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Abstract Timing abilities are often measured by having par-
ticipants tap their finger along with a metronome and present-
ing tap-triggered auditory feedback. These experiments pre-
dominantly use electronic percussion pads combined with
software (e.g., FTAP or Max/MSP) that records responses
and delivers auditory feedback. However, these setups involve
unknown latencies between tap onset and auditory feedback
and can sometimes miss responses or record multiple, super-
fluous responses for a single tap. These issues may distort
measurements of tapping performance or affect the perfor-
mance of the individual. We present an alternative setup using
an Arduino microcontroller that addresses these issues and
delivers low-latency auditory feedback. We validated our set-
up by having participants (N = 6) tap on a force-sensitive
resistor pad connected to the Arduino and on an electronic
percussion pad with various levels of force and tempi. The
Arduino delivered auditory feedback through a pulse-width
modulation (PWM) pin connected to a headphone jack or a
wave shield component. The Arduino’s PWM (M = 0.6 ms,
SD = 0.3) and wave shield (M = 2.6 ms, SD = 0.3) demon-
strated significantly lower auditory feedback latencies than the
percussion pad (M = 9.1 ms, SD =2.0), FTAP (M = 14.6 ms,
SD =2.8), and Max/MSP (M = 15.8 ms, SD = 3.4). The PWM
and wave shield latencies were also significantly less variable

>< Benjamin G. Schultz
ben.schultz@maastrichtuniversity.nl;
benjamin.glenn.schultz@gmail.com

International Laboratory for Brain, Music, and Sound Research,
Université de Montréal, Département de psychologie,
Montréal, Québec, Canada

Department of Psychology, McGill University, Montreal, Quebec,
Canada

than those from FTAP and Max/MSP. The Arduino missed
significantly fewer taps, and recorded fewer superfluous re-
sponses, than the percussion pad. The Arduino captured all
responses, whereas at lower tapping forces, the percussion pad
missed more taps. Regardless of tapping force, the Arduino
outperformed the percussion pad. Overall, the Arduino is a
high-precision, low-latency, portable, and affordable tool for
auditory experiments.

Keywords Auditory feedback - Sensorimotor
synchronization - Motor timing - Musical Instrument Digital
Interface (MIDI) - Microcontrollers

Humans show a remarkable capacity to align motor output with
sensory input. For example, most individuals can effortlessly
synchronize movements with the beat of music or the sound
productions of a partner. In order to understand how synchrony
is achieved, participants are asked to tap their finger along with
metronomic stimuli and receive tap-triggered sounds (auditory
feedback; cf. Repp, 2005; Repp & Su, 2013). These sensorimo-
tor synchronization experiments present important methodolog-
ical challenges: how can auditory feedback be presented at min-
imal latencies (ideally, within a few of milliseconds of the tap;
see Aschersleben & Prinz, 1997), and how can tap times be
collected reliably (i.e., without missing taps and with accurate
millisecond timing information)? We compare standard method-
ologies to a novel solution using an Arduino microcontroller for
use in sensorimotor synchronization experiments that require
recording tapping responses and presenting auditory feedback.
Currently, several options exist for implementing sensori-
motor synchronization experiments. Predominantly, studies
have used musical instrument digital interface (MIDI) percus-
sion pads (viz. drum pads) to trigger responses, computer
software to record responses and control auditory feedback
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(e.g., FTAP, Finney, 2001; Max/MSP, Cycling *74, 2014), and
a tone generator to produce auditory feedback (cf. Repp,
2005). Common problems in studies using MIDI percussion
pads are missing or superfluous responses (e.g., Mills, van der
Steen, Schultz, & Keller, 2015; Pfordresher & Dalla Bella,
2011; Repp & Knoblich, 2007). A missing response occurs
when a participant has tapped on the percussion pad but no
response was recorded by the device. A superfluous response
occurs when a participant has made a single tap on the per-
cussion pad and multiple responses are recorded by the de-
vice. These situations become more problematic when auditory
feedback is introduced because participants receive no feedback
for a missing response and extra feedback for superfluous re-
sponses. Although some controllers allow the user to adjust the
sensitivity of the drum pad and the threshold for what is con-
sidered to be a response, it is often difficult to obtain parameters
that work for a range of response styles (i.e., from a soft through
to a hard force of response). We compared the latencies of
auditory feedback using the Arduino with other options that
use a MIDI percussion pad to produce feedback through
FTAP (Finney, 2001) or Max/MSP (Cycling *74, 2014).

The Arduino is a multipurpose, low-level microcontroller
that is low-cost (i.e., less than USD 30), contains a processor
that can receive analog and digital inputs, and can run pro-
grams written in a flavor of the C programming language.
Here, we suggest that the Arduino provides the ideal infra-
structure to implement tapping experiments because it can be
purposed as a single-use device and bypass the hardware and
software environments of standalone personal computers.
Specifically, we have designed C codes and Python scripts
to convert the Arduino into a sensorimotor synchronization
measurement tool with the goal of collecting to-the-
millisecond response times and producing low-latency audi-
tory feedback. In addition, the C code provided here has pa-
rameters that aim to reduce the frequency of missing and ad-
ditional responses regardless of the force of the response.

Several studies (e.g., D’Ausilio, 2012; Schubert,
D’Ausilio, & Canto, 2013) have shown that the Arduino can
record response latencies with less than 1-ms variability. The
Arduino uses an internal clock that can record response times
with microsecond precision. Using this clock, the Arduino can
timestamp data at a high resolution and then send this data to a
computer through USB. When exchanging data through a
USB port, delays can be introduced by the polling speed,
where the incoming information is only read periodically
(125 Hz, or once every 8 ms, is the default for most operating
systems, but some drivers are able to lower this polling speed).
Since the timing information of responses is determined by the
Arduino in real time, the polling speed of the USB is incon-
sequential to timing measurements and does not contribute
additional error or variability. Moreover, the Arduino is capa-
ble of delivering auditory feedback directly through hardware
(e.g., a headphone jack) thus removing any further delays
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introduced by USB communication. Therefore, the Arduino
can be used to both collect data and produce auditory feedback
at high resolutions. The C and Python codes we provide here
can send the data from the Arduino either as a continuous time
series that reads responses at every millisecond (1-kHz sample
rate) or as response onset and offset times (with to-the-
millisecond precision). Other systems that record timestamps
in software after input is received through USB may have
lower resolutions than systems that record timestamps inter-
nally (i.e., onboard timestamps), such as the Arduino.

