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Abstract. We use a three-dimensional Gerchberg-Saxton algorithm [G. Shabtay,
Opt. Commun. 226, 33 (2003)] to calculate the Fourier-space representation of
physically realizable light beams with arbitrarily shaped three-dimensional intensity
distributions. From this representation we extract a phase-hologram pattern that
allows us to create such light beams experimentally. We show several examples of
experimentally shaped light beams.

PACS numbers: 41.85.Ct Beam shaping, beam splitting , 41.85.Ew Beam profile,
beam intensity , 42.40.Eq Holographic optical elements; holographic gratings , 42.40.Jv
Computer-generated holograms
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1. Introduction

A monochromatic light beam propagating in free space is a three-dimensional (3D) field

and its intensity distribution forms 3D patterns. At the same time, the field cross-

section in any one transverse plane completely determines the field everywhere else.

This dependency of the entire beam on its cross-section in a single plane forms the basis

of beam propagation methods (for example [1]). It also restricts the possible 3D shapes

a monochromatic light beam’s intensity can take.

Many methods allow shaping of light beams in 2D, ranging from passing the beam

through a shaped aperture to algorithms for calculating phase-hologram patterns that

shape the beam in a subsequent plane (for example [2]). Shaping light beams into non-

trivial but restricted 3D shapes is possible by utilising phenomena such as the Talbot

effect [3, 4] or spiral-type beams [5, 6]. It is also possible to shape a light beam into

3D configurations of bright spots [7], whereby the spots can be shaped individually [8];

these techniques are important in the field of holographic optical tweezers. 3D beam

shaping into arbitrary shapes has been demonstrated using computationally intensive

direct search methods‡ [9], but continues to be a challenge.

A recent algorithm [10] finds beams whose shape is an approximation within

physically realisable limits to any arbitrary 3D target shape. We apply this algorithm

to calculate examples of light beams shaped in 3D. From the beams’ Fourier-space

representations we calculate phase-only hologram patterns that allow us to create the

beams experimentally.

This paper is organised as follows. Section 2 reviews the Gerchberg-Saxton (GS)

algorithm [2], which allows light shaping in one plane and forms the basis of what is to

follow. Section 3 discusses the 3D generalisation of the GS algorithm [10] that we use to

calculate shaped light beams. Some of the details of our implementation of the 3DGS

algorithm can be found in section 4. Finally, section 5 describes our experiment for the

generation of shaped light.

2. Gerchberg-Saxton algorithm

The Gerchberg-Saxton (GS) algorithm [2] is an iterative method originally developed

for recovering the phase of an electron or light beam from its intensity distributions

in two transverse planes. It can also be applied to shape a light beam, specifically to

calculate the phase pattern which light at one plane would require to form an almost

diffraction-limited approximation to any desired intensity pattern at a second plane. As

the phase pattern required in the first plane can be imprinted onto the light beam with

a phase hologram, this allows two-dimensional (2D) holographic light shaping. If the

requirements in the two planes cannot be met simultaneously within what is allowed

by the laws of diffraction, the GS algorithm finds a useful compromise to reconcile

‡ Direct search methods allow shaping not only of the light intensity, to which we are restricted here,
but also of the phase. They are therefore more versatile than the technique we discuss here.
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these conflicting requirements [11]. For numerical simplicity, the second plane is usually

chosen to be the far field of the first plane; mathematically, the fields in the two planes

are then Fourier transforms of each other. Here we restrict ourselves to this case.

We write the intensity distribution of the unshaped light beam in the first plane

– the hologram plane – as IH and the target intensity distribution in the Fourier plane

as IT. Both IH and IT are functions of x and y, which are stored in the computer as

2D arrays of real-valued numbers. The light fields in the two planes are represented by

2D arrays of complex numbers, un in the hologram plane and ũn in the Fourier plane;

the subscript n indicates the iteration number. The initial phase distribution in the

hologram plane, ϕH
0 , is set to any arbitrary distribution, often uniform, i.e.

