communications and spectroscopy. Objectives • Understand the fundamentals of	Optical fibers, electrical test probes, FDTD, and MATLAB simulation tools	2	L. Hou, Y. Huang, Y. Liu, R. Zhang, J. Wang, B. Wang, H. Zhu, B. Hou, B. Qiu, and J. H. Marsh, "Frequency comb with 100 GHz spacing generated by an asymmetric MQW passively mode-locked laser," Opt. Lett., vol. 45, no.10, pp.2760-2763, 2020. DOI: 10.1364/OL.39219 1

optical frequency combs and
mode-locking techniques.
Study the operational principles
of MQW passively mode-locked
lasers.
Gain experience with optical
simulation tools such as
Lumerical and MATLAB.
Conduct experimental
measurements of mode-locked
laser outputs.
 Investigate potential applications
in high-speed optical
communications and metrology.
Expected Outcomes
 A solid understanding of optical
frequency comb generation and
mode-locking techniques.
 Hands-on skills in simulation,
laser characterisation, and data
analysis.
Improved technical
communication through report
writing and presentations.
 Encouragement for students to
pursue further research
opportunities in photonics.
Conclusion
This project provides
undergraduate students with an
opportunity to engage in advanced
photonics research, develop
technical skills, and contribute to
ongoing developments in
frequency comb technology.
Exceptional students may be

			encouraged to explore further research opportunities or co- author conference presentations based on their findings. This project does not fall under export control because it repeats the work in our published paper "L. Hou, Y. Huang, Y. Liu, R. Zhang, J. Wang, B. Wang, H. Zhu, B. Hou, B. Qiu, and J. H. Marsh, "Frequency comb with 100 GHz spacing generated by an asymmetric MQW passively mode-locked laser," Opt. Lett., vol. 45, no.10, pp.2760-2763, 2020. DOI: 10.1364/OL.392191".			
15	Lianping Hou	Optical Control in Photonic Crystal Nanobeam Cavities via the Mechanical Kerr Effect	Project Overview This project explores the mechanical Kerr effect in optomechanical photonic crystal nanobeam cavities (PCNCs). Students will investigate how optical gradient forces (OGFs) induced by high-power light deform nanobeam cavities to tune optical resonances. By fabricating, simulating, and experimentally characterising PCNCs, students will gain hands-on experience in nanophotonics, optical characterisation, and numerical simulations using COMSOL and Lumerical FDTD. The project aims to provide insights into tunable photonic devices for applications such as reconfigurable optical filters and sensors.	Optical fibers, electrical test probes, FDTD, and COMSOL simulation tools	2	A. S. Hezarfen, S. Zhu, B. Yuan, S. J. Sweeney, L. Hou, "Harnessing the Mechanical Kerr Effect for Optical Control in Photonic Crystal Nanobeam Cavities," submitted to CLEO 2025.

Project Objectives
By the end of the project, students
will:
Understand the principles of
optomechanics, optical gradient
forces, and the mechanical Kerr
effect.
Learn the fundamentals of
photonic crystal nanobeam
cavities and their fabrication.
Perform optical characterisation
of PCNCs, including transmission
spectrum measurements and
resonance tuning.
Use COMSOL and Lumerical
FDTD to simulate mechanical
deformation and optical tuning.
Analyse and interpret
experimental and simulation data.
Present findings in a final report
and presentation.
Expected Outcomes
• A deeper understanding of
optomechanical interactions in
photonic devices.
Hands-on experience in
nanophotonic simulations and
optical characterisation.
A well-documented report on
experimental findings and data
analysis.
Improved technical presentation
and scientific communication
skills.
Skills Gained
Optical characterisation

			techniques • Finite-difference time-domain (FDTD) simulations • Mechanical deformation analysis with COMSOL • Data processing and visualisation • Scientific writing and presentation skills This project is not subject to export control, as it is based on publicly available research detailed in our paper: A. S. Hezarfen, S. Zhu, B. Yuan, S. J. Sweeney, L. Hou, "Harnessing the Mechanical Kerr Effect for Optical Control in Photonic Crystal Nanobeam Cavities," submitted to CLEO 2025.			
16	Lianping Hou	Design and Characterization of a Multi-Wavelength Mode-Locked DFB Laser with Uniform Bragg Gratings	Project Overview: This project focuses on designing and characterising a multi- wavelength mode-locked Distributed Feedback (DFB) laser that uses uniform Bragg gratings for multi-wavelength mode- locking. Mode-locked lasers, particularly those with multi- wavelength operation, are essential for applications in telecommunications, spectroscopy, and Dense Wavelength Division Multiplexing (DWDM). This project involves the design of a DFB laser, including simulation of its optical properties, understanding the role	Optical fibers, electrical test probes, FDTD, and MATLAB simulation tools	2	M. Al-Rubaiee, X. Sun, B. Yuan, Y. Fan, S. Zhu, Y. Sun, J. H. Marsh, S. J. Sweeney, L. Hou, "Tri- Wavelength Mode- Locked DFB Laser with Uniform Bragg Grating," submitted to CLEO 2025.