Two MIDI-based software packages are commonly used for
sensorimotor synchronization experiments: FTAP (Finney,
2001) and Max/MSP (Cycling 74, 2014). FTAP is a free,
Linux-based software package that reports low latencies for pro-
viding auditory feedback when using MIDI devices. Max/MSP
is a Windows and Mac compatible software package that is free
to run, but requires purchasing a license to develop user-made
scripts (e.g., experiments). We compared the latencies of audito-
ry feedback produced by MIDI setups using FTAP and Max-
MSP with those produced by the Arduino. We also measured the
auditory feedback produced directly from a MIDI percussion
pad to identify possible delays resulting from the device itself,
although these were expected to be minimal due to reported
specifications that MIDI devices take an average of 1 ms to send
or receive a MIDI message (Casabona & Frederick, 1988). For
the Arduino, we present two options for sound output: (1) an
option were the audio output is a simple tone (sine wave or
square wave) with a user-defined duration and pitch, produced
through the Arduino’s pulse-width modulation (PWM) pin
(henceforth we refer to this option as PWM), and (2) an option
for playing any wave file that has been saved on a secure digital
card (SD card) through the Arduino wave shield (hereafter re-
ferred to as the wave shield). The first option requires less sol-
dering expertise and hardware but auditory feedback is limited to
simple sounds (e.g., pure tones and square waves). The second
option is more expensive and requires more soldering expertise
(see Adaftuit, 2015), but allows the user to present any sound
file. The C code for the Arduino, Python scripts for data collec-
tion (cross-platform), and instruction manuals for hardware and
software are free to download (van Vugt & Schultz, 2015).

Experiment

We compared the performance of two Arduino-based feed-
back methods (i.e., PWM feedback and wave shield feedback)
with two software-based feedback methods that interfaced
with the MIDI percussion pad: one that used FTAP software
and another that used Max/MSP software. In both cases, the
software (FTAP or Max/MSP) generated tap-triggered sounds
using a MIDI synthesizer (i.e., a tone generator). We tested
these various configurations by conducting a common senso-
rimotor synchronization experiment in which participants had
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to synchronize their responses to metronome clicks that oc-
curred at periodic time intervals (cf. Repp, 2005). In order to
establish the veridical onset times of responses and auditory
feedback in each setup, we recorded data from the various
devices simultaneously in a synchronized manner using an
analog input box (AIB; BioSemi, Amsterdam,
The Netherlands). The AIB recorded voltage readings from
a force sensitive resistor (FSR) on which participants tapped
and a vibration sensor (i.e., a piezo element) that measured
tap-related vibrations. Participants did not hear auditory feed-
back for responses, but auditory feedback from the various
devices (the Arduino, MIDI percussion pad, and MIDI sound
module) was recorded by the AIB. The behavioral results of
participants (e.g., synchrony with the metronome) are irrele-
vant to the aim of testing equipment performance and, there-
fore, are not reported.

Design and hypotheses

The dependent variable was the asynchrony between the re-
sponse onset (i.c., taps, as measured by the FSR) and the audio
onset (i.e., auditory feedback) recorded from each device. This
asynchrony measured the latency of the auditory feedback for
each source. Five sources of auditory feedback were measured:
Arduino PWM, Arduino wave shield, percussion pad, FTAP, and
Max/MSP. These sources of feedback could not all be measured
simultaneously. Therefore, five conditions were used to measure
various combinations of feedback sources, as shown in Table 1.
In three conditions (see rows 1 to 3 in Table 1), participants
tapped on an FSR that was placed on a drum pad of the percus-
sion controller. In two conditions (see rows 4 and 5), participants
only tapped on the drum pad of the percussion controller. This
was done to ensure that the presence of the FSR did not hinder
the percussion pad in terms of feedback latencies, missed re-
sponses, or superfluous responses; we compared the asyn-
chronies of the onsets recorded by the piezo vibration sensor
and the percussion pad audio onsets in the FSR present and
absent conditions (see Table 1) to test whether the presence of
the FSR increased the percussion pad audio latency. For missed
and superfluous responses, we compared the responses recorded
by the percussion pad in the FSR absent conditions with the

Table 1  Arrangement of feedback conditions

Response Device(s) Arduino Software FSR Presence
FSR and percussion pad ~ PWM FTAP Present

FSR and percussion pad ~ Wave shield FTAP Present

FSR and percussion pad ~ Wave shield Max/MSP  Present
Percussion pad None FTAP Absent
Percussion pad None Max/MSP  Absent

Each row represents one measurement condition in our experiment

responses recorded by the Arduino in the FSR present
conditions.

Because individuals may differ in their tapping style and
tapping force, we had six participants respond under three
types of tapping force instructions: soft, moderate, and hard.
To examine whether different tapping speeds affected feed-
back latency, number of missed taps, and number of double
taps, a fast (240 beats per minute; bpm) and a slow (120 bpm)
metronome rate were presented. Participants completed all
conditions in a fully within-subjects design. We hypothesized
that the Arduino conditions (PWM and wave shield) would
demonstrate significantly lower latencies than the percussion
pad, FTAP, and Max/MSP. Similarly, we hypothesized that the
Arduino conditions would demonstrate significantly lower la-
tency variability than the percussion pad, FTAP, and Max/
MSP. Finally, we hypothesized that the Arduino would miss
fewer valid responses and produce fewer superfluous re-
sponses than the percussion pad.

Method
Participants

The participants (N = 6) were four volunteers from the
Université de Montréal and Concordia University, as well as
the two experimenters. The participants had a mean age of
28.17 years (SD = 3.19, range = 23-32 years) and consisted
of three females and three males.

Materials

Four computers were used for testing. The first computer
(Intel Pentium 4, 3.00 GHz, running Windows XP) was used
to record voltages and auditory signals though ActiView soft-
ware (BioSemi, Amsterdam, The Netherlands). The second
computer (Intel Xeon 5120, 1.86 GHz, running Windows
XP) was used to present metronome stimuli (premade .wav
files) and record the data from the Arduino via Python (v2.7).
The third computer (Intel Core 17-2670QM, 2.2 GHz, running
Linux Ubuntu v3.2.0-23 using the real-time kernel) was used
to run FTAP. The fourth computer (MacBook Pro, Intel Core 2
Duo, 2.6GHz, running OS X v10.9.5) was used to produce
auditory feedback through Max/MSP. Responses were record-
ed using a square FSR (3.81 cm, Interlink FSR 406) connected
to an Arduino UNO R3 (see Fig. 1). The Arduino was
powered via USB and also transmitted timing information
though the serial USB port. In the PWM condition, the
Arduino auditory feedback was delivered through a
Sparkfun TRRS 3.5-mm jack breakout (BOB-11570; see
Fig. 1), commonly known as a headphone jack (i.e., standard
headphone or speakers could be connected to present the
sounds to participants in an experimental setup). In the wave
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Fig. 1 Schematic wiring diagram for the Arduino PWM setup. The
component numbers correspond to the (1) Arduino UNO, (2) breadboard,
(3) square force-sensitive resistor (FSR), and (4) headphone jack
(3.5 mm). Electric wires are indicated by black (grounds), red (power),
green (FSR signals), and purple (audio signals). Both resistors are 10 kQ.
Headphone jack arrangements may vary, but the two purple wires connect
to the tip and ring I headphone inputs (left and right audio), and the
ground (black) wire connects to the ring 2 headphone input (see the
datasheet of the headphone jack for input specifications). The wiring of
the FSR is identical in the PWM and wave shield setups, and the wiring of
the headphone jack is not necessary for the wave shield setup. This wiring
diagram will allow prospective users to precisely reproduce our setup
from the hardware components. The figure was created using the Fritzing
software (Knorig, Wettach, & Cohen, 2009)