ϕH
0 ≡ 0. (1)

One iteration of the algorithm, which calculates an improved phase distribution in

the hologram plane, ϕH
n , from the previously calculated phase distribution, ϕH

n−1, then

progresses as follows:

uH
n =

√
IH exp

(
iϕH

n−1

)
. (2)

ϕT
n = arg

(
FFT

(
uH

n

))
(3)

uT
n =

√
IT exp

(
iϕT

n

)
(4)

ϕH
n = arg

(
FFT−1

(
uT

n

))
(5)

Equation (2) calculates the initial field in the hologram plane, from which equation

(3) then calculates the phase distribution in the target plane, ϕT
n . It uses a Fast

Fourier transform (FFT), or more generally any discrete Fourier transform. Equation

(4) combines this phase distribution in the target plane with the target intensity, IT,

giving the field uT
n , from which equation (5) then calculates the corresponding phase

distribution in the hologram plane, ϕH
n . Over a number of iterations, the actual intensity

in the target plane, In = |uT
n |2, converges to an almost diffraction-limited approximation

of the desired intensity there, IT; ϕH
n is the corresponding phase-hologram pattern needed

to produce this field in the target plane.

3. Gerchberg-Saxton algorithm in three dimensions

The fields in the two planes in the GS algorithm can also be seen as a field in a real-space

plane (x, y) and its k-space (kx, ky) representation. This allowed Shabtay [10] to adapt

the GS algorithm to 3D: instead of dealing with fields in two planes, the algorithm deals

with fields in two volumes. One field is a 3D real-space representation of the part of

the beam that is to be shaped, the other is its 3D k-space representation, which needs

to be consistent with the beam’s wavenumber spectrum. The two fields are 3D Fourier-

transform pairs (figure 1). Note that the 2D Gerchberg-Saxton algorithm usually shapes

light in the Fourier plane, while the real-space plane contains restrictions such as the

intensity profile of the unshaped beam, whereas the 3D GS algorithm shapes light in

the real-space volume while the Fourier volume contains the physical constraints.
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Figure 1. Schematic representation of a monochromatic light beam in real space
(left) and k space (right). In k space, a monochromatic light beam is restricted to
the surface of a hemisphere of radius k0 = 2π/λ. A projection of the phase on this
hemisphere into a plane (see section 5.1) provides a phase-hologram pattern suitable
for beam shaping.

As discussed in the introduction, the field in a single plane completely describes a

monochromatic light beam. This is reflected by the fact that the k-space representation

of such a beam is confined to a surface. In monochromatic light of wavelength λ, the

wave-vector component in the direction of propagation, kz, is related to the values of kx

and ky through the equation

k2
0 = k2

x + k2
y + k2

z , (6)

where k0 = 2π/λ. This forms a sphere of radius k0 in 3D k space – an Ewald sphere [10].

We consider here light moving in the positive z direction only, hence the wave vectors

are limited to the half of the sphere with kz > 0 (figure 1).

We have written a C++ implementation of the 3D GS algorithm. Figure 2 shows

examples of light shaped using this program. The algorithm can clearly produce

intensity distributions in which the target shapes can be recognized. When, like in

figure 2, the intensity is shown inverted, the intensity distributions sometimes look like

some form of three-dimensional expressionist charcoal drawings.

4. Details of our implementation of the 3D Gerchberg-Saxton algorithm

In this section we explore some of the details of the implementation of the algorithm.

We use the error [12]

εn =

√√√√∑
x,y,z |

√
In −

√
IT|2∑

x,y,z IT

(7)

to quantify the similarity between the target intensity distribution, IT(x, y, z), and the

intensity distribution the algorithm produces after n iterations, In(x, y, z).
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Figure 2. Examples of 3D light intensities shaped by the 3D Gerchberg-Saxton
algorithm. High intensities are shown dark. Each light beam is shown from two
directions; the propagation direction of the beam is indicated by a red arrow (the
three smaller views look into the beam). In the case of the Bordeaux-bottle beam, two
corresponding views of the target intensity distribution are also shown. The beams
were calculated for a k-space cone angle α = 90◦ (see figure 5).

4.1. Thickness of k-space sphere

A purely monochromatic beam restricts the allowed k-space elements to a spherical

surface. In our numerical simulations 3D k space is discretised, and it is not immediately

obvious how to represent the spherical surface that corresponds to a monochromatic light

beam in this discrete space. At the same time, the beam’s real-space representation is

restricted to a cuboid volume of finite size, which implies that the light’s wavelength

cannot be represented exactly.

