
O
pt

.
C
om

m
u
n
.
2
8
1
,
12

17
-1

22
1

(2
00

8)

Holographic shaping of generalized

self-reconstructing light beams

Laura C. Thomson and Johannes Courtial

Department of Physics & Astronomy, University of Glasgow, Glasgow G12 8QQ,
United Kingdom

Abstract

Bessel beams are an example of self-reconstructing (or self-healing) light beams.
This property is useful in optical tweezers. Here we modify the Curtis-Koss-Grier
algorithm [J. E. Curtis et al., Opt. Commun. 207, 169 (2002)], which is frequently
used in optical tweezers, to utilize the Fourier-space properties of such light beams
for the construction of arbitrary self-reconstructing light beams. We demonstrate
the performance of this algorithm using numerical simulations.
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1 Introduction

Due to their self-reconstructing character, Bessel beams are interesting for
optical trapping of 3-dimensional structures [1,2]. On propagation, the shadow
of any object placed in the beam splits into different parts, which move away
from the shadow core. Therefore the part of the beam directly behind the
object is reconstructed to what it would have been without the obstruction
[3–5].

In addition to being self-reconstructing, Bessel beams are propagation-invariant
over a relatively long distance. Unlike Gaussian beams, they do not possess a
focus but a bright line or cylinder centred on the beam axis. It is also possible
to shape the transverse cross-section of non-diffracting beams into regular [6],
arbitrary [7], or random [8] patterns, and the full three-dimensional intensity
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Fig. 1. Example of self-reconstruction of a light beam behind a particle of radius r
(thick light blue line). The light beam consists of two plane waves (red), respectively
travelling at angles of ±α with respect to the self-reconstruction direction, d. The
particle creates a shadow in each plane wave; their overlap forms the core shadow
(dark blue) of length l. In other words, a distance l behind the particle all plane
waves are overlapping again, hence the beam is reconstructed.

distribution into the corresponding elongated pattern. (References [6–8] used
computer-controlled phase holograms in the form of spatial light modulators
(SLMs).) As the three-dimensional intensity distribution defines the trapping
potential – for dielectric particles, the bright regions define the shape of the
trap –, a Bessel beam corresponds to a very elongated trap. This is useful for
optical guiding, but not usually desirable in optical trapping.

Superpositions of Bessel beams are as self-reconstructing as their individual
Bessel-beam components, and they can change on propagation. Simple su-
perpositions of Bessel beams have already been used to create very specific,
non-propagation-invariant, trap configurations such as conveyor belts [2].

Here we extend the concept of self-reconstructing light beams. We restrict our-
selves to monochromatic beams of wavelength λ; generalization to polychro-
matic light beams is straightforward. In Bessel beams, all plane-wave compo-
nents in the beam are inclined with respect to the propagation direction by
the same angle [9]; in generalized self-reconstructing beams, all plane-wave
components are inclined with respect to the direction d in which the beam is
propagation-invariant by a minimum angle, α. As before, any shadow due to
an obstruction in the beam centre moves outwards on propagation in the d
direction, allowing the outside of the beam to reconstruct the centre (figure
1). Such beams can be propagation-invariant, but they do not have to be.
Specifically, they can contain many intensity maxima in arbitrary 3D posi-
tions, each of which tightly constrained in all directions and therefore well
suited for many optical-trapping applications.

The Fourier-space representation of a monochromatic light beam is zero ev-
erywhere apart from the surface of a sphere of radius k = 2π/λ (the Ewald
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sphere). Different points on the sphere correspond to plane-wave components
travelling in different directions. The absence of light travelling within an angle
α of the d direction in generalized self-reconstructing beams corresponds to a
dark disc on the Ewald sphere, centred around the point corresponding to the d
direction. We exploit this Fourier-space property of self-reconstructing beams
by using a well-known beam-shaping algorithm to reconcile approximately the
desired intensity structure of the beam with the Fourier-space constraints of
generalized self-reconstructing beams, thereby creating an algorithm for shap-
ing generalized self-reconstructing beams. By creating other dark areas in the
plane-wave spectrum we can create beams that self-reconstructing in a number
of directions simultaneously.

2 Algorithm for shaping generalised self-reconstructing beams

We use a modification of the Curtis-Koss-Grier algorithm [10], an iterative
algorithm that allows the creation of arbitrary 3D arrangements of bright
spots. Many details are not important here and can be found in Ref. [10].

What is important for our purposes is that the algorithm allows the power
distribution on the Ewald sphere to be specified: the distribution of the illu-
mination intensity in the hologram plane is a parallel projection of the power
distribution on the Ewald sphere into the kx-ky plane, and this illumination-
intensity distribution is directly specified (see figure 2). By specifying the beam
illuminating the hologram to have dark discs, we can therefore make any beam
produced by the hologram self-reconstructing. As can be seen from figure 2,
the radius of the dark disc in the hologram illumination, ρ, is related to the
angle α through the equation

tanα =
ρ

f
, (1)

where f is the focal length of the Fourier lens (or the effective focal length of
any combination of lenses between the hologram and the Fourier plane).