shield condition, the Arduino auditory feedback was delivered
by the headphone jack of an Adafruit Wave Shield version 1.1
placed above the Arduino, with the FSR arranged in the same
way as Fig. 1.

The auditory signal from each source was connected
to the 32-pin Sub-D port (similar to a parallel port) of
the AIB at a sampling rate of 2048 Hz' (see Fig. 2).
Voltage changes caused by applying pressure to the
FSR were simultaneously recorded by the AIB to syn-
chronize participants’ responses with the auditory feed-
back. The AIB has an analog-digital converter for each
channel allowing the signals to be recorded synchronous-
ly. The FSR was placed on the bottom right drum pad of
a Roland Handsonic HPD15 MIDI percussion pad.
Voltages from the piezo vibration sensor placed on the
same drum pad were obtained as a secondary measure of
response onset time to test if the FSR increased the la-
tencies of the percussion pad.” The audio output of the

! Note that 2048 Hz is not an acceptable sample rate for reproducing
high-quality audio, but in this case we were simply using it to detect the
onsets of auditory signals. The sampling rate is above the Nyquist fre-
quency (double the frequency of interest) for the resolution at which we
recorded responses (1000 Hz, i.e., to the millisecond), allowing us to
detect asynchronies on the order of just below 0.5 ms.

2 Fittingly, piezo elements are used in receiving responses from the
HPD15 percussion pad (Smith, 2010). How these signals are filtered
and mapped onto MIDI signals, however, is not specified.
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Fig. 2 Arrangement of devices used in the experiment. Note that this
setup includes some devices that were used only in our validation
experiment (see the black arrows and boxes) and are not necessary in a
typical user setup. The red arrows and boxes represent the equipment that
is used in a typical (non-Arduino) setup with FTAP or Max/MSP, includ-
ed here for validation purposes. The blue arrows and boxes represent the
equipment that is used in the Arduino setup described here. The primary
node of the present validation experiment is the analog input box that
records the inputs from the various devices synchronously (at 2048 Hz),
so that latencies can be measured reliably. The computer numbers (1 to 4)
match those referred to in the text

percussion pad was connected to the AIB to test the
latency of audio being produced by the percussion pad
itself. For the FTAP setup (see red boxes and arrows in
Fig. 2), the MIDI signal from the percussion pad was
connected to the PC through an M-Audio MIDIsport 2
x 2 (Anniversary Edition) USB-MIDI Interface. FTAP
received the percussion pad MIDI signal via USB and
sent the MIDI signal to the USB—MIDI interface, which
then sent the MIDI signal to a Yamaha TX81Z MIDI
synthesizer (i.e., tone generator) to produce the audio.
The audio output from the tone generator was connected
to the AIB to test the latency of audio being produced by
FTAP. The conditions with Max/MSP were arranged in
the same way as those with FTAP, using the tone gener-
ator to produce the audio, but with Max/MSP recording
responses and controlling the auditory feedback (see the
red boxes and arrows in Fig. 2).

Stimuli

The audio produced by the PWM and wave shield were
1046.5-Hz square waves of 20-ms duration. The audio pro-
duced by the percussion pad was the R13 snare drum, and the
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audio produced by the synthesizer was the noise shot.®> The
percussion pad pitch was set to 1046.5 Hz, all effects and
reverb were turned off, the trigger mode was set to “Shot”
(short duration), the velocity curve was set to “Fixed16”
(maximum volume for every trigger), pad sensitivity was set
to 16 (maximum), the pad threshold was set to 1 (minimum),
and mask time was set to 64 ms. In FTAP and Max/MSP, the
MIDI frequency was set to MIDI note C6 (frequency =
1046.5 Hz), duration was set to 20 ms, and MIDI velocity
was set to 127 (maximum).

Software

The C codes presented here perform a series of functions (van
Vugt & Schultz, 2015). The Arduino’s analog—digital converter
(ADC) interprets FSR voltage changes as 10-bit integers ranging
from 0 to 1023. First the Arduino reads the time stamp (in mil-
liseconds) and the FSR voltage. If the FSR voltage is above our
specified “ON” threshold (20 in 10-bit Arduino units; user de-
finable), then the auditory feedback is played. Another sound is
not produced until the FSR voltage decreases below our “OFF”
threshold (10; user definable) for a user-specified amount of time
(40 ms), and until a user-specified time after the onset (40 ms).
These values were chosen to prevent double taps from arising
when responding on the FSR and were arrived at (prior to
conducting the experiment) from trial and error of attempting
to induce auditory feedback without superfluous feedback or
missed feedback. Lower voltage thresholds could be implement-
ed in the Arduino code to increase the sensitivity, but the values
used here indicated an optimal trade-off between high sensitivity
and a low incidence of false alarms. When the offset is detected,
the time stamp of onset, time stamp of offset, and the maximum
FSR value are sent to the serial port in binary. The Python code
runs on a separate PC and provides a graphical user interface
(GUI) that collects data from the Arduino (through the USB)
for further analysis (van Vugt & Schultz, 2015). In particular,
the Python code reads binary data from the serial USB port and
transforms the data into integers. These values are printed to a
text file. The Python script records data until it is commanded to
terminate (via closing the program, a set time value, or upon
completion of a sound file). Note that it is not necessary to use
this Python GUI to collect data from the Arduino: Users can
write a custom script in any programming language that is capa-
ble of reading binary input from a serial USB port.

3 We initially intended to use a square or sine wave of the same frequency
(1046.5 Hz) for the MIDI patches on the percussion pad and tone gener-
ator, for comparability. Upon inspection of the audio signal, it was
deemed that the attack times for the square- and sine-wave MIDI patches
were slower, with less discernible onsets than some other patches. A
nonexhaustive test of the available patches indicated that these two
MIDI patches produced the fastest attack times and the most easily dis-
cernible onsets and offsets.