In an effort to understand this better we investigate here one aspect associated

with the discrete nature of a light beam whose 3D light field and k-space distribution

are represented on cubic grids of points. Figure 3 shows the radial cross section of

the discrete-k-space representation of a simulated monochromatic light beam. This k-

space representation was calculated by taking the three-dimensional discrete Fourier

transform of the beam’s spatial representation over a discrete 3D volume. The

spatial representation was calculated using a standard beam-propagation algorithm§
[1], starting with the field cross-section of a Gaussian beam close to the beam waist and

propagating it into 63 further, equally-spaced, planes. In addition to a peak centered at

k0 = 2π/λ, the radial profile of the resulting discrete-k-space-hemisphere distributions

§ Instead of using the quadratic approximation used in ref. [1], we use the exact relationship, equation
(6), to calculate kz from kx and ky. We also use an absorbing boundary [13] (which is later removed) to
avoid effects due to the periodic boundary conditions implicit in the discrete-Fourier-transform-based
beam-propagation algorithm.
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Figure 3. Example of the representation of a monochromatic light beam in discrete
k space. The plot shows the powers in all discrete-k-space elements with 0.9k0 ≤ kr ≤
1.1k0 (where k0 = 2π/λ) as a function of the radial wave number, kr, calculated
for a tightly focussed monochromatic Gaussian light beam. The discrete k-space
representation was found by numerically calculating the light beam on a 64× 64× 64
grid representing a cube of side length 25λ (where λ is the wavelength of the light),
which was then 3D-Fourier-transformed. Whereas in continuous k space all the power
would be at kr = k0, in discrete k space the power is distributed within a few k-space-
element widths of k0. Because the edges of the represented cube act like hard-edged
slit apertures in the x, y and z directions, the light field’s k-space representation is that
of continuous k-space, convolved with sinc functions in the kx, ky and kz directions
(it is, of course, also discrete). As the beam used in this example propagates mainly
in the positive z direction, the radial k-space structure of the power density broadly
reflects the sinc2-type structure in the kz direction.

has other distinct features. We believe these additional features to be due to the beam

being represented only in a cube and the represented beam therefore having a top-hat

profile in the x, y and z directions, which in turn leads to the k-space distribution

being widened, more precisely being convolved with a sinc function in the kx, ky and kz

directions.

In our simulations we use perhaps the simplest form of the k-space hemisphere: for

each represented pair of kx and ky values, the power in the discrete kz value closest to

(k2
0 − k2

x − k2
y)

1/2 is set to one, that of all the other kz values to zero. Such a k-space

hemisphere is exactly one element thick in the kz direction; the radial power profile would

be a top hat of width 1 element. This is clearly different from the arguably ‘natural’

representation shown in figure 3, but it works well enough to produce good experimental

results (see below) and simplifies the extraction of phase-hologram patterns (see section

5.1). However, it is clearly an aspect of our implementation that could benefit from
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Figure 4. Effect of the thickness of the k-space hemisphere. The points show the
error, ε, corresponding to light beams shaped with the 3D GS algorithm using k-space
hemispheres of various Gaussian half-thicknesses, τ . More precisely, the power in each
k-space element with kz > 0 is set according to its distance from the origin according
to the equation p(k) = exp(−(k − k0)2/(2τ2)), where k0 = 2π/λ is the radius of the
hemisphere; the power of k-space elements with kz ≤ 0 is set to zero. The light
beams corresponding to some of the points are also shown, each from two different
perspectives; the propagation direction (red arrow) is always in the vertical direction.
Also shown are the target shape (top inset on the right) and the light beam resulting
from a single-element top-hat radial profile (lower inset on the right), which has an
error comparable to a τ = 0.0041, which for the grid size used (128 × 128 × 128)
corresponds to a Gaussian full width of approximately 1 element.

further investigation.

It is worth discussing very briefly the case of thicker hemispheres. Figure 4 shows

results from the 3D GS algorithm with a k-space hemisphere with a Gaussian radial

power profile of variable width. It can be seen that an increase in the thickness of the

hemisphere leads to lower errors. The reason for this is that a thicker k-space hemisphere

implies more non-zero k-space elements whose phase the algorithm can alter. Physically,

a k-space hemisphere of non-zero thickness corresponds to the presence of a range of

wavelengths‖ and therefore polychromatic light; the represented field is a snapshot of

the light field at one particular instant. At this instant the plane-wave components

of all colours have the relative phase given in the k-space representation; as different

colours correspond to different frequencies, different colours change their relative phase

immediately afterwards. The time evolution of the instantaneous field in polychromatic

light can be controlled by an extended GS algorithm that incorporates a time dimension