of Bragg gratings in mode-locking, and applying experimental characterisation techniques such as optical spectrum analysis and autocorrelation to analyse the device's performance. By completing this project, students will understand key concepts in photonics, laser design, and mode-locking, as well as acquire practical experience with simulations and experimental characterisation.

Objectives:

1. Design a Multi-Wavelength Mode-Locked DFB Laser: Learn how to design a Distributed Feedback (DFB) laser capable of multi-wavelength mode-locking using uniform Bragg gratings. 2. Simulate the Laser Performance: Utilise simulation tools to predict the optical spectrum and performance of the designed DFB laser, including multi-wavelength lasing, pulse width, and repetition rates. 3. Experimental Characterization (Virtual or Experimental): Understand the measurement techniques for characterising mode-locked DFB lasers, including the use of an Optical Spectrum Analyzer (OSA) and Autocorrelation (AC) measurements. 4. Data Analysis and Reporting:

	Analyse the experimental and		
	simulation results, and compile a		
	comprehensive report detailing		
	the design process, results, and		
	conclusions.		
	5. Presentation of Findings:		
	Prepare and present the design		
	and results of the project in a		
	concise and clear presentation.		
	· · · · · · · · · · ·		
	Expected Outcomes:		
	By the end of the project, students		
	will be able to:		
	1. Design a Multi-Wavelength		
	Mode-Locked DFB Laser:		
	Understand the principles of DFB		
	lasers and how to design them to		
	operate with multiple		
	wavelengths.		
	2. Simulate Laser Performance:		
	Accurately simulate and predict		
	the performance of a tri-		
	wavelength mode-locked DFB		
	laser, focusing on spectral output		
	and pulse characteristics.		
	3. Understand Measurement		
	Techniques: Gain practical		
	knowledge in characterising		
	mode-locked lasers, including		
	spectrum analysis and		
	autocorrelation measurements.		
	4. Analyse Experimental Data: Be		
	able to analyse and interpret laser		
	data, including spectral		
	measurements and pulse widths,		
	to assess laser performance.		
	5. Communicate Results		
	Effectively: Present the project's		

	design, results, and implications		
	through a report and a final		
	presentation.		
	Skills Gained:		
	1. Laser Design and Simulation:		
	Learn to design semiconductor		
	lasers using simulation software,		
	including optimising parameters		
	like microcavity length and grating		
	period.		
	2. Photonics Measurement		
	Techniques:		
	Gain hands-on experience (or		
	virtual experience) with tools for		
	measuring laser performance,		
	including optical spectrum		
	analysers and autocorrelation		
	devices.		
	3. Data Analysis and		
	Interpretation:		
	Develop skills in analysing		
	complex data, understanding		
	optical spectra, and measuring		
	pulse width and repetition rate		
	from time-domain signals.		
	4. Scientific Writing and Reporting:		
	Strengthen technical writing skills		
	by documenting the design,		
	experimental methods, results,		
	and conclusions in a professional		
	report.		
	5. Presentation Skills:		
	Enhance communication skills by		
	-		
	preparing and presenting a		
	concise and clear project		
	presentation to an audience.		

			This project is not subject to export control, as it is based on publicly available research detailed in our paper: M. Al- Rubaiee, X. Sun, B. Yuan, Y. Fan, S. Zhu, Y. Sun, J. H. Marsh, S. J. Sweeney, L. Hou, "Tri-Wavelength Mode-Locked DFB Laser with Uniform Bragg Grating," submitted to CLEO 2025.			
17	Lianping Hou	Multi-Wavelength Mode-Locked DFB Lasers Using Chirped Sampled Bragg Gratings for Optical Communications	Project Overview Mode-locked distributed feedback (DFB) lasers are compact and efficient sources for applications in optical communication and spectroscopy. This project focuses on the design, fabrication principles, and characterisation of a four-wavelength mode-locked DFB laser using chirped sampled Bragg gratings (C-SBGs). Students will gain theoretical insights into mode-locking, semiconductor laser operation, and experimental skills in optical characterisation. Project Objectives By the end of the project, students will: 1. Understand the principles of mode-locking and multi- wavelength DFB lasers. 2. Learn about chirped sampled Bragg gratings (C-SBGs) and their impact on laser stability. 3. Perform optical characterisation of a multi-wavelength mode-	Optical fibers, electrical test probes, FDTD, and MATLAB simulation tools	2	M. Al-Rubaiee, B. Yuan, Y. Fan, S. Zhu, Y. Sun, X. Sun, J. H. Marsh, S. J. Sweeney, L. Hou, "Four- Wavelength Mode- Locked DFB Laser Using Chirped Sampled Bragg Grating," submitted to CLEO Europe 2025.