Our schematics and scripts are available online (van Vugt
& Schultz, 2015), including detailed documentation, making
this option accessible to those without much technical back-
ground. This repository shall be updated on the basis of sug-
gestions from the community, and with the addition of scripts
used in various experiments. The authors are willing to receive
any questions about the hardware configuration and scripts to
aid other researchers in using Arduino devices.

Procedure

Prior to any conditions that featured FTAP, the FTAP loop test
was performed (see Finney, 2001). The FTAP loop consistently
reported a 0.49-ms delay between output scheduling calls and
that MIDI messages, on average, were sent and received within
just over a millisecond (M = 1.01 ms, SD = 1.03 ms, range =0 to
3 ms). Informed consent was obtained (CERAS-2014-15-/02-
D). Participants were instructed to tap on the FSR that was
placed on top of the percussion pad, or to tap in the center of
the bottom right drum of the percussion pad. At the beginning of
each trial, participants were instructed to tap with a soft, moder-
ate, or hard force through text on a computer screen. These
conditions were performed for all tempi (fast, slow) in a random-
ized order within each block, for five blocks. This procedure was
repeated for all five feedback conditions (see Table 1; order
counterbalanced across participants). At the end of the trial, par-
ticipants were asked whether they had produced any double taps
or had missed any responses after the first eight metronome ticks.
If they responded “yes,” the trial was repeated. Otherwise, they
proceeded to the next trial. Participants were unable to monitor
whether auditory feedback was being generated from any source.
There were 48 metronome ticks per trial and, therefore, each trial
had a 12-s (fast tempo) or 24-s (slow tempo) duration.
Experiment sessions did not exceed 90 min. Participants were
questioned regarding which tapping force was closest to their
natural tapping force, and all six indicated that the moderate force
was most natural.

Results
Onset extraction

Onsets of voltages and audio signal were detected from the
traces recorded by the AIB using a custom-made MATLAB
script. Onsets were detected as values that surpassed an am-
plitude threshold. The onset time was then established as the
preceding point in time when the standard deviation (using ten
sample windows) returned to baseline standard deviation
levels (four times the median standard deviation of the trial).
Detected audio onset times are shown in Appendix A. Missed
responses were determined by examining the data output from
the Arduino, FTAP, and Max/MSP and comparing them with
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the number of expected responses (because participants were
instructed to repeat the trial if any responses were missed).
Only responses after the first eight metronome ticks were con-
sidered (i.e., 40 responses were expected per trial) and super-
fluous responses were first removed. Superfluous responses
were measured as any response that occurred within 125 ms
(half of the smallest interonset interval of the metronome) of
another response.

Statistical analysis

As a result of missed responses, there were unequal numbers of
data points for the asynchronies in different auditory feedback
conditions. To deal with the problem of unequal data points, we
fit a linear mixed-effects model (LMEM) that was able to cope
with missing data, inhomogeneity of dependent variable vari-
ance across factor levels, and unbalanced designs. The LMEM
was fit to the data with the fixed factors Signal (five levels:
Arduino PWM, Arduino wave shield, percussion pad audio,
FTAP, Max/MSP), Force (soft, medium, hard), and Tempo
(fast, slow), and the random factors Participant (six levels)
and Trial (five levels), where trial was nested within participant
(i.e., we used the maximal random-effects structure justified by
the experimental design, following Barr, Levy, Scheepers, &
Tily, 2013). We further allowed unequal variances across the
levels of the signal factor, which was decided on the basis of
visual observation that the residuals were heterogeneous for the
various signals, and also because some dependent variables
(e.g., missed responses for the Arduino) had a standard devia-
tion of zero. The model was fit using the /me function of the
nlme library (Pinheiro, Bates, DebRoy, Sarkar, & R
Development Core Team, 2015) for the R package of statistical
computing (R Development Core Team, 2013), and unequal
variance was implemented using the varldent model formula
term. Pair-wise contrasts were computed using generalized lin-
ear hypothesis testing for Tukey contrasts (corrected p values
are reported), using the glht function in the multcomp library
(Hothorn, Bretz, & Westfall, 2008). The LMEM was used to
analyze all of our dependent variables (see Appendix B for the
LMEM tables, and Appendix C for examples of the R code).
Classical null-hypothesis testing statistics are not designed to
find evidence for the absence of a difference between conditions.
Therefore, we calculated the Bayes factor to test that the FSR did
not affect the performance (latency and variability) of the per-
cussion pad in conditions in which the FSR was present as
compared to when it was absent (see Table 1). To include con-
ditions in which the FSR was absent, the asynchrony between
the piezo vibration sensor onset and the audio onset of the per-
cussion pad was compared between the FSR-present and -absent
conditions. The Bayes factor quantifies the strength of evidence
in favor of the null hypothesis (when less than 1) or in favor of
the alternative hypothesis (when greater than 1; Rouder,
Speckman, Sun, Morey, & Iverson, 2009). The Bayes factor
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was computed using the BayesFactor function in the
BayesFactor library (Morey, Rouder, & Jamil, 2009).

FSR-aligned audio mean asynchrony

For asynchronies, we found significant main effects of signal
and force (ps < .001), and no significant main effect of tempo
(p = .11). All interactions reached significance (ps < .001). To
test the hypothesis that audio onsets produced by the PWM
and wave shield have lower latencies than other audio signals,
pair-wise contrasts were conducted between signals. All sig-
nals were significantly different from one another (ps < .001)
in the following order, from lowest to highest asynchrony:
PWM, wave shield, percussion pad, FTAP, and Max/MSP
(see Fig. 3). Pair-wise contrasts investigating the three-way
interaction between signal, force, and tempo confirmed that
the PWM, wave shield, and percussion pad were significantly
different from each other and from FTAP and Max/MSP under
all conditions. However, in some conditions FTAP and Max/
MSP were not significantly different (e.g., soft x fast condi-
tion, p = 1.0), likely due to the high variability of the onset
timings for these audio signals (see Fig. 3).

For the PWM and wave shield signals, there were signifi-
cant differences between all force conditions (ps < .001), in-
dicating that the asynchrony increased as force increased (see
Fig. 4). For the percussion pad, FTAP, and Max/MSP signals,
significant differences emerged between force conditions (ps
< .02), but the asynchrony decreased as force increased. The
PWM only demonstrated a significant difference between
tempi for the soft force condition (p < .001), in which asyn-
chrony was greater for the fast than for the slow tempo. The
wave shield did not demonstrate significant differences be-
tween tempi for any force condition (ps > .83). The percussion
pad and FTAP only demonstrated significant differences be-
tween tempi for the hard force (ps < .001); asynchronies for
the fast tempo were greater than those for the slow tempo for
the percussion pad, and the reverse trend was observed for
FTAP. For Max/MSP, asynchronies were significantly greater
for the slow than for the fast tempo for all force conditions (ps
<.001).

