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SUMMARY

We study a trade-off between economic and environmental indicators using a two-stage optimal control

setting where the player can switch to a cleaner technology, that is environmentally “efficient”, but

economically less productive. We provide an analytical characterization of the solution paths for

the case where the considered utility functions are increasing and strictly concave with respect to

consumption and decreasing linearly with respect to the pollution stock. In this context, an isolated

player will either immediately start using the environmentally efficient technology, or for ever continue

applying the old and “dirty” technology. In a two-player (say, two neighbor countries) dynamic game

where the pollution results from a sum of two consumptions, we prove existence of a Nash (open-

loop) equilibrium, in which each player chooses the technology selfishly i.e., without considering the

choice made by the other player. A Stackelberg game solution displays the same properties. Under

cooperation, the country reluctant to adopt the technology as an equilibrium solution, chooses to

switch to the cleaner technology provided it benefits from some “transfer” from the environmentally

efficient partner.
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1. Introduction

The trade-off between economic performance and environmental efficiency is becoming a key

aspect of economic policy debates at all levels, as it transpires from the discussion around the

Kyoto protocol. Indeed, for many authors, such trade-offs exist, and dealing with them is a

matter of urgency. For example, [1] have found a decreasing relationship between economic

performance, as measured by the return to capital employed, and a composite environmental

indicator computed from emissions of SO2 and NOx, and chemical demand for oxygen in

German, Italian, Dutch and British industries over the period 1995-1997. In a context of some

specific industries, at an earlier date [2] have argued that the share of environmental costs in

total manufacturing costs might well be a considerable burden, and is by no way offset by any

kind of advantage.

Such evidence is at odds with the so-called Porter hypothesis (see [3], [4]), which advocates

a kind of win-win situation induced by more stringent environmental norms (see a game-

theoretic foundation for Porter hypothesis in [5]. However, for most environmental economists,

it seems clear that enforcing stricter environmental norms should negatively affect economic

performance, at least in the short run. Whether such a regulation could induce further

innovations and generate at some point in time highly efficient technologies in all respects

(see for example [6]) is not discussed in this paper. We restrict our attention to finite and

relatively short time horizons. In such a context, a trade-off between economic performance

and environmental efficiency is hardly questionable.

Beside the empirical arguments, there might be several mechanisms leading to such a trade-

off. Of course, one should first mention the direct output losses due, for example, to more

stringent emission norms (as in the Kyoto protocol, see [7], for a discussion). In the short

run, an additional economic inefficiency is likely to arise if the compliance to more stringent

environmental norms implies costly development and adoption of new and less polluting

technologies. In this paper, we abstract from R&D efforts and use output losses to proxy
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2 BOUCEKKINE, KRAWCZYK, VALLÉE

cost increases. In a benchmark case we consider a country that can continue using an old

technology or switch to a cleaner but less productive technology (because of the involved

adoption costs). Adoption costs are usually associated with a transitory or permanent fall in

productivity (see a survey in [8]), and we shall also use this argument in our context.

Here we sketch a base for our model. Adopting a new technology can be immediate or

delayed. Individuals populating the economy dislike pollution and enjoy large output. (Hence,

a trade-off arises formally because one unit of output could be sacrificed for so-many units of

abated pollution.) Furthermore, we do not include any compulsory environmental norms in the

model, and allow choices to be made on the basis of a simple trade-off model. In the benchmark

case, the problem will be formulated as a two-stage optimal control problem as in [9], who

extended previous contributions of [10] and [11]. In this paper, we shall go a step further

and embed the benchmark two-stage optimal control problem in a two-country game-theoretic

context.

We shall show that whether the less polluting technology is adopted or not, relies heavily

on the strategic ingredients of our model like the data on marginal productivity and marginal

propensity to pollution of the new technology. The 2006 Canadian decision to withdraw from

the Kyoto protocol and to join the opposing club is a clear signal of the ongoing tensions

and strategic steps taken all over the world, in this specific field. These tensions reflect

the pressure of many national and international lobby groups. In the case of Canada, the

manufacturing sector as represented by the CME (Canadian Manufacturers and Exporters),

has made repeatedly clear that the commitments and the measures adopted to meet Kyoto

requirements must “...be part of a meaningful international strategy for limiting atmospheric

greenhouse gases ... and lead to genuine reductions in greenhouse gas emissions that are

measurable, verifiable, practical, and economically feasible...”.∗ Clearly, the US decision to

∗See the web site at http://www.cme-mec.ca/kyoto/.
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act unilaterally and not ratify the Kyoto protocol is strong evidence that this country does

not perceive optimal joining the Kyoto club. Undoubtedly, this decision can only encourage

self-interested behavior of other countries.

Here is a brief outline of how this paper is organized. The next section solves the benchmark

problem of an isolated country facing a short-run trade-off between an economic and an

environmental efficiency. Section 3 considers a two-country open-loop Nash game and also

comments on a leader-follower version of the game. Section 4 studies the outcomes of

cooperative games. Section 5 provides concluding remarks.

2. The benchmark optimal control problem

2.1. The model

In this section, we consider the case of an isolated economy, which therefore takes its decisions

in exclusive accordance with its own preferences and constraints. For this case, we shall develop

the computations in detail.