locked laser, including spectrum,	
autocorrelation, and pulse width	
measurements.	
4. Analyse data to evaluate the	
performance of mode-locked laser	
sources.	
5. Present findings through a final	
report and presentation.	
Expected Outcomes	
A comprehensive understanding	
of mode-locked DFB laser	
operation.	
Hands-on experience in	
semiconductor laser	
characterisation techniques.	
A well-documented report on	
experimental findings and data	
analysis.	
Improved technical presentation	
and scientific communication	
skills.	
Skills Gained	
Optical characterisation	
techniques	
 Data analysis and visualisation 	
 Scientific writing and 	
presentation	
 Problem-solving and teamwork 	
This project is not subject to	
export control, as it is based on	
publicly available research	
detailed in our paper: M. Al-	
Rubaiee, B. Yuan, Y. Fan, S. Zhu, Y.	
Sun, X. Sun, J. H. Marsh, S. J.	
Sweeney, L. Hou, "Four-	
Wavelength Mode-Locked DFB	

	Laser Using Chirped Sampled Bragg Grating," submitted to CLEO Europe 2025.		

18	Hasan Abbas	Construct Super resolution microscope and explore denoising algorithms	Structured Illumination Microscopy (SIM) has been pivotal in transcending the diffraction limit of conventional optical microscopy, enabling the visualization of biological structures with doubled resolution. Despite its success, traditional SIM reconstruction methods rely on complex parameter estimations and deconvolution processes, limiting their performance and scalability. In this project, you will be introduced to openUC-2 which is an open-source modular way to construct microscopes. In parallel, you will also use SISRR- SIM, a novel deep learning-based approach that addresses these challenges through an encoder- decoder neural network architecture. SRR-SIM reconstructs high-frequency details lost during optical imaging, surpassing the capabilities of traditional algorithms. You will learn performance assessment criteria such as the Structured Similarity Index (SSIM) to assess the reconstruction quality.	Microscope components (optics, electronics, 3D printed structures) come out at £360 per person.	4	 Hannebelle, Mélanie TM, et al. "Open-source microscope add- on for structured illumination microscopy." Nature Communications 15.1 (2024): 1550. Marcel Müller, Viola Mönkemöller, Simon Hennig, Wolfgang Hübner, Thomas Huser (2016). "Open-source image reconstruction of super-resolution structured illumination microscopy data in ImageJ", Nature Communications, doi: 10.1038/ncomms 10980 Cao, Ruijie, et al. "Open-source three-dimensional structured illumination
----	-------------	--	--	--	---	---

						microscopy reconstruction platform." Nature Methods 20.8 (2023): 1183-1186 Wang, Haoran, et al. "UCsim2: 2D structured illumination microscopy using UC2." bioRxiv (2021): 2021-01.
19	Shuja Ansari	Real-Time Sensor Integration and Communication Using Raspberry Pi and Smartphone	This project focuses on developing a real-time sensor integration system using Raspberry Pi (RPi) and Bluetooth-enabled smartphone communication. The objective is to interface various sensors (such as temperature, humidity, motion, or light sensors)	RPi, cloud instances for App hosting, sensors	4-6	RPi tutorials, app building tutorials, Bluetooth comms

with an RPi, process the collected	
data, and establish a two-way	
communication link with a	
smartphone via Bluetooth.	
Students will configure the	
Raspberry Pi to collect sensor	
data, process it, and transmit the	
readings to a smartphone	
application in real time. The	
smartphone app will not only	
display sensor readings but also	
allow users to send control	
commands back to the RPi. This	
bidirectional communication will	
enable remote monitoring and	
control of connected systems.	
The project will involve:	
Configuring the Raspberry Pi for	
sensor interfacing.	
Implementing Bluetooth	
communication between the RPi	
and a smartphone.	
Developing a mobile application for real-time sensor data	
visualisation and control.	
Ensuring reliable data	
transmission and low-latency	
response.	
Designing a simple user interface	
for interaction with the system.	
This is a systems integration	
project that requires students to	
apply skills in embedded systems,	
wireless communication, and	
software development, fostering a	