3 Examples of shaped generalised self-reconstructing beams

We numerically demonstrate the self-reconstruction of light beams shaped
by our algorithm in a particularly simple situation: two traps positioned one
behind the other with a separation of variable distance ∆z (figure 2). In our
model, the first trap contains a particle whose effect on the beam is particularly
easy to model: a completely absorbing circular disc (variable radius r) in the
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Fig. 2. Schematic of part of a set-up for self-reconstructing Fourier holography. The
hologram directly defines the k-space structure of the beam behind the Fourier lens
(focal length f); a centred dark region of radius ρ in the hologram-illumination
intensity (red = bright, black = dark) defines a dark region in k space. The light
rays (red) are drawn for a point at the edge of the dark region. They represent light
rays inclined at the minimum inclination angle, α. Self reconstruction of beams
containing two traps, with a particle of radius r held in trap 1 and throwing a core
shadow of length l, are discussed in section 3.

transverse plane. The particle trapped in our model does not exhibit any
refraction effects, which can lead to optical binding [11]. We simulate wave-
optically the beam propagation behind the trapped particle – and therefore
the shadow cast by it – and investigate the effect the shadow has on the
formation of the second trap.

Figure 3 shows yz (x = 0) intensity cross-sections in a light beam with two
traps separated longitudinally. Different frames are calculated for different
particle radii, representing the light beam with respectively no obstruction;
an obstruction that throws a core shadow shorter than the trap separation;
and an obstruction with a core shadow that covers the position of trap 2. As
expected, in the first two cases trap 2 is fully (re)constructed; in the third case
it is not.

We investigate the transition of full reconstruction to virtually complete ex-
tinction in more detail. We define the critical radius, R, as the particle radius
for which the length of the particle’s shadow, l, equals the trap separation,
∆z. As the length l of the core shadow behind a particle of radius r is given
by the equation

tanα =
r

l
(2)

(see figure 1), the critical radius is given by

tanα =
R

∆z
. (3)
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Fig. 3. Intensity cross-sections in the yz (x = 0) plane as the radius, r, of a particle
trapped in trap 1 is varied. The particle radius is given in multiples of the critical
radius, R, which is 4.69µm for the trap separation we use here, ∆z = 8.25µm.
The particle is shown as a thick light blue line, its core shadow is shown in dark
blue. Cases 1 to 3 show the light beam respectively for particle radius 0, with
both traps fully developed; for non-zero, but less than the critical, particle radius,
with the second trap fully developed (r = 0.63R); and for a particle radius greater
than the critical radius, with the second trap lying in the core shadow and therefore
destroyed (r = 1.91R). Like all the other results shown in this section, this figure was
calculated for a hologram of size 20mm×20mm, which was uniformly illuminated
outside the dark disc of radius ρ = 6.25mm. We simulated this on a grid of 256×256
points for light of wavelength λ = 633nm; the effective focal length was f = 11mm
(which is representative of the Glasgow tweezers experiment [12]).

The three frames in figure 3 actually represent the cases r = 0, r < R, and
r > R.

Figure 4 shows the intensity at the position of trap 2, I2, plotted as a function
of r/R for constant values of ∆z and α. As the particle radius is increased
from 0 to the critical radius (0 < r/R < 1), the intensity in trap 2, I2, remains
approximately constant (with ripples of the same origin as those shown in
figure 3 in Ref. [9]); ray-optically, the shadow cast by the trapped particle
is shorter than the trap separation ∆z and hence the second trap is fully
reconstructed. As r/R is increased further (r/R > 1), the intensity in trap 2
begins to decrease; ray-optically, the trapped particle begins to cast a shadow
over the second trap, hence the second trap is not fully reconstructed.

We also investigate a situation in which the particle radius is fixed and the
trap separation ∆z is varied. Now there is a critical trap separation Z equal
to the length l of the shadow cast by the trapped particle, given by

tanα =
r

Z
. (4)

Figure 5 shows the intensity at the position of trap 2, I2, as a function of ∆z/Z.
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Fig. 4. Intensity in trap 2, I2, in a beam with a fixed trap separation, plotted as a
function of the particle radius, r, in multiples of the critical radius, R. yz intensity
cross-sections corresponding to points 1, 2 and 3 are shown in figure 3. Beam and
simulation parameters like in figure 3.
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Fig. 5. Intensity in trap 2, I2, plotted for beams with different trap separations, ∆z.
A particle of fixed radius r = 3µm is trapped in trap 1. ∆z is given in multiples
of the critical trap separation, Z; remaining beam and simulation parameters are
the same as in figure 3. yz intensity cross-sections corresponding to points 4, 5, and
6 are shown in figure 6. Note that the data points are more noisy than those in
figure 4; a new hologram had to be calculated for each data point in this graph (and
this involves iterative processes, which can arrive at completely different holograms
for only slightly different target intensity distributions), whereas all data points in
figure 4 were calculated for the same hologram.

