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Waves are superoscillatory where their local phase gradient exceeds the maximum wavenumber in their Fourier
spectrum. We consider the superoscillatory area fraction of random optical speckle patterns. This follows
from the joint probability density function of intensity and phase gradient for isotropic gaussian random wave
superpositions. Strikingly, this fraction is 1/3 when all the waves in the two-dimensional superposition have
the same wavenumber. The fraction is 1/5 for a disk spectrum. Although these superoscillations are weak
compared with optical fields with designed superoscillations, they are more stable on paraxial propagation. c©
2009 Optical Society of America

OCIS codes: 260.3160 (interference), 030.6140 (speckle), 050.4865 (optical vortices)

The spatial rate of change of a plane wave is determined
by its wavevector, which can be defined as the gradient of
its phase. Its direction and magnitude (wavenumber) are
unambiguous. The phase gradient of more complicated
wave fields can be used as a definition of local wavevec-
tor, which may be a complicated function of position.
Such is the case in superpositions of plane waves. The
modulus of phase gradient is sometimes smaller than the
superposition’s maximum wavenumber, and sometimes
bigger. This latter case has drawn much attention: at
such places, the phase changes more rapidly than the
constituent plane waves, hence the term ‘superoscilla-
tion’ [1]. Superoscillatory waves, which locally vary much
faster than their fastest Fourier component, have surpris-
ing and counterintuitive properties, and have recently
been studied in a variety of systems, particularly signal
processing, quantum mechanics and optics [2–5]. Quan-
tum mechanically, they fit into the general notion of weak
measurements [6], and applications in optical imaging
science have been suggested [7].

Our purpose here is to study some simple superoscil-
latory aspects of two-dimensional random waves, that
is, superpositions of plane waves whose direction (in a
plane) and phase are independent and uniformly distrib-
uted random variables. Such superpositions are a well-
established model for speckle patterns – scalar waves,
either optical [8] or acoustic [9], reflected or refracted
from random rough surfaces. In this case, the two dimen-
sions we consider are those of the plane transverse to the
overall propagation, and the waves are superoscillatory
in the sense that the transverse phase gradient is larger
than the maximum transverse wavenumber. These su-
perpositions are also used as a model for quantum wave-
functions in two-dimensional chaotic enclosures (‘chaotic
billiards’) [10, 11]; in particular, when the system is not
time-reversal symmetric (either due to absorption, open
channels or a magnetic field), the wavefunction is com-
plex.

A significant fraction of the area of a typical speckle
pattern, whose transverse wave spectrum is band-
limited, is superoscillatory. Specifically, a wave ψ =
ρ exp(iχ), dependent on planar position r = (x, y), with
intensity I = ρ2 and phase gradient ∇χ, is

superoscillatory where |∇χ|2 − k2
max > 0, (1)

where kmax is the maximum wavenumber in the trans-
verse superposition spectrum. This definition of super-
oscillation originated in a recent study of the relationship
between waves and rays in structured refractive materi-
als [12]. The purpose of this paper is to examine the the
areas where Eq. (1) is satisfied in random optical waves.

Optical vortices – the nodes of wave fields, where the
phase is undefined [13] – may be thought of as extremes
of superoscillation, since the phase gradient diverges as
I → 0. Clearly, the vortices lie in superoscillatory re-
gions. The configuration of vortices in random waves and
speckle patterns has been much studied [8, 14–16], and
the present work may be thought of as generalizing this
to all parts of the wave where Eq. (1) is satisfied.

The phase gradient ∇χ is also related to the current
density J = Imψ∗∇ψ = I∇χ. Therefore J and ∇χ are
parallel, but have different lengths; as will be demon-
strated, superoscillation tends to occur where I is small,
so the fluctuations in the distribution of |∇χ| are greater
than those for J = |J |.

The calculation of the superoscillatory fraction of a
random wave superposition will use gaussian statistics,
as usual in the study of speckle patterns [17], which ap-
plies in the limit of infinitely many independent ran-
dom plane waves. For isotropic random two-dimensional
waves, the complex fields ψ, ∂xψ and ∂yψ have indepen-
dent gaussian probability density functions, with vari-
ances 〈|ψ|2〉 = I0 (mean intensity), 〈|∂jψ|2〉 = 2I0k2,
where j = x, y and k2 is the second moment of the
power spectrum (which is circularly symmetric in k-
space), with well-defined kmax. A natural measure of the
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correlation length of the random field is k−1/2
2 .