‖ Note that the k-space components with kr 6= k0 are not evanescent waves as they correspond to
purely real values of kz. By definition, all points in k space represent travelling waves. To represent
evanescent waves, the Fourier transform has to be combined with a Laplace transform.
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Figure 5. Geometry of the cone of light-ray directions and its effect on 3D light
shaping. The cone of light angles is determined by the geometry of the setup, in the
simplest case the aperture radius of the last lens in the system and its distance from
the position where the light is to be shaped (a). The cone angle, α, is also the angle
of the k-space-sphere segment (b). The larger the cone angle, the smaller the error
ε between the desired and calculated intensity structure (c). The errors in c were
calculated for the example of a shell-shaped target intensity, shown in the box in the
top right corner. Also shown are the calculated intensity structures corresponding to
some of the data points.

added to the real-space representation of the field and a frequency dimension added to

the k-space representation. Experimental realisation requires that the relative phase

between the plane-wave components of all colours can be controlled. This can be seen

as an extension of the shaping of the time-resolved field of short pulses, which has

previously been demonstrated experimentally [14].

4.2. Influence of numerical aperture

Any experimenter realizing 3D light shaping at some point has to make an implicit

or explicit choice about the range of directions of the plane-wave components that

superpose in the target volume. This is a choice of the numerical aperture (NA) of the

system and it depends on the solid angle spanned by the directions of light rays reaching

the target volume. Usually the light-ray directions form a cone of angle α (figure 5a),

which in the simplest case is determined by the size of the aperture of the last optical

component and the distance between that component and the space where the beam is

to be shaped. As each k-space point corresponds to parallel light rays with a specific

direction, which is given by the gradient of the phase, such a cone of light-ray directions

restricts non-zero k-space values to the section of the k-space hemisphere that lies within

an angle α/2 of the kz axis (figure 5b).

Figure 5c demonstrates the effect of varying the angular size of the k-space-sphere

segment on the resulting intensity distributions. It can be seen that a larger cone



Experimental 3D light shaping 9

beam
expander

laser

a

b

k

SL
M

CCD

f1

f1

L1

ap
er

tu
re

sh
ap

ed
 b

ea
m

≈f2

L2
L3

≈f3

z

+1

-1
0

P

camera

f1 f1

f1

L1
P

C

ap
er

tu
re

f1

f2

f2 f3

f3z

P

ky

kz

k-space
hemisphere

SL
M

Figure 6. (a) Schematic of the experimental set-up. A collimated HeNe-laser beam
illuminates a phase-only spatial light modulator (SLM) [15] before passing through a
Fourier lens (L1). The SLM displays a phase pattern that shapes the light beam in a
volume around the SLM’s Fourier plane. An additional blazed phase grating displayed
on the SLM directs the shaped beam into the grating’s +1st diffraction order; the
other orders – caused by imperfections in the SLM’s phase response – are filtered out
by a Fourier-plane aperture. The volume in which the light beam is shaped is shown
in blue. A CCD, with the help of imaging lenses L2 and L3, records the intensity in a
number of planes across this volume. In our experiment f1 = 600mm, f2 = 1350mm
and f3 = 200mm. (b) Geometry of the correspondence between position on the SLM
and on the k-space hemisphere. Each point light source P in the front focal plane of
the Fourier lens L1 gives rise to a uniform plane wave whose k vector is parallel to the
line from P to C, the center of L1.

angle allows the possibility of generating a 3D light intensity that resembles the target

intensity more closely. The reason for this is that the larger range of values of kx, ky

and kz in such a beam widens the range of structure sizes that can be present in the

beam.

4.3. Simulation parameters and procedure

Our particular implementation of the 3D GS algorithm, running on a dual 2.5 GHz

Pentium Xeon desktop computer, takes several days to converge using a resolution of

256× 256× 256. For this reason we initially test the generation of new shapes using a

lower resolution of 64 × 64 × 64. In addition to each iteration taking less time at this

lower resolution, the algorithm requires fewer iterations to converge.

5. Experiment

We have created examples of light beams with a shaped 3D intensity structure

experimentally, specifically some of the beams shown in figure 2. The experimental

setup is outlined in figure 6a. It creates the shaped beam around the Fourier plane of
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a phase hologram, which was calculated from the k-space representation of the beam

found by the 3D GS algorithm (see section 5.1).

