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Simulated holographic three-dimensional intensity shaping of evanescent wave fields
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The size of bright structures in travelling-wave light fields is limited by diffrac-
tion. This in turn limits a number of technologies, for example optical trap-
ping. One way to beat the diffraction limit is to use evanescent waves instead
of travelling waves. Here we apply a holographic algorithm, direct search, to
the shaping of complex evanescent-wave fields. We simulate 3D intensity shap-
ing of evanescent-wave fields using this approach, and we investigate some of
its limitations.
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1. Introduction

Optical tweezers trap microscopic objects using the light
field’s intensity maxima or minima (depending on the
objects’ refractive index). The smallest possible size of
high-visibility extrema, and the smallest possible separa-
tion between them, is given by the diffraction limit [1].
This in turn limits the resolution of optical trapping.

One way to overcome this resolution limit, that is
to achieve superresolution, is to use superpositions of
evanescent waves, whose transverse wavelength can be
significantly shorter than that of travelling waves with
the same optical frequency. Superpositions of small num-
bers of evanescent waves have previously been used to
create structured evanescent-wave fields for optical trap-
ping [2] and sorting [3]. Another method to create struc-
tured evanescent-wave fields, which is less closely related
to the work described in this paper, consists of geo-
metrically imaging an absorptive object (using travelling
waves, so the image contains no superresolution struc-
ture) and then turning the intensity distribution of this
image into the intensity distribution of an evanescent-
wave field [4]. All of the work described above has been
very successful and has had unexpected side benefits such
as the ability to manipulate very large numbers of objects
simultaneously [2].

Note that there are other types of superresolution that
have been applied to optical trapping. The first type
uses the fact that materials with a negative refractive
index can in principle perform perfect imaging [5] – in-
cluding restoration of evanescent waves –, and has al-
ready been demonstrated experimentally in a specialized
optical-trapping setup [6]. The second type, travelling-
wave superresolution holography, is based on the possibil-
ity of smaller detail in a light beam’s darker region; this
has recently been investigated theoretically [7]. The third
type, manipulation of the polarization near the focus in
order to sharpen it, has been used for the manipulation

of molecules [8].

Here we apply a holographic algorithm to the shap-
ing of superpositions of arbitrarily many evanescent
plane waves. We demonstrate numerically that this ap-
proach can be used to shape the intensity distribution of
evanescent-wave superpositions in three dimensions (3D);
we confirm that these superpositions can possess sub-
wavelength structure in the transverse direction; and we
encounter a contraint, which we relate to previous theo-
retical predictions. We believe our results are applicable
to a number of fields, for example optical trapping using
evanescent waves [2] and the excitation of specific surface
plasmons in standard Kretschmann attenuated total re-
flection (ATR) geometry [9].

Note that there is much earlier work on photographic
evanescent-wave holography, which is concerned with the
recording and reconstruction of holograms of evanescent-
wave fields using interference with a reference beam [10–
12]. There is also recent work on digital holographic
microscopy, which digitally records holograms that are
interference patterns of travelling and evanescent waves
and then reconstructs these in the computer, allowing
the visualization of superresolution structure [13]. Here,
we extend this work to the case of computer-generated
holograms for evanescent waves.

This paper is organized as follows. In section 2 we
discuss a possible setup for the production of evanescent
plane waves and superpositions thereof. Section 3 out-
lines our application of the direct-search (DS) algorithm
to 3D shaping of superpositions of such evanescent-plane-
wave superpositions. Section 4 presents computer simu-
lations that demonstrate 3D shaping of the intensity of
evanescent-wave fields using this approach and discusses
some limitations. We conclude in section 5.
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2. Creation of superpositions of evanescent
waves

Our application of the direct-search algorithm to
evanescent-wave shaping (section 3) is written with a spe-
cific experimental design in mind (but it can be applied
more generally). Here we outline two possible designs for
the controlled creation of superpositions of evanescent
plane waves.
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Fig. 1. (Color online) Geometry of the creation of evanes-
cent waves by total internal reflection of a prism surface.
A plane wave of vacuum wavelength λ is incident on a
prism surface with angle of incidence α. The transverse
wavelength along the prism surface, Λ, is given by the
equation Λ sin(α) = λ/n.