			multidisciplinary approach to IoT- based applications.			
20	Muhammad	GUI-Based Energy Data Acquisition and Forecasting for Power Utilities	Objectives: This project aims to develop a Graphical User Interface (GUI) to facilitate data acquisition from power utilities and enable load forecasting. To achieve this, the project is divided into two main components, which will ultimately be integrated: Development of a GUI: This component focuses on creating an interface that allows users (e.g., power system operators and researchers) to access, filter, and download historical load data from utilities. The data will be retrievable for a specified date range and exported in CSV format for further processing.	Python packages will be required for both GUI development and load forecasting.	(Flexible), Prefer atleast 2 students working in a team to develop the GUI as well as the load forecasting models. However, the student must familier with Python or programmi ng in general	https://ieeexplore. ieee.org/documen t/10855140
			Development of Load Forecasting Models: This component involves implementing and evaluating various forecasting models for short-term load forecasting. The acquired data from the GUI will serve as input for these models to generate accurate predictions. Overall, the project will integrate a GUI-based data acquisition			

system with the forecasting models, enabling automated data retrieval, processing, and prediction of electricity demand.	
Resource: We will reference a similar study (linked below) and attempt to reproduce its results by accessing data from similar utilities mentioned in the paper. If we have enough time, we will add more features to this project.	
Tools: Python packages for both GUI development and load forecasting.	

21	Qingshen Jing	Exploring the Fundamentals of Triboelectric Nanogenerator for Innovative Design.	Triboelectric nanogenerator is a recently developed energy harvesting technology that converts mechanical energy into electricity, with the benefit of low cost, wide material selection, high energy density and simple structure. It is a revolutionary power solution for portable and wearable electronics as well as internet of things and beyond. Currently there are several types of operation modes for triboelectric nanogenerators, and each has their advantages in unique application scenarios. In this project you will start from using simulation software to understand the working mechanism of different modes of triboelectric nanogenerators, from where you will think about and demonstrate new designs for their applicability and effectiveness for innovative applications.	For simulation: Comsol Multiphysics with electric and mechanics modules. For experiment: various polymer sheets, glue, tape, conductive tape, LED, acrylic board, with access for workshop processing, etc.	3	1. Recent progress of triboelectric nanogenerators: From fundamental theory to practical applications (https://doi.org/10 .1002/eom2.1205 9 or https://onlinelibra ry.wiley.com/doi/f ull/10.1002/eom2. 12059) 2. Recent Advances in Triboelectric Nanogenerators: From Technological Progress to Commercial Applications (https://doi.org/10 .1021/acsnano.2c 12458 or https://pubs.acs.o rg/doi/full/10.1021 /acsnano.2c12458)
----	---------------	--	---	--	---	---

22	Qingshen Jing	Design Microfluidic Based Force Sensor: From Simulation to Reach Innovative Insights	Customizable force sensors with thin morphology, bio-compatibility and low cost have always been welcomed in medical and health care fields. A thin, conformable microfluidic force sensor is proposed that can effectively convert forces into electric signals via microfluidic phenomenon in confined spaces. The project requires you to comprehensively optimize the structure design by consider about tuning the key factors using simulation. Prototype is encouraged to be built to demonstrate the optimization.	For simulation: Comsol Multiphysics with electric and mechanics modules. For experiment: various polymer sheets, glass slides, conductive ink, PDMS, 3D printing materials, Arduino platforms.	2	1. Aerosol-jet- printed, conformable microfluidic force sensors (https://doi.org/10 .1016/j.xcrp.2021. 100386 or https://www.scien cedirect.com/scie nce/article/pii/S26 6638642100076X) 2. Conformable and robust microfluidic force sensors to enable precision joint replacement surgery (https://doi.org/10 .1016/j.matdes.20 22.110747 or https://www.scien cedirect.com/scie nce/article/pii/S02 64127522003690)
----	---------------	--	---	---	---	---

23	Wasim Ahmad	Emotion Recognition to Enhance Human-Robot Interaction	The use of robots in the service and healthcare sector is on the rise, where human-robot interaction (HRI) will become the norm. Therefore, it is expected to make human-robot interaction more accessible and natural. This project aims to use published models and tools to implement an emotion recognition system for robots that can recognise the speaker's inner emotions and ideological activity using their voice.	Audio and Video sensors, hardware kit and MATLAB	4	https://www.scien cedirect.com/scie nce/article/pii/S01 67639319302262 https://www.resea rchgate.net/public ation/322651210_ Speech_emotion_ recognition_resea rch_an_analysis_o f_research_focus
24	Wasim Ahmad	Implementation of Conversational Interaction between Human and Robot	 With the increasing use of robots in the service sector, face-to-face human-robot communication is likely the most conventional form of human-robot interaction. However, the nature of the conversation in such an interaction depends on the situation in which the exchange occurs. As a result, designing communication for human-robot interaction has gained interest in recent years, although modelling natural conversational interaction between humans and robots is non-trivial. This project aims to employ published tools and available SDKs for conversational Al to design and implement multi- modal human-robot communication interactions. 	Pepper Social Robot, several sensors and GPU, and software	4	https://us.softban krobotics.com/pe pper https://standardb ots.com/blog/pep per- robot?srsltid=Afm BOorqHKYeeeLTC- V_5tDPe9Ayu3e25 wfPRS1JiW6k7nw Vs8U0btPg