Consider an economy whose benevolent central planner wants to maximize the following

intertemportal utility function: ∫ T

0

u (C(t), P (t)) e−ρtdt, (1)

where C is aggregate consumption, P is the aggregate stock of pollution, and u(.) is a concave

utility function with u
′
C > 0 et u

′
P < 0. The time horizon is T , assumed finite in this framework

and ρ is the discount rate.

It should be noted here that adding a scrap value (as a function of the stock of pollution at

the terminal date T for example) will not change the main results of the paper. ∗

On the production side, we have an elementary one-sector structure: the production function

∗All formulae derivations are available upon request from the authors.

Copyright c© 2008 Authors Optim. Control Appl. Meth. 2008; 00:0–0

Prepared using ocaauth.cls



4 BOUCEKKINE, KRAWCZYK, VALLÉE

is assumed to be of the AK type, and output is either used for consumption or as an input,

X :

Y = C + X = F (X) = Ai X ⇒ C ≡ X(Ai − 1) (2)

where Ai > 1 is the marginal productivity of input in technology i. We will restrict our

attention in this paper to i = 1, 2 where i = 1 refers to the “current” technology and i = 2 to

the “new” technology.

The stock of pollution is assumed to evolve proportionally to the production level:

Ṗ = αiAiX, (3)

with P (0) ≥ 0 given. As AiX is output, αi measures the marginal contribution to pollution

of an additional production unit. Clean technologies would therefore be associated with low

values of αi and highly productive technologies would have large Ai.

As said after (1), we assume that P (T ) is free∗ in this benchmark case. Given a pollution

objective at the terminal date T , we could have assumed that P (T ) is given. This would not

affect our results.∗

Hereafter, we shall represent any technological menu by a pair of positive numbers (Ai, αi).

We assume that at t = 0 the economy is equipped with technology (A1, α1) but another menu

(A2, α2) is also available with α1 > α2 > 0 but 1 < A2 < A1.

Here we mean several things. Cleaner technologies, presumably the “new” technologies,

involve a number of adoption costs (see [8], for a survey). For example productivity may

not be high at the early stages of the implementation of this new technique (as empirically

documented by [12]) until enough specific human capital is accumulated (as in the typical

learning-by-doing model, see [13]). Of course, such productivity losses may only be transitory,

∗Notice that, given the law of motion of the stock of pollution, and P (0) ≥ 0, we have necessarily P (t) ≥ 0,

∀t ≥ 0. Hence, P (T ) > 0.
∗For transparency, we have decided to not include in this article many bulky algebraic derivations but, of

course, they are available upon request.
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as explicitly accounted for by [9]. Because of that we consider finite horizon optimization

problems in this paper. This will allow us to argue that the above mentioned productivity

losses last for the whole horizon considered and can be modeled through one parameter A2.

Hence our claim of solving a rather realistic problem of a government elected for the finite

period T .

The stylized government problem, which we solve in this paper, consists of deciding whether

the economy remains using the technology menu “1” or adopts the new technological regime

“2”, with less pollution (a2 < a1) at the expense of less productivity (A2 < A1), during its

ruling period. If the latter alternative is true, the government needs to announce the optimal

switching time, say t1, with 0 ≤ t1 ≤ T .

Mathematically, the optimal control problem that we endeavor to solve is

max
X,t1

{
U(X, P, t1) ≡

∫ T

0

u(X(t), P (t))e−ρtdt

}
, (4)

subject to (8) and (2), P0 given and P (T ) free.

Notice that we can rewrite our objective function as:

U(X, P, t1) =
∫ t1

0

u(X, P )e−ρtdt +
∫ T

t1

u(X, P )e−ρtdt (5)

where menu “1” is used in [0, t1); at t1 menu “2” is adopted and applied until the end of

horizon T .

In order to characterize our results analytically, we shall restrict our study to the following

class of utility functions:

u(C, P ) = ln(C) − β P,

where β measures the marginal disutility due to pollution, which is assumed in our analytical

case independent of the level of the pollution stock.

2.2. Solving the optimal control problem

We solve the two-stage optimal control problem of technology adoption (4) backward in time,

as in dynamic programming (compare [10] and [11]), starting with the second possible regime.
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6 BOUCEKKINE, KRAWCZYK, VALLÉE

The calculations are elementary but rather bulky. We shall give the algebraic details of the

solution derivation in the benchmark case. The other cases are dealt with in the similar fashion.

2.2.1. Control on [t1, T ] We assume that the economy will switch to the new technology at

t1. If so, the optimal control problem the switch is:

max
X

U2(X, P, t1) =
∫ T

t1

(ln(X(t)(A2 − 1)) − βP ) e−ρtdt (6)

subject to Ṗ = α2A2X , with P (t1) = P1 ≥ 0 given and free P (T ). We will use the Pontriagin’s

minimum principle to establish an optimal solution.