Fig. 1 shows the geometry of a plane wave entering a
glass prism and hitting its top side, where total internal
reflection (TIR) is taking place. The wavelength outside
the prism (in air) is λ, that inside the prism glass of re-
fractive index n is λ/n. We choose our coordinate system
such that the TIR surface is in the z = 0 plane and that
the plane wave in the prism is travelling perpendicular to
the y direction. Above the prism, the evanescent waves
have the form of plane waves, namely

u(x, y, z) = exp(i(kxx+ kzz)), (1)

where k2
x + k2

z = (2π/λ)2 (in our coordinate system
ky = 0). However, in evanescent waves kz is purely imag-
inary, and the wave therefore decays exponentially in the
z direction.

The smallest transverse wavelength that can be
achieved in evanescent waves using TIR as described
above is λ/n, which corresponds to grazing incidence
at the TIR surface. Small transverse structures can
be achieved with small transverse wavelengths, which in
turn can be realized using high-n glass. One example
of a suitable glass is Schott SF11, which has a refrac-
tive index of n > 1.7 for a wide range of wavelengths,
and which is relatively cheap as it is frequently used in
femtosecond-laser correction.

A more versatile configuration consists of a glass hemi-
sphere (Fig. 2), which can be illuminated from any direc-
tion (ky 6= 0). The hemisphere’s flat side acts as the

A

Fig. 2. (Color online) Glass hemisphere configuration
creating an evanescent wave field in the centre of the
flat surface. Illuminating the sphere with a point light
source, A, which can be for example the end of a single-
mode fiber, can create a collimated beam inside the glass,
which in turn can create an evanescent plane wave above
the centre of the hemisphere’s flat side. Illuminating with
two or more coherent point light sources at different po-
sitions can create a superposition of evanescent waves.

TIR surface. We propose to illuminate the hemisphere
with a number of fiber ends, each effectively acting as a
point light source. If a fiber end is positioned at the cor-
rect distance from the glass hemisphere, the curvature of
the glass collimates the beam from the fiber inside the
glass. The correct distance can be calculated from the
lens maker’s formula, which states that a spherical glass
surface of refractive index n and radius of curvature r
has a focal length

f =
r

n− 1
. (2)

Therefore each fiber end has to be positioned this dis-
tance f from the spherical surface to create a plane wave
inside the glass hemisphere.

The different plane waves inside the glass hemisphere
are then incident on the TIR surface, the hemisphere’s
flat side, from different directions, giving rise to differ-
ent evanescent plane waves on the other side of the TIR
surface. We limit ourselves to the case of all evanescent
plane waves having the same global polarization, so they
interfere.

The other ends of the illumination fibers are collected
into a bundle and illuminated by a laser beam after it
has interacted with a phase-only spatial light modulator
(SLM). Specifically, the SLM is imaged onto the end of
the fiber bundle, which means the phase at the positions
of the input fiber ends – and therefore also at the output
fiber ends – can be controlled directly. The intensity
at the input fiber ends, and therefore also the intensity
of the corresponding evanescent plane-wave components,
is given by the intensity distribution of the illuminating
laser beam.

3. Application of the direct-search (DS) algo-
rithm to evanescent-wave shaping

With a view to potential applications in optical trapping,
we aim to create superpositions of N evanescent plane-
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wave components that have bright spots at M trap po-
sitions with coordinates (xj , yj , zj) (j = 1, ...,M). We
restrict ourselves to changing the phases of the evanes-
cent plane waves, all of which are of the same intensity
(generalization to different intensities is straightforward;
a travelling-wave example can be found in Ref. [14]). We
characterize the ith plane-wave component by its trans-
verse wave-number values, kx,i and ky,i. The correspond-
ing plane wave can then be written in the form

ui(x, y, z) = exp(i(kx,ix+ ky,iy + kz,iz)) (3)
= exp(i(kx,ix+ ky,iy)) exp(−βiz), (4)

where

kz,i =
√

(2π/λ)2 − k2
x,i − k2

y,i (5)

and βi = −ikz,i describes the exponential decay in the z
direction. We then want to optimize the phases φi of the
plane-wave amplitudes in the superposition

v(x, y, z) =
N∑

i=1

exp(iφi)ui(x, y, z) (6)

such that the intensities at the trap positions (xj , yj , zj),

Ij = |v(xj , yj , zj)|2, (7)

are as bright and as equal as possible.
Direct search [14] is a brute-force approach to solving

such “inverse” problems [15]. We apply it as follows. Ini-
tially, we set the phases of all beam amplitudes to random
values. We then calculate the quality of the resulting su-
perposition in terms of the intensity at the trap positions
according to the definition