25	Qusay Al-Taai	Fabricating and Realising an	This project explores Resonant	4-6 samples (12x12 mm)	2-3	Project
		RTD-Based Anthropomorphic	Tunneling Diodes (RTDs) as a	from RTD wafer,	students	Description
		Spiking Source for	potential source of	Photolithography tools (MA6		This project
		Neuromorphic Applications	anthropomorphic spiking	in JWNC) , Etching system		focuses on
			behaviour, mimicking biological	(wet/dry) , Probe station for		designing and
			neurons for neuromorphic	electrical testing		fabricating a
			computing.			Resonant tuning
			 The goal is to fabricate and 			diode (RTD) as a
			characterize an RTD-based			nonlinear
			nonlinear oscillator that produces			oscillator capable
			spike-like signals similar to			of mimicking
			biological neurons.			biological neuron
			 Students will analyze RTDs' 			spiking behaviour.
			current-voltage (I-V)			It will provide
			characteristics and their dynamic			students with
			response under varying bias			hands-on
			conditions.			experience in
			 The project will focus on 			neuromorphic
			designing and fabricating RTD			engineering, and
			devices for spiking generation and			they will explore
			investigating their feasibility for			how
			neuromorphic systems.			semiconductor
						devices can
			Learning Outcomes:			emulate biological
			 Hands-on experience in 			neural networks.
			micro/nanofabrication techniques			The students will
			(photolithography, thin-film			reproduce existing
			deposition, etching).			designs of RTD
			Understanding of semiconductor			circuits used for
			device physics and electrical			generating spike-
			characterization methods.			like signals,
			Exposure to neuromorphic			analyse their
			computing concepts (for RTD			electrical
			project) and how hardware can			characteristics,
			mimic biological neurons.			and evaluate their
			 Data analysis and comparison 			feasibility for
			with existing literature to evaluate			future
			device performance.			neuromorphic

		applications. The
		emphasis will be
		on understanding
		the spiking
		mechanisms of
		RTDs and how
		their nonlinear I-V
		characteristics
		can be harnessed
		for neuromorphic
		computing
		systems.
		Key Objectives:
		Fabricate and
		characterize an
		RTD-based spiking
		circuit.
		 Understand the
		relationship
		between RTD
		structural
		parameters and
		its nonlinear
		electrical
		response.
		Analyse and
		reproduce
		anthropomorphic
		spike-like
		waveforms from
		RTD-based
		circuits.
		Compare RTD
		behaviour with
		biological neuron
		models and
		discuss their
		relevance in
		relevance in

		neuromorphic
		computing.
		Project Duration &
		Student Workload:
		- 8 weeks total,
		with structured
		activities:
		- Week 1-2:
		Literature review,
		device design, and
		process planning.
		- Week 3-5:
		Fabrication steps
		(lithography,
		deposition,
		etching). - Week 6-7:
		Electrical
		characterisation
		and data analysis.
		- Week 8: Final
		report preparation
		and presentation.
		Project
		Methodology
		Week 1-2:
		Literature Review
		and Project
		Planning
		Review relevant
		literature on RTDs
		and pulse mechanisms.
		 Study the
		• Study the structure of
		resonant tunnel
		resonant tunnet

	براجاف احداج مجالج مزام
	diodes and their
	applications in
	neuromorphic
	circuits.
	• Develop a
	detailed device
	fabrication plan
	and measurement
	procedures.
	Week 3-5:
	Fabrication
	Process
	Prepare
	substrate (GaAs or
	InGaAs).
	Fabricate RTDs
	by layer and
	pattern
	deposition.
	Perform device
	isolation and
	contact
	configuration
	using
	photolithography
	and etching
	techniques.
	Week 6-7:
	Electrical
	Characterization
	and Testing
	Perform current-
	voltage (I-V)
	measurements to
	analyze RTD
	nonlinearity.
	Perform pulse
	circuit setup using