The corresponding Hamiltonian is defined as:

H2(P, X, t, λ2) = −e−ρt (ln(X (A2 − 1)) − βP ) + λ2 (α2A2 X),

and the first-order conditions are:

−e−ρt

X
+ λ2α2A2 = 0 (7)

Ṗ = α2 A2 X (8)

λ̇2 = −e−ρtβ , λ2(T )P (T ) = 0 . (9)

It follows from (9) that

λ2(t) =
e−ρtβ

ρ
+ c, (10)

where c is a constant that will be determined using the transversality condition. Since P1 ≥ 0,

thus P (T ) > 0 by the law of motion of the stock of pollution and the transversality condition

becomes λ2(T ) = 0. This yields

c = −e−ρT β

ρ
,

and, finally,

λ2(t) =
β

ρ

(
e−ρt − e−ρT

)
. (11)

We can now calculate the remaining variables.
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The first-order condition with respect to X (i.e., (7)) implies that

α2A2 X(t) =
e−ρt

λ2(t)
,

which yields, using the law of motion (3)

P (t) = − 1
β

ln
(
e−ρt − e−ρT

)
+ c2 (12)

where c2 is a constant given by the initial condition, P (t1), that is:

P1 ≡ P (t1) = − 1
β

ln
(
e−ρt1 − e−ρT

)
+ c2

And so

c2 = P1 +
1
β

ln
(
e−ρt1 − e−ρT

)
.

The pollution accumulation path is then

P (t) = P1 +
− ln

(
e−ρ t − e−ρ T

)
+ ln

(
e−ρ t1 − e−ρ T

)
β

(13)

and the corresponding optimal input path

X(t) =
1

α2A2
· ρ

β
· 1
1 − e−ρ(T−t) , t ∈ [t1, T ]

(14)

For the discussion on existence of t1 such that 0 < t1 < T , we will need the expression of

the optimal Hamiltonian for the “second” regime at any date between t1 and T . After some

algebra, the optimal Hamiltonian H∗
2 (P1, t1) equals

H∗
2 (P1, t1) = e−ρt1

(
1 − Q2 + ρt1 + βP1 + ln(e−ρt1 − e−ρT )

)

where

Q2 ≡ ln(ρ) − ln(α2A2β) + ln(A2 − 1) . (15)

We notice that formulae (14) and (13) derived for t ∈ [t1, T ] are valid for any t1 ≥ 0 (i.e.,

including t1 = 0). This enables us to formulate a corollary regarding the optimal behavior of

the central planner for any uninterrupted control period.
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Corollary 1. A central planner that is maximizing a discounted stream of differences between

utility from consumption and disutility from pollution, expressed as (6), chooses an increasing

input path (14), which is inverse proportional to the pollution accumulation speed. The resulting

pollution accumulation path is hence independent of the production and pollution technologies.

We infer from the corollary that “no matter” the damage caused by pollution, measured by∫ T

t1
e−ρtβP (t)dt, the planner is able to choose an input path Xi(t) (and hence consumption

(Ai − 1)X(t)) that maximizes the “trade-off” utility function (6).

2.2.2. Control on [0, t1] Consider (4) and (5). We have already solved the problem on [t1, T ].

Given optimal control (14) and pollution stock at t1 (i.e., P (t1)) we can calculate the optimal

utility for this part of the horizon; will will denote it a U∗
2 (P1, t1). Hence, to compute optimal

control on [0, t1], we have to solve the following problem

max
{X, t1}

U(X, P, t) =
∫ t1

0

(ln(X(t) (A1 − 1)) − βP (t)) e−ρtdt + U∗
2 (P1, t1) (16)

subject to Ṗ (t) = α1A1X(t), 0 ≤ t < t1, with P0 given and P1 = P (t1) free. Hence the old

technology problem (menu “1”) is with free end point and free terminal time.

The corresponding Hamiltonian∗ is

H1(P, X, t, λ1) = −e−ρt (ln(X (A1 − 1)) − βP ) + λ1 (α1 A1X),

and the corresponding first-order conditions:

−e−ρt

X
+ λ1α1A1 = 0 (17)

Ṗ = α1 A1 X (18)

λ̇1 = −e−ρtβ . (19)

Following [10] we use

λ1(t1) = λ2(t1) (20)

∗Actually, for problems with free terminal time, an extended Hamiltonian is needed i.e., one which includes a

costate responsible for the time variable. However, [10] shows that this in not necessary in this case.
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(and also H1(t1) = H2(t1), see (27) below) and compute the shadow price as

λ1(t) =
β

ρ

(
e−ρt − e−ρT

)
. (21)

Notice that (21) does not depend on t1. This is a result of using (20) to calibrate an indefinite

integral of (19).

We can formulate the following corollary by comparing (21) to (11).

Corollary 2. The pollution shadow price λ(t) is independent of the technological menu i.e.,

it is the same for each technological choice.

This means that a central planner that is maximizing a discounted stream of differences

between utility from consumption and disutility from pollution, expressed as (6), perceives

disutility due to the accumulated pollution P (t) as a (decreasing) function of time only.