Q =
∑

j

ln(Ij + 1). (8)

This definition is chosen to have two properties: 1) In-
creasing any one of the intensities Ij increases Q. 2)
Transferring intensity from a brighter to a less bright
trap position also increases Q. Now we make a random
change to the superposition: we pick a random compo-
nent and change the phase of its amplitude ai to a ran-
dom value. We calculate the quality of the altered super-
position, again according to the definition (8), but calling
this new quality Q′. If the new superposition is better
than the old one, that is if Q′ > Q, we accept the random
change; otherwise we discard it. We repeat the process of
randomly picking one component, randomly altering its
phase, and keeping only changes that lead to improve-
ments until the quality does not change any longer for
several hundred iterations.

4. Results

We have tested this approach to evanescent-wave shaping
for various target distributions. Our results demonstrate
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Fig. 3. (Color online) Example of the transverse wave
numbers k-space distribution of evanescent plane-wave
components used in our simulation. The dots represent
evanescent-plane-wave components. They all lie outside
the shaded area in the centre, which represents travelling
waves.

that our approach works, but they also demonstrate its
limits.

The simulations in this section were performed for spe-
cific choices of additional parameters. All our simulations
were performed for λ = 632.8nm. We also made a choice
on the specific arrangement of optical fibers around the
glass sphere: our model represents an arrangement of
optical fibers that are equally spaced in their projection
angles into the xz and yz planes, whereby travelling-wave
components are not allowed. An example of the corre-
sponding k-space distribution is shown in Fig. 3.
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Fig. 4. (Color online) Shaping of the transverse intensity
distribution of an evanescent-wave superposition, here di-
rectly above the prism surface (z = 0). “+” symbols in-
dicate positions where the intensity was maximized. The
k-space components are those shown in Fig. 3.

Figure 4 demonstrates shaping of the transverse inten-
sity distribution of the evanescent-wave field immediately
above the hemisphere’s surface (z = 0). It also demon-
strates that the intensity features can be sub-wavelength
in size.

The algorithm can also shape the transverse intensity
in planes a finite distance above the hemisphere’s surface.
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Fig. 5. (Color online) Transverse (a) and longitudinal (b)
intensity cross-section after optimization of the intensity
at two trap positions (“+” signs). The trap positions are
300nm above the prism surface. The k-space distribution
is that shown in Fig. 3.

Fig. 5 shows the result of optimization of the intensity at
two points a finite distance above the prism surface. Fig.
5(a) shows the transverse (x, y) intensity cross-section
away from the prism surface. The corresponding (x, z)
cross-section (Fig. 5(b)) demonstrates that, unlike in sim-
ilar algorithms used for shaping travelling waves, simply
optimising the intensity at a number of points does not
produce 3D intensity maxima.
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Fig. 6. (Color online) Intensity resulting from an attempt
to force the creation of two 3D intensity maxima. The
algorithm tries to maximize the intensity at the trap po-
sitions, which are indicated by “+” signs (green in the
online version); it tries to minimize the intensity at the
points marked with “-” signs (red in the online version).
k-space distribution as in Fig. 3.

Figure 6 shows the results of attempting to force the
creation of 3D intensity maxima. In addition to trap
positions where the intensity is maximised, we modified
the algorithm to minimise the intensity on a set of points
on spheres around the maximum-intensity trap positions,
simply by extending the definition of Q to include a term
such that an increase of the intensity at any one of L “no-
trap” positions (xj , yj , zj), where j = M + 1...M + L,
leads to a decrease of the quality:

Q =
M∑

j=1

ln(Ij + 1)−
M+L∑

j=M+1

ln(Ij + 1). (9)

Interestingly, we did not succeed in creating 3D intensity
maxima. This might well be due to the fact that we
restrict ourselves to superpositions of evanescent plane
waves that all have the same intensity. However, it might
also be – fully or in part – due to a more fundamental
reason related to Earnshaw’s theorem, as outlined in the
following.