FSR-aligned audio asynchrony variability

To compare the variability of the feedback signals, we com-
puted the standard deviation of the asynchronies for each par-
ticipant, signal, tempo, and force. These standard deviation
estimates were corrected for biases arising from differences
in the numbers of underlying data points using the c4 coeffi-
cient [see Eq. 1, where n = sample size, I' = gamma function,
['(n) = (n—1)!; see Cureton, 1968]. These variability estimates
were then subjected to an LMEM with the same design as
above, with asynchrony variability as the dependent variable.
Trial was no longer included as a random effect, because at
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Fig. 3 Histogram of audio onset asynchronies relative to FSR onsets

most one data point was available for each combination of
participant and condition.

) “)

For asynchrony variability, we observed a significant main
effect of signal (p <.001) and a significant interaction between
signal and tempo (p = .003). No other main effects or interac-
tions reached significance (ps > .19). To test the hypothesis
that audio onsets produced by the PWM and wave shield have
lower variability than the other audio signals, pair-wise
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contrasts were conducted between signals. Signal variabilities
were generally significantly different from one another (ps <
.02), with the exception of nonsignificant differences between
the PWM and wave shield (p = 1.0) and between FTAP and
Max/MSP (p = .13), and there were statistical trends for dif-
ferences between the PWM and percussion pad (p = .06) and
the wave shield and percussion pad (p = .08). As is shown in
Fig. 5, the interaction between signal and tempo indicated that
the percussion pad was significantly less variable than Max/
MSP for the fast condition (p < .01) but not for the slow
condition (p = .23). Moreover, a significant main effect of
tempo emerged for Max/MSP (p < .001), indicating that the
fast tempo was more variable than the slow tempo. It is pos-
sible that this tempo effect was driven by difficulties for Max/
MSP to produce consistent timing of auditory feedback under
high load—that is, when responses were more frequent—as
compared to a slower response schedule. Overall, our results
support the hypothesis that the PWM and wave shield provide
less variable auditory feedback onsets than FTAP and Max/
MSP. The PWM and wave shield showed near-significant
trends for being less variable than the percussion pad.

FSR present versus absent comparison of percussion pad
asynchronies

In this analysis, we included only the percussion pad audio
asynchrony data, since the other signals (the tone generator
output through FTAP or Max/MSP) occurred much later and
were subject to additional temporal noise (probably due to the
MIDI-USB and USB-MIDI conversions) and this noise is, by
design, independent of whether an FSR was present or not.
The LMEM was fit to the data with fixed factors Force,
Tempo, and FSR Presence (two levels: present or absent; see

FTAP Max/MSP

T T T T T T
Soft Moderate Hard Soft Moderate Hard

T T T
Soft Moderate Hard
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T T T T T T
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Fig. 4 Mean asynchrony relative to the FSR for audio signals in the tempo (fast, slow) and force (soft, moderate, hard) conditions. Whiskers represent

standard errors of the means
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Fig. 5 Mean asynchrony variability (with standard deviations) for audio signals in the tempo (fast, slow) and force (soft, moderate, hard) conditions.

Whiskers represent standard errors of the means

Table 1), and the random factors Participant (six levels) and
Trial (five levels), where trial was nested within participant.
The dependent variables were the asynchrony of the drum
audio relative to the piezo vibration sensor onset (in millisec-
onds), and the variability of asynchrony.

All main effects and interaction effects reached signifi-
cance (ps < .003), except for the three-way interaction be-
tween FSR presence, force, and tempo (p = .60). Tukey con-
trasts investigating the interaction between FSR presence and
tempo revealed that percussion pad asynchronies demonstrat-
ed significantly lower latencies with the FSR present versus
absent for the fast and slow tempi (ps < .001). Contrasts be-
tween FSR presence and force conditions demonstrated sig-
nificantly lower latencies for the FSR-present than for the
FSR-absent condition for hard and soft force (ps < .002), but
not for moderate force (p = .10). These results indicate that the
FSR presence generally decreased the asynchrony relative to
conditions in which the FSR was absent. Since this indicates
that the presence of the FSR produced a decrease in latencies,
the Bayes factor was not calculated. The decreased latencies
for FSR present as compared to absent may be attributed to the
increased surface area provided by the FSR. The surface area
of an adult human fingertip is approximately 2-3.2 cm?
(Dandekar, Raju, & Srinivasan, 2003), and the square FSR
has a surface area of 14.5 cm®. The FSR may have spread
out the tapping force over a larger area, thus improving the
percussion pad’s speed in detecting responses and, in turn,
producing the audio signal more quickly.

The same analysis was conducted on the variances of the
percussion pad audio asynchronies relative to the piezo vibration
sensor, using the standard deviation of the onsets for each par-
ticipant, trial, FSR presence condition, tempo, and force. We
found no significant main effect of FSR presence and no signif-
icant interactions between FSR presence and force or FSR
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presence and tempo (ps > .29). We calculated the Bayes factor
(BYf) to establish whether the FSR had no influence on the vari-
ability of the percussion pad. When we compared the model with
participant as a random variable, there was evidence against
including FSR presence in the model (Bf = 0.001), suggesting
a low probability (odds = 1,000 to 1) that the presence of the FSR
influenced the variability of the percussion pad.

Captured and superfluous responses

For the proportions of captured responses per trial (out of 40)
and superfluous responses, we compared the numbers of re-
sponses captured by the Arduino in the FSR conditions with
those by the percussion pad in the no-FSR conditions (see
Table 1). The analysis on the proportions of captured responses
demonstrated significant main effects of device (Arduino, per-
cussion pad) and force (ps < .001), and a significant interaction
between device and force (p < .001). The main effect for tempo
and the other interactions did not reach significance (ps > .21).
As is shown in Fig. 6, the Arduino recorded significantly more
responses than the percussion pad in all force conditions (ps <
.001; see Appendix D for the force profiles recorded by the
Arduino). The percussion pad captured more responses in the
moderate and hard force conditions than in the soft force con-
dition (ps < .001), and the moderate and hard conditions did not
significantly differ (p = .41).

For the number of superfluous responses, we observed main
effects of device, force, and tempo (ps < .05) and a significant
interaction between device and force (p < .001). The interaction
between device and tempo approached significance (p = .06), but
other interactions did not reach (ps > .20). As is shown in Fig. 7,
the Arduino recorded significantly fewer superfluous responses
than the percussion pad overall (ps < .001), but did not demon-
strate significant differences when delineated by force condition
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Fig. 6 Proportions of responses captured by the percussion pad and the
Arduino in the force (soft, moderate, hard) and tempo (fast, slow)
conditions. The Arduino registered 100 % of the produced taps,

(ps > .11), possibly due to the high variability in the number of
superfluous responses for the percussion pad. However, the
Arduino recorded significantly fewer superfluous responses than
the percussion pad for the slow tempo (p = .002), and demon-
strated a statistical trend toward fewer superfluous responses for
the fast tempo (p = .05).