Our hologram patterns were calculated for beams whose k-space representations

have a relatively large cone angle of α = 90◦. With our phase hologram, which has a

height of approximately 20mm, this cone angle could be realised by using a Fourier lens

with a very short focal length of approximately 10mm; this would create the shaped

beam in a volume of approximate size 0.1mm × 0.1mm × 0.1mm. However, in our

experiment we use a Fourier lens with a much longer focal length of f1 = 600mm, which

corresponds to a significantly smaller cone angle of α ≈ 2◦. Our setup can be seen as

a combination of a f = 10mm Fourier lens that shapes the intensity in a cubic target

volume of side length ≈ 0.1mm, and two more lenses that image this target volume: a

lens with f = −10mm in the same plane as the 10mm Fourier lens, and the 600mm

Fourier lens we actually use. Because of the imaging characteristics of this lens pair,

the image of the original target volume gets stretched to a size of approximately 6mm

× 6mm × 500mm.

In our experiment, an expanded beam from a HeNe laser was reflected off a

computer-controlled phase hologram in the form of a phase-only spatial light modulator

(SLM) [15]. To deal with imperfections in the SLM, a blazed diffraction grating was

added to the phase-hologram pattern. This resulted in the desired beam travelling in

the direction of the additional grating’s first diffraction order; imperfections in the phase

response of the SLM led to additional diffraction orders, which were filtered out by the

aperture in the hologram’s Fourier plane. We used a lens pair to image a plane at a

variable distance z behind the aperture onto a CCD. The transverse magnification was

slightly less than one. Intensity cross-sections corresponding to different planes taken

across the shaped volume were later combined into volume data, which were visualized

with bespoke 3D-viewer software based on the VolPack volume rendering library [16, 17].

5.1. Calculation of the phase-hologram pattern

The 3D GS algorithm finds phase values for the different points of a monochromatic

beam’s k-space hemisphere. Points on the k-space sphere correspond to infinite uniform

plane waves; the direction of the k vector is the direction of the phase-front normal.

Experimentally, a finite uniform plane wave can be created from a point light source in

the front focal plane of a lens, whereby the position of the point light source determines

the direction of the phase-front normal. Each point in a phase hologram that is placed in

the front focal plane of a lens therefore corresponds to a point on the k-space hemisphere

and controls its phase.

Figure 6b shows the geometry of the correspondence between points on the SLM

and on the k-space hemisphere. In order to calculate the exact position of the point

on the SLM that controls a given point on the k-space hemisphere, the point on the

hemisphere should be projected through the center of the lens into the SLM plane.

However, we find that a simpler parallel projection as indicated in figure 1, which gives
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Figure 7. Experimental results. Left: three different projections of the experimentally
recorded 3D intensity distribution of one period of braided bright lines (purple =
brightest, white = darkest). Like in figure 2, red arrows indicate the propagation
direction of the light beam. The intensity was collected over a volume of size ≈ 10mm
in the transverse directions and ≈ 590mm in the longitudinal direction. The top row
shows four (out of 60) experimentally recorded intensity cross-sections, which were
later combined in the computer into volume data. Centre: two projections of the 3D
intensity distribution over a volume of approximate size 10mm × 10mm × 510mm of
an experimentally generated light beam in the shape of a tree, together with modelled
results (boxed). Right: two projections of the shoulder region of a bottle-shaped
beam (different from the one shown in figure 2) over a volume of approximate size
10mm × 10mm × 320mm. Additional multimedia material includes Quicktime movies
showing animated rotation of the 3D intensity distributions measured for the braid
beam (1.2MByte), the tree beam (584KByte) and the bottle beam (1.3MByte).

a phase-hologram pattern that is flipped and distorted, works very well. The distortions

are small for points representing plane waves travelling at small angles with respect to

the z direction, as is the case in our experiment. We calculate the phase-hologram

pattern as the phase of the sum over all k-space elements with the same values of kx

and ky. In the limit of an infinitely thin k-space hemisphere, this parallel projection

is equivalent to calculating the phase cross-section of the 2D Fourier transform of the

shaped beam in the Fourier plane (i.e. at z = 0).

5.2. Results

Figure 7 shows some of our experimental results. The experimental patterns do not

exactly match those calculated by the 3D GS algorithm. We believe this is mostly due

to residual astigmatism in the optical system, imperfections in the SLM and imperfect

alignment of the intensity data from different planes to 3D volume data. In any case,

the results clearly demonstrate that the experiment works.
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6. Conclusions

We have used an algorithm first described in reference [10] to calculate physically

realizable light beams with a shaped intensity distribution, and we have created

examples of such light beams in an experiment using a phase hologram calculated from

the beam’s Fourier-space representation. We are currently considering the use of such

light beams in optical tweezers and atom optics.
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