	1	
		RTDs and passive
		components
		(resistors and
		capacitors).
		 Record and
		analyze pulse-like
		signal responses
		under different
		bias conditions.
		Week 8: Data
		Analysis and
		Reporting
		 Compare
		experimental
		results with
		theoretical
		predictions and
		literature.
		 Analyze the
		behaviour of nerve
		impulses in
		comparison to
		biological
		neurons.
		 Compile the
		results into a final
		report and present
		the project
		results.
		Funding
		Justification (£400
		per student)
		 Materials and
		consumables:
		Substrates,
		resists, solvents,

						metals, and circuit components. • Fabrication- related expenses: Usage of lithography systems, deposition materials, and etching services. • Measurement and analysis expenses: Testing equipment usage, characterization software access, and lab fees.
--	--	--	--	--	--	--

26	Muhammad Aslam	Economic Modeling/Optimization of Renewables and Battery Energy Storage System (BESS) in a Grid	This is very simple but interesting project focusing on developing an economic model for integrating renewable energy sources (PV and wind) along with a Battery Energy Storage System (BESS) into a grid. The objective is to minimize total costs, including investment and operational expenses. The investment cost accounts for PV, wind, and BESS installation, considering unit costs and capacity constraints. The operational cost includes grid electricity prices, renewable generation, and BESS operation, incorporating both variable and fixed costs. The model ensures optimal power flow while maintaining economic feasibility and energy balance within the system. Python optimization package PuLP wil be used	Python packages for optimization	2	[Basic] Build Optimization Model to Schedule Battery's Operation in Power Grid Systems https://medium.c om/@yeap0022/b asic-build- optimization- model-to- schedule- batterys- operation-in- power-grid- systems- 51a8c04b3a0e https://ieeexplore. ieee.org/documen t/9069731
27	Niamat Hussain	Design and characterization of microsrip patch antenna for ISM (industrial, scientific, and medical) bands applications	This project focuses on the design, simulation, and fabrication of a microstrip patch antenna operating in the ISM bands (e.g., 2.4 GHz or 5.8 GHz) for wireless communication and IoT applications. The antenna's performance will be analyzed in terms of gain, bandwidth, return loss, and radiation pattern using simulation tools like CST or HFSS, followed by testing to validate its its simulated results.	CST software, PCB Milling Machine, substrate	2	https://www.ante nna-theory.com/ https://www.mdpi .com/1424- 8220/22/15/5558

28	Niamat Hussain	Circularly Polarized MIMO Antenna for Satellite Communication	This project involves the design and analysis of a circularly polarized (CP) MIMO antenna for satellite communication. The antenna will be optimized for high gain and a low axial ratio to ensure reliable signal reception, even in the presence of polarization mismatches. Performance will be validated through simulations using CST or HFSS, followed by prototype fabrication and testing. Students will gain hands-on experience in CP antenna design, characterization, fabrication, and performance measurement.	CST, PCB Milling/Photolithography Machine, Vector Network Analyzer, substarte	2	https://www.ante nna-theory.com/ https://www.natur e.com/articles/s41 598-023-42569-1
29	Muhammad Aslam	Comparison of AC-DC Converter Topologies Used for On-Board Charger for Two- Wheeler Electric Vehicle	 This project focuses on designing and comparing two AC-DC converter topologies for an On- Board Charger (OBC) in a Two- Wheeler Electric Vehicle. An existing system (link is given below) uses a Totem-Pole Power Factor Correction (PFC) converter, and we aim to replace it with a Boost PFC converter. The goal is to analyze performance differences and determine the best option for this application. We will evaluate both converters based on three key performance metrics: Total Harmonic Distortion (THD): Should be below 5% Power Factor (PF): Should be above 80% 	MATLAB/Simulink	2	https://uk.mathwo rks.com/help/sps/ ug/on-board- charger-for-two- wheeler-electric- vehicle.html https://ieeexplore. ieee.org/documen t/8993306 https://www.mon olithicpower.com/ en/support/videos /high-power-pfc- totem-pole-pfc- vs-interleaved- boost-pfc.html https://www.edn.c om/a- comparison-of- interleaved-boost- and-totem-pole- pfc-topologies/