Discussion

We demonstrated that the Arduino can be used as an effective
way to implement sensorimotor synchronization experiments

Soft Moderate Hard

whereas the percussion pad missed taps, and more so when the tapping
force was softer. Whiskers represent standard errors of the means

in which participants receive auditory feedback triggered by
their taps. We validated the proposed setup by comparing the
latencies and variability of the onset of auditory feedback and
missed and superfluous recorded responses between the
Arduino and two commonly used MIDI setups. The Arduino
option was able to deliver auditory feedback with low latency
and variability, which is considerably faster and less variable
than the MIDI percussion pad, FTAP, and Max/MSP.
Furthermore, the Arduino had fewer missed and superfluous
responses than the percussion pad. These results, coupled with
fact that the Arduino is less expensive than a MIDI percussion
pad, make the Arduino a compelling option for sensorimotor
synchronization experiments. We further showed that the

Percussion pad Arduino
12.5
Tempo

10.01 250
3 500
=
2
g Device
g 754 Percussion pad
=
e Arduino
3
=3
=2
»
s
3 5.0
e
3
=
o
4
&
s
©
o
2 251

0.0 |:|L iﬁ

Soft Moderate Hard Soft Moderate Hard

Force

Fig. 7 Mean frequencies of superfluous responses captured by the percussion pad and Arduino in the soft, moderate, and hard force conditions for fast

and slow tempi. Whiskers represent standard errors of the means
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percussion pad was highly sensitive to varying tapping force
levels; softer taps caused larger latencies and more missed
taps. This poses an important problem for sensorimotor syn-
chronization experiments using percussion pads, because par-
ticipants may knowingly or unknowingly modulate their tap-
ping force or tap in an unnatural manner to yield auditory
feedback. All participants in our study reported that the mod-
erate force was the most natural tapping force and might re-
flect the tapping force that participants in other experiments
assume unless instructed otherwise. Our proposed Arduino
setup was not affected by these force modulations, making it
a more reliable instrument to measure sensorimotor tapping
responses. Moreover, the Arduino allows the flexibility to
tailor the parameters to the expected timeframe and force of
responses.

There are several reasons larger latencies would have
emerged in the MIDI-based setups (FTAP and Max/
MSP). The percussion pad itself must detect responses
using real-time signal processing to record responses
and tap forces. Percussion pad manufacturers do not
release the signal processing algorithms to the consumer
so it is difficult to divine precisely how this is per-
formed. It is also difficult to know when the MIDI
signal is sent through the MIDI out port relative to
the production of the audio on board the percussion
pad. If one assumes that the MIDI signal and percussion
pad audio are produced somewhat synchronously, then it
appears that the percussion pad is accountable for the
majority of the latency (see Fig. 3). The other sources
of latency include the MIDI-USB conversion (and vice
versa), the computer processing of the MIDI inputs and
outputs, and the generation of the audio with the tone
generator. FTAP and Max/MSP might actually contrib-
ute negligibly to the latencies of auditory feedback.
However, the number of separate devices and connec-
tions that are required to implement these setups in-
creases the latency of auditory feedback and is unavoid-
able for interfacing MIDI devices with FTAP and Max/
MSP.* The benefit of using the Arduino is fewer con-
nections between the devices that record responses and
generate auditory feedback. Moreover, the performance
of the Arduino is completely independent of the com-
puter that is reading data from the Arduino, increasing
reproducibility between different labs and experiments.

We acknowledge that other computer systems and hard-
ware configurations might decrease the latencies observed

4 Max/MSP also provides a virtual MIDI synthesizer that can produce
auditory feedback through the computer’s audio and headphone ports. We
attempted to test the virtual MIDI synthesizer in Max/MSP but the latency
in auditory feedback was noticeably larger and, therefore, we proceeded
to only test the arrangement reported here.
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in FTAP and Max/MSP—for example, by using a conven-
tional peripheral component interconnect (PCI) MIDI
sound card (see Nelson & Thom, 2004). Such configura-
tions, however, would neither circumvent the latencies and
variability introduced by the percussion pad, nor decrease
the number of missed and superfluous responses resulting
from the percussion pad. Furthermore, none of the pub-
lished articles that have used FTAP of Max/MSP have
reported using configurations that opt for a PCI MIDI
sound card or the use of a joystick controller port® (i.e.,
a serial game port, as suggested in Finney, 2001). Other
MIDI percussion pads may not produce as many missed
responses but some papers have reported unrecorded re-
sponses with other devices (e.g., Pfordresher & Dalla
Bella, 2011; Repp & Knoblich, 2007). As the present
study shows, the Tap Arduino setup detected 100 % of
taps and produced a total of two superfluous taps through-
out the experiment. Therefore, we demonstrated that the
Tap Arduino is a reliable tool for recording responses.

Although there are other software (e.g., MatTAP;
Elliott, Welchman, & Wing, 2009) and hardware (e.g.,
button boxes as used in Snyder et al., 2006) options, the
latencies and variability of these alternatives are often un-
tested or unreported. Here, we tested two of the most
common configurations using MIDI controllers; other op-
tions generally require external devices (e.g., data
acquisition cards, as in Elliott et al., 2009) that are more
expensive than the Arduino configurations described here.
The cost of the Arduino microcontroller and associated
equipment is a fraction of the cost of most MIDI percus-
sion controllers and MIDI samplers that do the same task.
The total cost of the PWM setup is approximately USD
65.00, and the wave shield setup costs approximately
USD 110.00. This is can be compared to the MIDI per-
cussion controllers (and dependent devices such as MIDI
samplers and MIDI-to-USB cables), which can cost any-
where from USD 600.00 to over USD 1,500.00 for a full
system.

One issue that has not been addressed is how best to
synchronize the timing of responses with an external
auditory stimulus (e.g., a metronome pacing sequence).
Although other systems claim high timing resolutions
for synchronizing responses with external stimuli (e.g.,
StimSync, Rorden & Hanayik, 2014; MatTAP, Elliott
et al.,, 2009) many other commercially available setups
are not subjected to peer-review and the veridical

5 Steve F inney (e.g., Finney, 2001) and Peter Pfordresher (Pfordresher,
personal communication, June 23, 2015) have used the joystick controller
port in their experiments that use FTAP and, although this is not specified,
other studies may have used a similar MIDI interface device.
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response-stimulus asynchronies associated with such
software packages are unknown. We have included a
beta script in our software package for syncing an au-
ditory wave (.wav) file with Arduino responses
(“TapArduinoSound.py”) but the actual asynchrony be-
tween the Arduino responses and onset of computer-
generated audio remains to be tested on multiple sys-
tems. This is a problem for experiment setups in general
and, until this matter is resolved, the expensive options
such as data acquisition cards and AIBs remain the
most temporally precise methods for synchronizing re-
sponses and stimuli.

