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CURRENT TRENDS

Src: eurostat

+27% growth in 
annual energy 
inflation in 
Europe (Jan 
2022)
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POSITIVE FEEDBACK LOOP
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The more you ship

The cheaper it gets



BUT…

Makes it challenging to meet demand



STORAGE

Decouples supply and demand

Allows
¡Reliability 
¡Flexibility
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SOLAR AND STORAGE ARE IN THE NEWS…
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BUT THERE IS MORE…



https://www.ev-volumes.com





THREE PRAGMATIC ISSUES
System cost is going down, but still expensive ($10,000’s)

­How much to buy? (Sizing)
­How to place it? (Placement)
­When to charge and discharge the EV/home store? (Operation)
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SIZING

Tesla Preliminary 
Calculator

NREL ReOpt

https://www.tesla.com/energy/design
https://www.tesla.com/energy/design
https://reopt.nrel.gov/tool


OUR APPROACH

Data-driven
Finds most economical combination to achieve a 

quality of service target:

 loss-of-load probability (LOLP)
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Practical
Uses limited historical 

load and solar 
irradiance data

Robust
Confidence in meeting 
the loss of load target 
despite future being 

unknown



DATA
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Grid
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SYSTEM MODEL
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LOLP probability that Pdir(t) + Pd(t) < D(t)

Operating policy Decide Pc(t), Pd(t)



PERFORMANCE TARGET
Target
­ The system should meet most of the load, most of the time
­ The probability that the system meets over     fraction of the load 
over any fixed length period should be lower bounded by  
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COUPLING
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6

Sizing Operation
Placement
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IDEA: SIMULATION OF OPERATION FOR EACH SIZE
Input: trace pair <Sj,Dj>, target, operating policy

Method: 
­ For a given B and C, simulate the process of power flowing through the system
­ Search for cheapest B and C that meet target LOLP
­ Tradeoff between B and C (why?)

Output: <B, C> pair
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ALGORITHM

Subsample PV/load traces of length T

● Computer (B,C) Pareto frontier for each subsample

● Chebyshev bound for robustness



SINGLE-ROOF SIZING ALGORITHM

• Start from max PV

• Find minimal battery

• Decrease PV allocation by one 

unit

• Repeat; find a Pareto Frontier



SINGLE-ROOF SIZING ALGORITHM

• Repeat for all subsamples

• Variability due to seasonality



SINGLE-ROOF SIZING ALGORITHM





MULTI-ROOF SIZING ALGORITHM

Subsample PV/load traces of length T

Minimal cost sizing tuples for each subsample

Multivariate Chebyshev bound for robustness



MIN-COST FINDING



CHEBYSHEV BOUND



ROBUSTNESS



IMPACT OF EVS

Depends on how long they’re present at home and charging style 
­ If working from home, they’re present longer



OUR SOLUTION FOR POST COVID EV TRACES

Typical commuter

Hybrid

Typical WFH



EV CHARGING APPROACHES



Impact of WFH on the design

• Essential to consider commuting patterns
• Increase in WFH leads to cheaper and more efficient systems (approx. 30% cost decrease)



Potential of bidirectional EVs

• With 2 WFH days per week, storage is not needed in some cases
• Adding more WFH days does not significantly change the microgrid design requirements 
• Heavily depends on location, individual consumption patterns,…





PLACEMENT









CONCLUSIONS

Solar, storage, and EVs are here to stay

Sizing, operation, and placement are challenging research problems

Our algorithms provide data-driven, robust solutions



TOOL



TESLA BLINKED!
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