			Efficiency: Should exceed 90% By comparing the outputs of both topologies, we will determine which is more suitable for an On- Board Two-Wheeler Electric Vehicle Charger in terms of efficiency, power quality, and overall system performance. The model is available here. https://uk.mathworks.com/help/s ps/ug/on-board-charger-for-two- wheeler-electric-vehicle.html			
30	Niamat Hussain	Isolation Improvement of closely spaced MIMO antennas	This project focuses on enhancing the isolation between closely spaced MIMO antennas to minimize mutual coupling and improve overall system performance. Various techniques, such as defected ground structures (DGS), electromagnetic bandgap (EBG) structures, neutralization lines, and decoupling networks, will be explored. Simulations using CST or HFSS will evaluate isolation performance, followed by prototype fabrication and measurement of key parameters	CST software, CNC/lithography machine, Vector Network Analyzer, substrate	2	https://www.ante nna-theory.com/ https://ieeexplore. ieee.org/abstract/ document/975094 2

			like S-parameters, envelope correlation coefficient (ECC), and diversity gain.			
31	Anthony Centeno	Using open source electromagnetic simulation software to model microwave and photonic devices	The student will investigate open source software that can be used in electromagnetic simulations in place of expensive and geographically restricted software.	No consumables. But access to workstations and/or a HPC will be required.	1-2	1. Microwave Circuit Modeling Using Eelectromagnetic Field Simulation, Wolfgang J. R. Hoefer, Daniel G. Swanson Jr. ISBN: 9781580536882 2. Numerical electromagnetics: the FDTD method by Inan, Umran S; Marshall, Robert A 2011. 3. https://meep.read thedocs.io/en/ma ster/ (MEEP-FDTD software) 4. http://ddscat.wiki dot.com/user- guide (Discrete Dipole Approximation for photonics) 5. https://pypi.org/pr oject/pyGDM2/ 6. https://www.notti ngham.ac.uk/rese

			arch/groups/ggiem r/our- research/large- scale- electromagnetic- modelling/tlm- time-domain- modelling-code- ggitlm.aspx

32	Andrew Glidle	An automated method for measuring the focal length of lenses used in optical system research	One of the problems in research groups who have lots of optical components is that people never put things back in the right boxes with optics research, this means that there are large collections of lenses for which people no longer know what the focal length is! This project will build a simple instrument to automatically measure the focal length by collecting images from a target on a CMOS camera and then using software (that the student writes) to automatically calculate the focal length of the unknown lens. The skills acquired will be a good understanding of optical systems and the factors that need to be considered in optical alignment, different types of optomechanical components, software writing and how to generate an 'app' that can be used by inexperienced users. These skills would be useful for people wanting to learn about instrument development and/or optical/microscopy systems. The work would be carried out in the Advanced Bioengineering group labs at the Advanced Research Centre (ARC).	small number of Thorlabs type components	1-2	Any books on classical optics e.g. Optics by Hecht (other titles can be supplied to interested students) - the optics used in this project is 'straight- line' optics and apart from making the instrument (which will be extremely useful), the main advantage will be the skills learned in optical alignment, hardware interfacing and app writing.
----	---------------	---	--	---	-----	---

33 Ahmad Taha	Internet-of-Things-based Smart Sustainability in Homes and Offices	The world is facing several major challenges, and the race to meet the net-zero carbon target is the biggest of them. The building sector alone has a 30-50% share in the annual global greenhouse emissions, partly due to the inefficient means of using and operating them, including the energy efficiency of devices/appliances including their phantom load (idle consumption) which can account for 10% of the monthly bill. Therefore, it is crucial to explore innovative approaches to tackle this issue, and Smart Home Technology (SHT) has emerged as a promising solution. The proposed project "Internet-of- Things-based Smart Sustainability in Homes and offices" aims to build a system that captures the energy consumption of everyday use appliances and devices used in the home and in offices to explore optimisation opportnities. Examples of appliances and other devices targeted in this project are white goods, i.e., washing machines, tumble dryers, cookers, desktop computers and screen monitors. Objectives: Data Collection and Management: Design and implement an IoT network to collect and manage	Energy monitoring sensors and an edge server (this can be joint with the other project I propose).	2 to 3	- https://www.scien cedirect.com/scie nce/article/pii/S23 52484724003202 - https://pmc.ncbi. nlm.nih.gov/articl es/PMC7037999/ - https://nodered.or g/docs/tutorials/ - https://www.geek sforgeeks.org/pyth on-ai/
---------------	--	---	---	--------	---

			data from various sources to build energy consumption profiles of different appliances and devices. (Student 1) Design, develop, and test an algorithm for monitoring, coordinating, and controlling the appliances/devices. The student is to explore the best approach to designing this algorithm through, e.g., Machine/Deep Learning, Fuzzy Logic, etc. (Student 2) Design and develop an interactive user interface for data visualisation. (Student 1 and Student 2)			
34	Ahmad Taha	IoT-based Contactless Human Activity Recognition	Contactless Human Activity Recognition (HAR) has gained significant attention in the past 10+ years to offer solutions that would enable privacy-preserving means of monitoring occupancy and activities in homes and offices. Existing approaches for HAR, such as cameras and wearable sensors, present limitations related to privacy, low- light conditions, installation costs, and inconvenience. To address these challenges, various techniques have been proposed to use contactless technology that leverages data from IoT devices to develop a HAR framework.	Edge server (this can be joint with the other project I propose)	4	 https://nodered.or g/docs/tutorials/ https://www.geek sforgeeks.org/pyth on-ai/ https://ieeexplore. ieee.org/abstract/ document/974020 7/ https://link.spring er.com/article/10. 1007/s10462-021- 10116-x