Now, just like in the new technology regime problem (menu “2”, treated in Section 2.2.1),

we can find the optimal path for the stock of pollution, P (t), and the production input X(t),

t ∈ [0, t1] . After some easy algebra, we get:

P (t) = − 1
β

ln
(
e−ρt − e−ρT

)
+ c1, (22)

where c1 is a constant, which results from the initial condition P0 = P (0):

c1 = P0 +
1
β

ln
(
1 − e−ρT

)
. (23)

Hence,

P (t) = P0 +
1
β

ln
(

1 − e−ρ T

e−ρ t − e−ρ T

)
, t ∈ [0, t1] . (24)

and the optimal input for X(t) is given by:

X(t) =
1

α1A1
· ρ

β
· 1
1 − e−ρ(T−t)

, t ∈ [0, t1]. (25)

This is sufficient for us to compute the optimal value of intertemporal utility as a function of

(P1, t1) and also of the Hamiltonian corresponding to the old technology regime. In particular,

the value of the Hamiltonian at the P1, t1

H1(P1, t1) = −e−ρt1 (ln (X(t1) (A1 − 1)) − βP (t1)) + λ1(t1)(α1A1X(t1))
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can be expresses, after some algebra, as

H∗
1 (P1, t1) = e−ρt1 (1 − Q1 + ρt1 + βc1) ,

where

Q1 = ln(ρ) − ln(α1A1β) + ln(A1 − 1) . (26)

and c1 is as in (23).

We are now ready to answer the crucial question about an optimal interior switching date

t1.

2.2.3. Existence of optimal t1 One can determine the optimal switching time from the

optimality condition, see [10]:

H∗
2 (P1, t1) − H∗

1 (P1, t1) = 0 (27)

where both Hamiltonian values were computed previously as:

H∗
1 (P1, t1) = e−ρt1 (1 − Q1 + ρt1 − βc1)

H∗
2 (P1, t1) = e−ρt1 (1 − Q2 + ρt1 − βc2) .

This yields

e−ρt1 (Q1 − Q2) = 0 . (28)

However, this means that there is no interior switching time unless Q1 = Q2, see (15) and

(26). In that case the planner is indifferent between the two technological regimes; moreover,

t1 can take any value on [0, T ].

Corner solutions (i.e., starting the new technology either at time 0 or never) were

theoretically pointed out in in [10]] and in [11]. According to (28) the economy should postpone

the new technology adoption indefinitely (i.e., t1 → ∞).

The following corollary is a consequence of (28).
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Corollary 3. The sufficient and necessary condition for never-adopting the new technology is

Q1 > Q2 that means

(NA)
α2A2

A2 − 1
>

α1A1

A1 − 1
. (29)

Symmetrically, the sufficient and necessary condition for an immediate adoption of the new

technology is Q1 < Q2 that means

(IA)
α2A2

A2 − 1
<

α1A1

A1 − 1
. (30)

The above conditions have a simple economic interpretation. A marginal increase in input

X increases output by Ai and consumption by Ai −1 and contributes to the stock of pollution

by αiAi. Condition (NA) says that the economy should never adopt the new technology, which

is less polluting (a2 < a1) but also less productive (A2 < A1) than the old one, if the ratio

of marginal pollution to marginal consumption for the new technology dominates the ratio

calculated for the old technology.

If (IA) holds, then the economy should immediately adopt the less polluting technology that

guarantees a lower ratio of marginal pollution to marginal consumption.

In simple terms, the implemented technology assures a high consumption i.e., Ai − 1 will be

large, or a low pollution i.e., αiAi will be small (or both).

3. A two-country problem

3.1. The model

Assume that there are two countries a and b that suffer from the same pollution stock.

This is a frequent case of countries with a common border that are using similar production

technologies. Similarly to [could you cite?.. you have written that this “is a usual assumption

in related papers” .. ] we shall assume that these countries do not trade in goods. This will

help analytical tractability of the problem. Nevertheless, we believe that countries’ trade may
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be limited if their economies’ products are substitutes rather than complements. Again, this

is non-unfrequent among neighboring regions.

As before, there is a central planner in each economy whose intertemporal utility function

is ∫ T

0

uk(Ck(t), P (t))e−ρtdt,

with k ∈ {a, b}. The production function, in the consumption goods sector, is AK; output is

used either for consumption or as input X , as follows:

Y k = Ck + Xk = F k(Xk) = Ak
i Xk ⇒ Ck ≡ Xk(Ak

i − 1)

where Ak
i > 1 is marginal productivity of input in country k.

The main difference with respect to the benchmark case is in the evolution of the pollution

stock, which now follows

Ṗ = αa
i Aa

i Xa + αb
iA

b
iX

b . (31)

That is, both countries contribute to the common stock of pollution depending on the level of

their production and technology in use.

The technological menus accessible to each countries are indexed “i, k” hence need not be

the same. This might be due to different technological innovation and/or absorption capacities.

However, menu “2” may be identical for each country.

We shall keep the planners’ utility functions identical and equal to the utility function dealt

with in the benchmark case i.e.,

uk(C, P ) = ln(C) − βk P,

where βk can differ between the countries. We will now study how the benchmark solution

identified in Section 2 is altered by the two-country context.