There are some limitations of the Tap Arduino package.
First, unlike FTAP and Max/MSP, Tap Arduino cannot inter-
face with MIDI devices such as piano keyboards. Second, the
arrangement of the Tap Arduino presented here is incompati-
ble with the MIDI protocol and, therefore, cannot take advan-
tage of the library of MIDI sounds. Third, the Tap Arduino
cannot dynamically change the intensity of auditory feedback
as a result of changes in tapping force. However, a strength of
the Tap Arduino package is that is can play any sound that can
fit on an SD card as a wave file. We have also included codes
that can alter auditory feedback in terms of temporal delay
(i.e., delayed auditory feedback), frequency (i.e., pitch), tim-
bre, and intensity (i.e., loudness). Another benefit of the
Arduino microcontroller more generally is that it is expand-
able and can be programmed to communicate with a large
range of devices that read serial protocol. A user is not limited
to using an FSR as used in the present study but may, instead,
use a piezo element to record tap vibrations, a circular poten-
tiometer for circle drawing, or a simple button similar to a
computer keyboard key (see Schubert et al., 2013). The drum
pads used in videogames, such as Rock Band, and the percus-
sion pad tested here use the piezo elements to record onsets.
Through the Arduino, it is possible to have fine control over
the thresholds and sensitivity that allows onsets to trigger au-
ditory feedback.

Now that we have benchmark measurements for the
latencies and variability of feedback using the Arduino
and MIDI options, future research could determine the
implications of having delayed or variable feedback in
behavioral experiments. Aschersleben and Prinz (1997)
have shown that increasing the latency of auditory feed-
back as much as 30 ms can increase the mean negative
asynchrony of responses (relative to metronome ticks)
from —20 ms to less than —40 ms. These results indicate
that unwanted delays in auditory feedback (resulting from
the experimental hardware used) influence behavior in sen-
sorimotor synchronization experiments. The Tap Arduino
circumvents this problem by presenting auditory feedback
within milliseconds and could therefore be used to find

the threshold at which behavior is influenced by delayed
auditory feedback. It is possible that delays observed in
FTAP and Max/MSP are inconsequential for performance
in sensorimotor synchronization experiments, particularly
given that people may adapt to them (Aschersleben &
Prinz, 1997). However, it is likely that the variability
would make it difficult to habituate to delays in auditory
feedback, an assertion that is yet to be tested empirically.
Similarly, the impact of missing and superfluous responses
in experiments that present auditory feedback for pairs or
individuals in sensorimotor synchronization remains un-
known. This could be investigated using the Tap
Arduino package that is sensitive enough not to miss re-
sponses and frugal enough not to record superfluous
responses.

Conclusion

We have presented C codes and Python scripts for using
an Arduino microcontroller as a tool for measuring re-
sponses at high resolutions and presenting low-latency
auditory feedback in sensorimotor synchronization ex-
periments. The Arduino was able to collect responses
with high precision (i.e., without missing responses)
while minimizing false alarms (i.e., superfluous re-
sponses). Our codes, scripts, and hardware instructions
are freely available online (van Vugt & Schultz, 2015).
The PWM auditory feedback option is faster and re-
quires purchasing less hardware, but can only present
simple sounds such as pure tones or square waves.
The wave shield auditory feedback option allows the
presentation of any sound file, but it has a slightly
higher latency, is more expensive, and it requires a
higher level of soldering ability (see Adafruit, 2015).
Both of the Arduino options demonstrated lower, and
less variable, auditory feedback latencies than FTAP
and Max/MSP. On the basis of these results, we suggest
that the Tap Arduino provides powerful tools for senso-
rimotor synchronization experiments, because it is high-
ly precise and resistant to false alarms, produces low-
latency feedback, and is portable and more affordable
than existing solutions.
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Appendix B

Table 2 Linear mixed-effects model for auditory feedback asynchronies, and asynchrony variability, relative to the force sensitive resistor (FSR)

FSR Asynchronies FSR Asynchrony Variability
Estimate SE Estimate SE
Fixed Effects
(Intercept) 0.68"" 0.04 0.26 0.33
Signal: Arduino wave shield 201 0.01 0.05 0.40
Signal: Percussion pad 8.01"" 0.02 0.98" 0.40
Signal: FTAP 1345 0.04 2.16™" 0.40
Signal: Max/MSP 13.92 0.10 3.077 0.42
Force: Moderate —0.08"" 0.01 —-0.01 0.40
Force: Soft -0.20"" 0.01 -0.01 0.40
Tempo: 120 BPM 0.01 0.01 0.00 0.40
Signal: Arduino Wave Shield x Force: Moderate 0.016 0.01 —0.06 0.57
Signal: Percussion Pad x Force: Moderate 0.58"" 0.04 0.14 0.57
Signal: FTAP x Force: Moderate 039" 0.06 —0.52 0.57
Signal: Max/MSP x Force: Moderate .07 0.15 0.15 0.60
Signal: Arduino Wave Shield x Force: Soft 0.001 0.01 —0.05 0.57
Signal: Percussion pad x Force: Soft 1777 0.05 0.49 0.57
Signal: FTAP x Force: Soft 1777 0.08 -0.29 0.57
Signal: Max/MSP x Force: Soft 1.38" 0.25 -0.04 0.65
Signal: Arduino Wave Shield x Tempo: 120 BPM —0.01 0.01 —0.06 0.57
Signal: Percussion pad x Tempo: 120 BPM -0.14" 0.03 -0.04 0.57
Signal: FTAP x Tempo: 120 BPM 030" 0.06 0.24 0.57
Signal: Max/MSP x Tempo: 120 BPM 1277 0.14 -1.13 0.60
Force: Moderate < Tempo: 120 BPM 0.004 0.01 0.01 0.57
Force: Soft x Tempo: 120 BPM -0.06"" 0.01 0.00 0.57
Signal: Arduino Wave Shield x Force: Moderate x Tempo: 120 BPM 0.003 0.01 0.06 0.81
Signal: Percussion pad x Force: Moderate x Tempo: 120 BPM 0.14™ 0.05 0.08 0.81
Signal: FTAP x Force: Moderate x Tempo: 120 BPM —0.16" 0.08 0.02 0.81
Signal: Max/MSP x Force: Moderate x Tempo: 120 BPM 0.06 0.21 -0.14 0.85
Signal: Arduino Wave Shield x Force: Soft x Tempo: 120 BPM 0.06"™" 0.01 0.06 0.81
Signal: Percussion pad x Force: Soft x Tempo: 120 BPM 028" 0.08 0.21 0.81
Signal: FTAP x Force: Soft x Tempo: 120 BPM -0.25" 0.12 -0.35 0.81
Signal: Max/MSP x Force: Soft x Tempo: 120 BPM 0.46 0.35 0.04 0.92
Random Factors
Participant 0.10 0.35
Trial (within Participant) 0.01 N/A
Residual 0.28 0.64
Goodness of Fit
Log Likelihood -129,155.6 -170.9
AIC 258,385.2 405.7
BIC 258,735.5 506.1