students to learn how to collect, handle, and manage data from IoT devices and develop AI algorithms to analyse, classify, and predict various activity behaviours. This will include data from single and multiple IoT sources. The data will be collected through a University of Glasgow-owned IoT sensor network.

Objectives:

- AI Stage: Develop machine learning (ML)/ deep learning (DL) algorithms encompassing classification and clustering techniques to enable activity monitoring using data from IoT sensors. (Students 1 and 2) - System Integration, Data Analysis, and Visualisation: Design a dashboard that seamlessly integrates with the system, enabling real-time visualisation of energy consumption and the recognised activities e.g., occupancy, and activity types, e.g., cooking, watching TV. This phase will also involve analysing the collected data to identify activity patterns over a prolonged period of time. (Students 3 and 4)

35	Yao Sun	Encoder and Decoder Design for Semantic Communication	In this project, we will teach students how to establish a semantic communication network based on some basic deep learning algorithms. The students will learn the basic concept of semantic communication as well as wireless networking technology. Some coding skills will also be trained. Finally, the students will repeat an existing research work. All the relevant papers, datasets and codes are from open sources.	Computing nodes	3-4	 [1] Yao Sun, Lan Zhang, Lingke Guo, et al. S-RAN: Semantic-aware Radio Access Networks. IEEE Communications Magazine, 2024. [2] B. Güler, A. Yener, and A. Swami, "The semantic communication game," IEEE Transactions on Cognitive Communications and Networking, vol. 4, no. 4, pp. 787–802, 2018. [3] H. Xie, Z. Qin, G. Y. Li, and BH. Juang, "Deep learning enabled semantic communication systems," IEEE Transactions on Signal Processing, vol. 69, pp. 2663–2675, 2021. [4] C. E. Shannon, "A mathematical theory of communication," The Bell system technical journal,
----	---------	--	---	-----------------	-----	---

			vol. 27, no. 3, pp. 379–423, 1948.

36	Yao Sun	Basic semantic communication network design	In this project, we would like to teach how to design an update policy for an intelligent semantic communication system. The students will learn the basic concept of semantic communication, and finally, repeat an existing research work. All the papers, datasets and codes are from open resources.	Computing nodes	3-4	 [1] Yao Sun, Lan Zhang, Lingke Guo, et al. S-RAN: Semantic-aware Radio Access Networks. IEEE Communications Magazine, 2024. [2] B. Güler, A. Yener, and A. Swami, "The semantic communication game," IEEE Transactions on Cognitive Communications and Networking, vol. 4, no. 4, pp. 787–802, 2018. [3] H. Xie, Z. Qin, G. Y. Li, and BH. Juang, "Deep learning enabled semantic communication systems," IEEE Transactions on Signal Processing, vol. 69, pp. 2663– 2675, 2021. [4] C. E. Shannon, "A mathematical theory of communication," The Bell system technical journal,
----	---------	--	---	-----------------	-----	--

			vol. 27, no. 3, pp. 379–423, 1948.

37	Yao Sun	Generative AI based Efficient Knowledge Construction for Semantic Communication	In this project, we would like to teach how to design an update policy for an intelligent semantic communication system. The students will learn the basic concept of semantic communication, and finally, repeat an existing research work. All the papers, datasets and codes are from open resources.	Computing nodes	3-4	[1] Yao Sun, Lan Zhang, Lingke Guo, et al. S-RAN: Semantic-aware Radio Access Networks. IEEE Communications Magazine, 2024. [2] B. Güler, A. Yener, and A. Swami, "The semantic communication game," IEEE Transactions on Cognitive Communications and Networking, vol. 4, no. 4, pp. 787–802, 2018. [3] H. Xie, Z. Qin, G. Y. Li, and BH. Juang, "Deep learning enabled semantic communication systems," IEEE Transactions on Signal Processing, vol. 69, pp. 2663– 2675, 2021. [4] C. E. Shannon, "A mathematical theory of communication," The Bell system technical journal,
----	---------	---	---	-----------------	-----	--

			vol. 27, no. 3, pp. 379–423, 1948.