We believe that although knowledge about disutility from pollution X(t) is well developed

in each country, the actual measurements of P (t) are difficult and largely unreliable. This
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enables us to restrict the analysis to open-loop Nash equilibria. As it is well known, the open-

loop Nash equilibrium in an N -players differential game is found by solving N optimal control

problems taking as given the strategies of other players.

3.2. A two-stage open-loop Nash equilibrium

3.2.1. The optimization problem of player a Player a seeks her best strategy, given the

strategy of the other player. For simplicity we suppose that the other player keeps the

technology unchanged for the entire optimization horizon [0, T ].∗ Because most of the (rather

involved) computations are very similar to those of the benchmark case, we will skip most of

the intermediate steps.

The maximization problem of player a is:

max
X,t1

Ua(Xa, P, t1) =
∫ t1

0

(ln (Xa(Aa
1 − 1)) − βP ) e−ρtdt

+
∫ T

t1

(ln (Xa(Aa
2 − 1)) − βP ) e−ρtdt (32)

subject to

Ṗ = αa
2Aa

2X
a(t) + αb Ab Xb(t), if t ≥ t1; (33)

Ṗ = αa
1Aa

1X
a(t) + αb Ab Xb(t), if t < t1 , (34)

with P0 given, P (T ) free, and Xb(t) given.

This problem is similar to the benchmark problem with the unique difference that the state

equation now involves an additive forcing term αb Ab Xb(t). However, the contribution of this

term to optimal decisions of player a is null because the derivatives of the Hamiltonian of this

player do not depend on Xb. Hence, the outcomes of the benchmark model are also valid in

this case. This becomes clear by the following derivations.

We proceed to solve the problem of player a beginning form period [t1, T ], as in Section 2.

∗his assumption could easily be relaxed and the main results generated in that case would not be altered; see

[14].
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3.2.2. Control on [t1, T ] Suppose that country a decides to adopt the new technology at

date t1 given the steady play by country b as described above. So, the problem of country a is

to maximize

Ha
2 = −e−ρt (ln(Xa(Aa

2 − 1)) − βaP ) + λa
2(α

a
2Aa

2Xa(t) + αbAbXb(t))

where αb, Ab and Xb(t) are given. The first-order conditions are:

e−ρt

Xa
= λa

2αa
2A

a
2 (35)

Ṗ = α2A
a
2X

a + αbAbXb (36)

λ̇a
2 = −e−ρtβa (37)

λa
2(T ) = 0 . (38)

Using the transversality condition, one can obtain, as in the benchmark case, the solution path

for the co-state variable:

λa
2(t) =

βa

ρ

(
e−ρt − e−ρT

)
. (39)

Furthermore, we compute the time profiles of P (t) and Xa(t) as follows:

P (t) = − 1
βa

ln
(
e−ρt − e−ρT

)
+ αbAbZ(t) + p̃,

where Z(t) the integral of the other country’s control Xb(t), defined as
∫ T

t

Xb(t)dt and p̃ is a

constant determined by P (t1) i.e., the amount of pollution accumulated at time t1:

p̃ = P1 +
1
βa

ln
(
e−ρt1 − e−ρT

) − αbAbZ(t1) .

The optimal path of Xa(t) is given by

Xa(t) =
1

αa
2Aa

2

· ρ

βa
· 1
1 − e−ρ(T−t)

. (40)

Finally, we can write the optimal Hamiltonian Ha
2 (.); in particular at the assumed switching

time t1, it equals to

Ha
2 (P1, t1) = e−ρt1

(
1 − Qa

2 + ρt1 + βap̃ + βaαbAb

(
Xb(t1)

ρ
+ Z(t1)

))

− βa

ρ
αbAbXb(t1)e−ρT , (41)
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where Qa
2 = ln(ρ) − ln(αa

2Aa
2β

a) + ln(Aa
2 − 1).

3.2.3. Control on [0, t1] The second step of the solution procedure works as in Section 2.2.2.

The Hamiltonian associated with the old technology used from 0 to t1 is:

Ha
1 = −e−ρt (ln(Xa(Aa

1 − 1)) − βaP ) + λa
2(αa

1Aa
1X

a(t) + αbAbXb(t)),

with αb, Ab and Xb(t) given. This optimal control problem has the same first-order conditions

as the problem corresponding to the new technology i.e., (35) to (37) with menu “1” replacing

menu “2”. Obviously, the transversality condition is different than (38). Instead, one has to

use the initial stock of pollution at date 0, and some continuity properties. Allowing for those,

one gets

λa
1 =

e−ρtβa

ρ
+ ca

1 , (42)

where ca
1 is

ca
1 = −e−ρT βa

ρ
(43)

and was computed from λa
1(t−1 ) = λa

2(t+1 ). Using (42) and (43) jointly yields

λa
1(t) =

βa

ρ

(
e−ρt − e−ρT

)
. (44)

The solution paths for the stock of pollution, production input and the resulting optimal

Hamiltonian value at the switching date t1 are then successively computed as:

P (t) = − 1
βa

ln
(
e−ρt − e−ρT

)
+ αbAbZ(t) + p̂, (45)

Xa(t) =
1

αa
1A

a
1

· ρ

βa
· 1
1 − e−ρ(T−t)

(46)

Ha,∗
1 (P1, t1) = e−ρt1

(
1 − Qa

1 + ρt1 + βap̂ + βaαbAb

(
Xb(t1)

ρ
+ Z(t1)

))

− βa

ρ
αbAbXb(t1)e−ρT , (47)

where Z(t) is the same integral of Xb(t) but calculated for the period when the first technology

is used as
∫ t

0

Xb(t)dt (so, Z(0) = 0). We denote Qa
1 = ln(ρ) − ln(αa

AAa
Aβa) + ln (Aa

1 − 1); a
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16 BOUCEKKINE, KRAWCZYK, VALLÉE

constant determined by an initial condition on P (0) is p̂ :

p̂ = P0 +
1
βa

ln
(
1 − e−ρT

)
.