" p<.001, " p< .01, p<.05
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Table 3  Linear mixed-effects model for auditory feedback asynchronies, and asynchrony variability, relative to the Piezo vibration sensor

Piezo Asynchronies Piezo Asynchrony Variability
Estimate SE Estimate SE
Fixed Effects
(Intercept) 8.09" 1.15 205" 0.72
Force: Moderate 169" 0.05 0.76 0.61
Force: Soft 4.66™" 0.08 1.13 0.61
Tempo: 120 BPM 042" 0.05 —0.40 0.61
FSR: absent 028" 0.07 -0.37 0.61
Force: Moderate x Tempo: 120 BPM 0.14 0.07 0.12 0.86
Force: Soft x Tempo: 120 BPM 0.72"" 0.11 0.44 0.86
Force: Moderate x FSR: absent -0.26" 0.10 -0.17 0.88
Force: Soft x FSR: absent 0.22 0.15 041 0.88
Tempo: 120 BPM x FSR: absent 038" 0.09 0.44 0.86
Force: Moderate x Tempo: 120 BPM x FSR: absent -0.01 0.14 -0.27 1.23
Force: Soft x Tempo: 120 BPM x FSR: absent -0.22 0.22 -0.58 1.24
Random Factors SD Estimate SD Estimate
Participant 2.81 1.30
Residual 2.83 0.96
Goodness of Fit
Log Likelihood -94,096.58 —-104.03
AIC 188,221.20 236.06
BIC 188,340.90 267.33

ok

" p<.001, " p<.01, p<.05

Table 4 Linear mixed-effects model for the proportion of captured responses and number of superfluous responses

Proportion of Captured Responses Superfluous Responses
Estimate SE Estimate SE
Fixed Effects
(Intercept) 1.007" 0.03 0.00 1.60
Device: Percussion Pad —0.11" 0.03 3.22 2.19
Force: Moderate 0.00 0.02 0.00 2.19
Force: Soft 0.00 0.02 0.00 2.19
Tempo: 120 BPM 0.00 0.02 0.01 2.19
Device: Percussion Pad x Force: Moderate 0217 0.04 -3.10 3.10
Device: Percussion Pad x Force: Soft 0617 0.04 -2.65 3.10
Device: Percussion Pad x Tempo: 120 BPM 0.01 0.04 3.83 3.10
Force: Moderate x Tempo: 120 BPM 0.00 0.03 —-0.01 3.10
Force: Soft x Tempo: 120 BPM 0.00 0.03 0.00 3.10
Device: Percussion Pad x Force: Moderate x Tempo: 120 BPM 0.02 0.05 -3.51 4.38
Device: Percussion Pad x Force: Soft x Tempo: 120 BPM —0.09 0.05 —4.20 438
Random Factors SD Estimate SD Estimate
Participant 0.05 0.90
Residual 0.17 3.46
Goodness of Fit
Log likelihood 404.67 -193.33
AlC —781.34 414.67
BIC —710.08 446.54

<001, p< .01, p<.05
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Appendix C: R code for linear mixed-effects model

# Linear mixed-effects model
fsr.lme <- Ime(Asynchrony ~ Signal*Force*Tempo, random = ~1|Participant/Trial,
data = fsr_data, method = "ML", weights = varldent(form = ~1|Signal))

# Check estimates and coefficients
summary(fsr.Ime)

# View main effects and interactions

# (note: this function is NOT an analysis of variance but is
# an analogous function for LMEM)

anova(fsr.Ime)

# Example: Planned comparisons for main effect of Signal
summary(glht(fsr.Ime,
linfct = mep(Signal = "Tukey")))

# Above, "Signal" can be replaced by "Force" or "Tempo" to obtain planned comparisons

# Example: Interactions between Signal and Force
fsr_data$SigFor <- factor(interaction(fsrata$Signal,fsr_data$Force))

fsr.tmp.Ime <- Ime(Asynchrony ~SigFor*Tempo, random = ~1|Participant/Trial,
data = fsr_data, method = "ML", weights = varldent(form = ~1|Signal))

summary(glht(fsr.tmp.lme,linfct = mep(SigFor = "Tukey")))
# Above, "Signal" and "Force" can be swapped with "Tempo" to obtain planned comparisons

# Three-way interactions
fsr_data$SigforTemp <- interaction(fsr,ata$Signal fsr_data$Force, fsriata$Tempo)

fsr.comb.Ime <- Ime(Asynchrony~SigForTemp, random = ~1|Participant/Trial,
data = fsr_data, method = "ML", weights = varldent(form = ~1|Signal))

summary(glht(fsr.comb.lme,linfct = mep(SigForTemp = "Tukey")))
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Fig. 9 Mean force values recorded from by the Arduino for the fast and
slow tempi under conditions of soft, moderate, and hard tapping
instructions. The unit of force is a 10-bit integer ranging from 0 to

Arduino force analysis

The maximum force value between the onset and offset of the
tap was recorded for each tap. The mean maximum force
value for each trial was recorded and analyzed in a 2
(tempo) by 3 (force) repeated measures analysis of variance
with Participant and Trial as random factors. We found a sig-
nificant main effect of force [F(2, 10) = 82.42, p < .001, np2 =
.94], indicating that the hard instruction (M = 782.2, SD =
82.37) resulted in a significantly greater force than did the soft
(M =501.1, SD = 99.20; p < .001) and moderate (M = 665.0,
SD = 77.67; p < .001) instructions, and the moderate instruc-
tion resulted in a significantly greater force than the soft in-
struction (p < .001). There was no significant main effect of
tempo (p = .64), and the force by tempo interaction
approached significance (p = .06). The near-significant inter-
action between force and tempo reflected that the slow tempo
resulted in significantly greater force than the fast tempo for
the hard force instruction (p < .001), but not for the soft or
moderate force instructions (ps > .27)

@ Springer

1023, representing the resistance to the force placed on the FSR. The
shaded areas represent the standard deviations
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