As expected, I2 rises from close to zero to a near-constant value as trap 2 is
moved away from trap 1 and out of the shadow of the particle trapped there.
Figure 6 shows yz intensity cross sections corresponding to some of the data
points.
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Fig. 6. yz (x = 0) intensity cross-sections for the same particle radius r = 3µm, but
different trap separations ∆z, given in multiples of the critical trap separation, Z;
remaining beam and simulation parameters are as described in the caption of figure
3. Like in figure 3, the particle is shown as a thick light blue line, its core shadow
is shown in dark blue. The intensities in trap 2 corresponding to these frames are
shown in figure 5.
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Fig. 7. k-space distribution of a monochromatic light beam that is self-reconstructing
in the directions d1 to d4. In a monochromatic beam of wavelength λ, all light is
concentrated on a sphere of radius 2π/λ – the Ewald sphere. Dark spots around
directions di on the Ewald sphere make the light beam self-reconstructing in the
direction di, whereby the reconstruction distance behind an obstruction is given by
the angular radius of the dark spot, αi, and the radius of the obstruction.

4 Light beams that self-reconstruct in directions other than the
propagation direction

Here we briefly discuss a generalization of self-reconstructing beams that might
be useful for applications such as the trapping of photonic crystal struc-
tures [13].

It is possible to create light beams that are self-reconstructing in a direction
other than the propagation direction and even in multiple directions. A light
beam is self-reconstructing in any direction di around which its k-space rep-
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resentation is dark (Fig. 7). As before, the self-reconstruction distance in a
particular direction di is given by the angular radius αi of the corresponding
dark spot in k space, which is simply the minimum angle with which plane
waves are inclined with respect to the direction di. The length l of the core
shadow in the direction di corresponding to an obstruction of radius r can
then be calculated from equation (2) with α = αi.

This can be used to engineer light beams that are self-reconstructing in ar-
bitrarily many, arbitrarily chosen, directions, whereby the corresponding self-
reconstruction distances can be arbitrarily selected. As in section 2, all that is
required is to specify in the Curtis-Koss-Grier algorithm the intensity distri-
bution of the light beam illuminating the hologram to have dark spots of the
right size in the right places.

Future work should examine this idea in more detail. In this way it should,
for example, be possible to create a “light crystal” such that the light beam is
self-reconstructing in all directions between nearest neighbours, which could
perhaps be useful for optically assembling photonic crystals.

Summary and conclusions

Optical self-reconstruction (or self-healing) can be understood in terms of a
simple ray-optical argument. We have generalized this concept to beams that
are not necessarily non-diffracting, and to beams that are self-reconstructing
in more than one direction. We have developed an algorithm for shaping such
beams, and demonstrate it using a wave-optical simulation of a completely
absorbing particle trapped in such a beam.

We believe such generalized self-reconstructing light beams will be useful in
optical-tweezers experiment. Engineering the illumination in the hologram
plane could also open up new directions in research on optical binding.
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S. Chávez-Cerda, “Conical dynamics of Bessel beams,” Opt. Eng. 46, 078,001
(2007).

[6] J. A. Davis, D. M.
Cottrell, and E. Carcole, “Nondiffracting interference patterns generated with
programmable spatial light modulators,” Appl. Opt. 35, 599–602 (1996). URL
http://www.opticsinfobase.org/abstract.cfm?URI=ao-35-4-599.

[7] J. Courtial, G. Whyte, Z. Bouchal, and J. Wagner, “Iterative algorithms for
holographic shaping of non-
diffracting and self-imaging light beams,” Opt. Express 14, 2108–2116 (2006).
URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-6-2108.

[8] D. M. Cottrell, J. M. Craven, and J. A. Davis,
“Nondiffracting random intensity patterns,” Opt. Lett. 32, 298–300 (2007).
URL http://www.opticsinfobase.org/abstract.cfm?URI=ol-32-3-298.

[9] J. Durnin, J. J. J. Miceli, and J. H. Eberly, “Diffraction-free Beams,” Phys.
Rev. Lett. 58, 1499–1501 (1987).

[10] J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical
tweezers,” Opt. Commun. 207, 169–175 (2002).

[11] S. A. Tatarkova, A. E. Carruthers, and K. Dholakia, “One-Dimensional
Optically Bound Arrays of Microscopic Particles,” Phys. Rev. Lett. 89, 283,901
(2002). URL http://link.aps.org/abstract/PRL/v89/e283901.

[12] J. Leach, K. Wulff, G. Sinclair, P. Jordan, J. Courtial, L. Thomson,
G. Gibson, K. Karunwi, J. Cooper, Z. J. Laczik, and M. Padgett, “Interactive
approach to optical tweezers control,” Appl. Opt. 45, 897–903 (2006). URL
http://www.opticsinfobase.org/abstract.cfm?URI=ao-45-5-897.

[13] E. R. Dufresne and D. G. Grier, “Optical tweezer arrays and optical substrates
created with diffractive optics,” Rev. Scient. Instr. 69, 1974–1977 (1998). URL
http://link.aip.org/link/?RSI/69/1974/1.

9