Using the definitions of p̃, p̂, and P1 jointly leads to p̂ = p̃ and so

P1(t) = P0 +
1
βa

ln
(

1 − e−ρT

e−ρt1 − e−ρT

)
+ αbAbZ(t1).

3.2.4. Existence of optimal t1 It is now possible to derive the optimality condition with

respect to the switching time t1, an interior optimum would arise if and only if

H2 − H1 = 0

This means

e−ρt1

(
1 − Qa

2 + ρt1 + βap̃ + βaαbAb

(
Xb(t1)

ρ
+ Z(t1)

))
− βa

ρ
αbAbXb(t1)e−ρT

−e−ρt1

(
1 − Qa

1 + ρt1 + βap̂ + βaαbAb

(
Xb(t1)

ρ
+ Z(t1)

))
− βa

ρ
αbAbXb(t1)e−ρT = 0,

and leads us to the same condition as in the one country case:

e−ρt1 (Qa
1 − Qa

2) = 0.

Therefore, the unique Nash equilibrium here obtained generates a case in which each country

plays “selfish” i.e., independently of what the other country is doing.

3.3. Discussion

The above result may be found surprising. To explain it, we first formulate a corollary based

of the comparison of (44) to (39).

Corollary 4. The pollution shadow price λ(t) is independent of the technological menu of

either country.

So, as in Corollary 2, we observe that solving the “trade-off” optimization problem (32)-(34)

has led us to input strategies that “compensate” the damage done by pollution so that the
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shadow price of the latter depends on the running time only, and not on a technological regime.

Hence, the trade-offs in the Nash equilibrium are similar to those faced by an isolated country.

As said in the above corollary, the marginal pollution cost is independent of whether the

stock of pollution has increased by the action of other player. For any production profile of

country b, the stock of pollution increases by αa
i Aa

i , if country a rises its production input by

one unit. In equilibrium, each country’s contribution to the stock of pollution rises by ρ/βk

multiplied by an increasing time-dependent weight and this is how each country “manages”

the growing pollution stock.

We notice that Corollary 3 is also applicable to the two-country context and, in particular,

the conditions (NA) and (IA) determine whether a country adopts a new technology

immediately or never.

Nonetheless, one would think that the willingness to adopt a new technology should be

different in the two-country case. This could be because the other player also contributes to

the total stock of pollution, which should induce some strategic interaction to the game. We

propose the following framework to analyze this issue now.

We have assumed in our calculations that player b follows a corner regime i.e., either chooses

the new technology immediately or never. That it is: αb(t) = αb and Ab(t) = Ab, for all t.

Now, we consider a game with αb(t), Ab(t) possibly varying in time. By construction, if the

coefficients vary, they are piecewise constant with one discontinuity point, say t′, which would

be the technology adoption date by country b. Denoting by Z(t) an indefinite integral of

function αb(t)Ab(t)Xb(t) (instead of just Xb(t), as before) we would obtain the optimality

condition for an interior switching time of country a that would show the one-sided limits of

αb(t), Ab(t), Xb(t) and Z(t) to the left and to the right of the switching point of country a,

t1. We could prove that all these terms would vanish because these functions are piecewise

constant... unless t1 is also the switching date of the country b. This problem was studied as

a special case in [14] whose findings are summarized in Section 3.4.
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18 BOUCEKKINE, KRAWCZYK, VALLÉE

However, in a non-cooperative game, studied in this section, the general result is that each

country plays “selfishly” i.e., independently of what the strategy of the other country is.

Of course, our result relies on the simple model that allowed us to obtain an analytical

characterization of the solutions. However, we believe that our model and results capture recent

behavior of some countries. Clean technologies are often rejected by countries which typically

put forward the resulting fall in production (and thus in consumption) as the reason. In terms

of our model, such countries are not willing to switch to cleaner technology because they are

able to rise consumption under the old technology to “compensate” the disutility caused by

increasing pollution. A parallel explanation is that the resulting relative fall in consumption

would be valued much higher than the subsequent relative gain in pollution control. Typically,

those countries are insensitive to the fact that other countries (even neighboring countries with

common resources) have or have not chosen to adopt (partially or totally) cleaner technologies,

which is predicted by our model. The reverse holds too.

In such a context, a question arises whether a cooperative (or “efficient”) solution exists.

Our model can deliver some simple conclusions also in this respect, see Section 4. However,

we first comment on a leader-follower game.