Earnshaw’s theorem states that it is impossible to have
a field maximum or minimum in a volume of empty space
for static electromagnetic fields. The theorem does not
apply as such for electromagnetic waves, which indeed
can be focussed in empty space. This is due to the wave
nature of light and its interference properties. When con-
sidering sub-wavelength 3D focussing, as we do here, the
volume of empty space where the maximum intensity is
to be achieved is much smaller that the wavelength of the
light. At this size scale the wave nature of light disap-
pears and Earnshaw’s theorem becomes more and more
applicable as the focussing volume is decreased [16, 17].
A more careful analysis [16, 17] translates this into a
decreased efficiency when focussing smaller and smaller
spots. This, in turn, is equivalent to low visibility of
the shaped spots, which lie in a relatively dark area sur-
rounded by a relatively bright area, as is typical for op-
tical super-resolution [7].
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Fig. 7. (Color online) Demonstration of intensity max-
ima away from the prism interface. The intensity was
maximized in two points, each marked with a “+”, on
the line x = y = 0. The intensity is shown in two planes
that both include the line: y = 0 (a), and x = 0 (b).
What appears to be a 3D maximum in (a) turns out to
be a saddle point in (b). The intensity was calculated for
a k-space distribution different from that shown in Fig.
3.

Finally, we address the commonly held belief that the
intensity of evanescent-wave fields can only ever fall off
in the longitudinal direction. Fig. 7 demonstrates that,
along a line in the transverse (z) direction, the inten-
sity can not only rise in the z direction, but it can also
go through one or more maxima. (Note, however, that
in 3D all of the intensity maxima along the line in the
z direction are saddle points.) Fig. 8 explains how an
out-of-phase superposition of exponential functions (such
as amplitudes of different evanescent waves) can have a
maximum; superpositions of more exponentials can have
more maxima.



5

1

2 z

u

u1

u1+u2

u2

3 4 5

-1

0

1

Fig. 8. Local maximum in the field, u, sum of two evanes-
cent waves, u1(z) = exp(−z) and u2(z) = − exp(−2z)
where z is the propagation distance (dimensionless
units).

5. Conclusions and future work

In this work, we have investigated the potential use
of evanescent-wave holography for optical micromanip-
ulation. Our results are useful not only for showing
that evanescent-wave intensities can be shaped in 3D,
but also for investigating the limitations of holographic
evanescent-wave shaping.

There are many ways in which our work can be ex-
tended. Firstly, for applications in optical trapping it
would be useful to calculate stiffness, resolution, and
efficiency (suitably defined) that can be achieved with
evanescent-wave traps.

Secondly, the direct-search algorithm could be applied
in many slightly different ways, and the different appli-
cations could be compared and contrasted. For example,
the algorithm could optimize the phases in a mixture of
evanescent and travelling waves, and it could be extended
to take into account polarization. It is also possible to
use a different algorithm altogether. The direct-search
algorithm could, for example, be extended to become a
simulated-annealing algorithm (see Ref. [18] for an ex-
planation and comparison of different algorithms applied
to travelling-wave intensity shaping), which is better at
finding the global maximum of the quality function (di-
rect search often only finds a local maximum).

Thirdly, other configurations or input constraints can
be investigated such as allowing the intensity of the
evanescent-plane-wave components to change. Our con-
figuration is restricted to producing evanescent waves
with transverse wavelengths ≥ λ/n. A way to cre-
ate evanescent-wave components with transverse wave-
lengths smaller than λ/n is the use of structured surfaces,
in the simplest case a grating. Such a structure could be
put on top of the prism/hemisphere, or it could simply
be used on its own. (If the structure is placed on top of
the prism, zero-order reflections are cut out). However,
each travelling plane wave illuminating such a structure

produces not a single evanescent plane wave, but a su-
perposition of evanescent plane waves. This clearly rep-
resents a slight complication, but one that could be taken
into account in the algorithm.
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