3.4. A leader-follower game

In [14] the two-country game was modeled as a leader-follower problem. We refer to that paper

for the solution derivations. Here, we summarize the findings.

Corollary 5. In a two-country open-loop Stackelberg game of technology adoption, the

pollution shadow prices are independent of the technological menu of either country.

This conclusion leads to a set of sufficient conditions for technology adoption that are

identical with (IA) and (NA). The leader will play “selfishly”, whatever the behavior and

characteristics of the follower and so will play the follower.
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It appears that in technology adoption games modeled as trade-off problems, cooperation

may be the only way to prevent agents’ selfish decisions. We examine this issue in the next

section.

4. An efficient solution

4.1. The model and solution

We assume that if the two countries adopt the new technology then they do it at the same time

and suppose that the planner defines a symmetric Pareto solution as “efficient”. The resulting

cooperative game is

max
Xa,Xb,t1

U c(Xa, P, t1) = (48)

∫ t1

0

(
ln (Xa(Aa

1 − 1)) + ln
(
Xb(Ab

1 − 1)
) − (βa + βb)P

)
e−ρtdt

+
∫ T

t1

(
ln (Xa(Aa

2 − 1)) + ln
(
Xb(Ab

2 − 1)
) − (βa + βb)P

)
e−ρtdt

subject to :

Ṗ = αa
2A

a
2Xa(t) + αb

2A
b
2X

b(t), if t ≥ t1, (49)

Ṗ = αa
1A

a
1Xa(t) + αb

1A
b
1X

b(t), if t < t1 (50)

where P0 given and P (T ) free. We shall solve the above problem starting from [t1, T ] as in

the previous cases. Again, we will skip the intermediate easy but cumbersome algebra.

Control on [t1, T ]. The Hamiltonian corresponding to the new technology regime is

H2 = −e−ρt
(
ln(Xa(Aa

2 − 1)) + ln(Xb(Ab
2 − 1)) − (βa + βb)P

)
+ λ2(αa

2Aa
2X

a(t) + αb
2A

b
2X

b(t))
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and the corresponding first-order conditions are:

λ2α
a
2A

a
2 =

e−ρt

Xa
(51)

λ2α
b
2A

b
2 =

e−ρt

Xb
(52)

λ̇2 = −e−ρt(βa + βa) (53)

Ṗ = α2A
a
2X

a + αb
2A

b
2X

b . (54)

This canonical system of equations can be solved using the usual transversality condition and

the pollution level at t1, P (t1). Consequently, we obtain the following solution path of the

co-state variable

λ2 =
(βa + βb)

ρ
(e−ρt − e−ρT ).

The corresponding paths for pollution, production inputs and the optimal value of Hamiltonian

at t1 follow:

P =
−2

(βa + βb)
ln

(
e−ρt − e−ρT

)
+ p̃,

Xa(t) =
1

αa
2A

a
2

· ρ

βa + βb
· 1
1 − e−ρ(T−t)

Xb(t) =
1

αb
2A

b
2

· ρ

βa + βb
· 1
1 − e−ρ(T−t)

,

H∗
2 (P1, t1) = e−ρt1

(
2 − Q2 + 2ρt1 + (βa + βb)p̃

)
where Q2 = ln

(
ρ

αa
2Aa

2β
a

)
+ ln

(
ρ

αb
2A

b
2β

b

)
+ ln(Aa

2 − 1) + ln(Ab
2 − 1). A constant given by

the initial condition P (t1) is p̃:

p̃ = P1 +
2

(βa + βb)
ln

(
e−ρt1 − e−ρT

)
.

Control on [0, t1]. The Hamiltonian corresponding to the first technology regime is

H1 = −e−ρt
(
ln(Xa(Aa

1 − 1)) + ln(Xb(Ab
1 − 1)) − (βa + βb)P

)
+λ2(αa

1A
a
2Xa(t) + αb

1A
b
1X

b(t)),
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and the resulting optimality conditions are the same as the previous ones, after allowing for

the correct technological parameters.

The continuity condition: λ1(t−1 ) = λ2(t+1 ), allows us to calibrate the optimal path of the

co-state variable as follows:

λ1 =
(βa + βb)

ρ
(e−ρt − e−ρT ).

The resulting pollution path, production inputs paths and the Hamiltonian value at t1 are

P (t) =
−2

(βa + βb)
ln

(
e−ρt − e−ρT

)
+ p̂,

Xa(t) =
1

αa
2Aa

2

· ρ

βa + βb
· 1
1 − e−ρ(T−t)

Xb(t) =
1

αb
2A

b
2

· ρ

βa + βb
· 1
1 − e−ρ(T−t)

,

H∗
1 (P1, t1) = e−ρt1

(
2 − Q1 + 2ρt1 + (βa + βb)p̃

)

where Q1 = ln
(

ρ

αa
1Aa

1β
a

)
+ ln

(
ρ

αb
1A

b
1β

b

)
+ ln((Aa

1 − 1)) + ln(
(
Ab

1 − 1
)b

); as before, p̂ is a

constant determined by P (0). After some more algebra, one gets:

P1(t) = P0 +
2

βa + βb
ln

(
1 − e−ρT

e−ρt1 − e−ρT

)
.

Existence of t1. An interior optimizer t1 has to satisfy the following condition:

H2 − H1 =

e−ρt1
(
2 − Q2 + 2ρt1 + (βa + βb)p̃

) − e−ρt1
(
2 − Q1 + 2ρt1 + (βa + βb)p̃

)
= 0;

it leads us to the same condition as before

e−ρt1 (Q1 − Q2) = 0.

Again, there is no rationale to adopt (jointly) the new technology at an interior date. It is

optimal to immediately start using it if Q1 < Q2 or infinitely postpone, if Q1 > Q2.
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This prompts us to expand Q1 > Q2 and study the inequality

(αa
2Aa

2)(α
b
2A

b
2)

(αa
1Aa

1)(α
b
1A

b
1)

≷ (Aa
2 − 1)(Ab − 1)

(Aa
1 − 1)(Ab

1 − 1)
. (55)

We notice (55) looks more complicated than (NA) and (IA) and promises a meaningful analysis

of the technology adoption process in a coalition of two cooperating countries.

4.2. Discussion

We are particularly interested in the identification of cases where cooperation changes the

decision of a country regarding the technology adoption.

We known from Corollary 3 that a country alone, say a, will not adopt the new technology

if and only if
αa

2A
a
2

(Aa
2 − 1)

>
αa

1Aa
1

(Aa
1 − 1)

.

However, under cooperation with country b, country a will start using the technology if

αa
2A

a
2

(Aa
2 − 1)

αb
2A

b
2

(Ab
2 − 1)

<
αa

1Aa
1

(Aa
1 − 1)

αb
1A

b
1

(Ab
1 − 1)

. (56)

Therefore, country a will adopt the new technology under cooperation if country b’s “new”

technology compensates the unfavorable trade-off that a faces, if it acts on its own.

We can rewrite (56) to better examine the difference between the cooperative solution and

(IA), which we quote from page 11 as
αa

2Aa
2

(Aa
2 − 1)

<
αa

1Aa
1

(Aa
1 − 1)

:

αa
2A

a
2

(Aa
2 − 1)

<

αa
1Aa

1
(Aa

1−1)
αb

1Ab
1

(Ab
1−1)

αb
2Ab

2
(Ab

2−1)

⇒ αa
2A

a
2

(Aa
2 − 1)

<

(
αb

1A
b
1

(Ab
1 − 1)

(Ab
2 − 1)

αb
2A

b
2

)
αa

1Aa
1

(Aa
1 − 1)

.

If country b implemented the new technology then

αb
1A

b
1

(Ab
1 − 1)

(Ab
2 − 1)

αb
2A

b
2

� 1. (57)

Therefore it is easier for country a to satisfy (56) than (IA).

Cooperation schemes may involve some transfers between countries. Our framework allows

implicitly for this phenomenon. In considering (56)-(56), we have seen that country a, which is
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initially reluctant to adopt the new technology, is willing to do so under cooperation, because

it will then benefit from the transfers from the partner country.

On the other hand, country b, which alone would have switched to relatively less efficient

technologies (with respect to the cooperative solution), would not accept to do so if it had to

support the burden of cooperation with a markedly lagging country, and would only switch to

the new technology if the menu allowed it to pay for this burden, see (57).

Of course, this reasoning is relevant for cases of heterogenous technological achievements, for

example when we deal with a developing and a developed country. However, it is also relevant

for the North-North relations since the development of clean technologies is on the top of the

R&D priorities of all Northern countries. But while it is quite natural to call for technological

transfers from North to South, it is more difficult to do so with respect to Western democracies.

R&D is costly for all countries, and if an advanced countrya does not have access to the most

efficient clean technologies, it is typically because it did not invest in the related specific R&D

or had no incentive to acquire them. In such a case, technology transfers make little sense.

5. Concluding Remarks

In this paper, we model economic performance vs. environmental efficiency trade-offs. For that

purpose we use a canonical two-stage optimal-control problem embedded in a game-theoretic

structure. We focus on a short-time horizon perspective to make the trade-offs sharper.

Our main result is that, unless cooperating, the countries play selfishly. Having a “dirty” or

“clean” neighbor does not affect a country’s own decision.

The cooperation problem is difficult as it implies that a “very” good technology is available.

Such a technology would have to “compensate” the losses the country, which would have

adopted the technology on its own, would incur to convince the neighbor reluctant to implement

it on its own. This suggests the future of international agreements and protocols, like Kyoto, is

certainly not obvious. If “very” good technologies do not exist and hence cooperative solutions
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are not implementable, then the countries will adopt the “only” good technologies one by

one, if this is optimal for them. The recent Canadian decision of withdrawing from the Kyoto

protocol is an illustration of our model predictions. We believe that while our set-up is quite

canonical, our results display a degree of reality.

Improvements to our model are obviously possible and include more economic controls

(like R&D and pollution abatement policies). An introduction of explicit pollution (state)

constraints would help generate internal switching times.∗ Unfortunately, such model

extensions damage the analytical solution characterization. Henceforth, our current and further

research involves generation of parameter specific outcomes.
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