We begin with the calculation of the joint probability
of intensity and current P (I, J), from its Fourier trans-
form,

P (I,J) =
1

(2π)3

∫
ds
∫

d2t exp(isI + it · J) (2)

×〈exp(−is|ψ|2 + 1
2t · (ψ∗∇ψ − ψ∇ψ∗))〉,

where 〈•〉 denotes the gaussian average. This aver-
age is straightforward to calculate: in the exponent, the
quadratic forms depending on s and t may be added
to those from the gaussian probability density, yielding
a complex six-dimensional quadratic form matrix with
determinant (2(1 + iI0s) + I2

0k2|t|2)2/I6
0k

4
2. The gaus-

sian average is the reciprocal square root of this deter-
minant, divided by the square root of the product of
the variances, (I6

0k
4
2/4)1/2. The integrals in s and t may

then be found using straightforward complex integration
techniques, and then the (equidistributed) direction of J
may be integrated. The final result is

P (I, J) =
J

II2
0k2

exp
(
− 1

2I0
(2I + J2/Ik2)

)
. (3)

Integrating over J gives the well-known distribution for
intensity, P (I) = exp(−I/I0)/I0, and integrating over
I gives the previously derived probability density for
J in two dimensions, P (J) = 2JK0(

√
2/k2J/I0)/I2

0k2

(cf. Ref. 9 Eq. (84), Ref. 11 Eq. (18)), where K0 is a
modified Bessel function.

Since J = I|∇χ|, the joint probability density function
for I and |∇χ| can be found by dividing by the jacobian
determinant, |∂(I, J)/∂(I, |∇χ|)| = I, which gives

P (I, |∇χ|) =
I|∇χ|
I2
0k2

exp
(
− I

I0
(1 + |∇χ|2/2k2)

)
. (4)

This probability distribution is plotted in Fig. 1. It shows
quantitatively a clear correlation between low intensi-
ties and high phase gradients (and vice versa) in ran-
dom waves, in line with common wisdom on superoscilla-
tion [12]. Integrating over I gives the probability density
function for |∇χ|:

P (|∇χ|) =
4k2|∇χ|

(2k2 + |∇χ|2)2
. (5)

This simple expression is one of the main results of this
Letter. The probability distribution of the phase gra-
dient is unbounded, with diverging variance. Since, for
gaussian random waves, area averages are equivalent to
ensemble averages [17], the area fraction f of the speckle
pattern which is superoscillatory is

f =
∫ ∞

kmax

d|∇χ|P (|∇χ|). (6)

The numerical value of the superoscillatory area frac-
tion f depends on the transverse spectrum, specifically

Fig. 1. (Color online) Contour plot of the joint proba-
bility density function P (I, |∇χ|) of Eq. (4). It is clearly
unbounded both in I and |∇χ|, although high values of
these are anticorrelated.

the relationship between kmax and k2. Mathematically,
the most natural spectrum to choose is monochromatic
waves in the plane. This corresponds to random wave
solutions of the Helmholtz equation ∇2ψ+ k2ψ = 0 (∇2

is the two-dimensional laplacian operator); for paraxial
beams it corresponds to nondiffracting speckle patterns:
the spectrum lies on a ring of radius k in transverse
Fourier space, and in this case k2 = k2 = k2

max. Putting
this into Eq. (6) gives fring = 1/3 : a third of a random
monochromatic two-dimensional wave superposition is
superoscillatory. A realization of such a random wave
field is shown in Fig. 2. Clearly, all of the vortices are in
the superoscillatory region.

It is instructive to compare the superoscillatory ar-
eas with the area of 1/3-lowest intensity, as in Fig. 2(b).
Although the areas are similar, the contour |∇χ| = k en-
closes a slightly different region from the intensity con-
tour, and their topologies are not the same. Superoscil-
latory regions are therefore subtly different from low-
intensity regions.

It is interesting to observe that, on dividing by exp(iχ),
the real part of the Helmholtz equation can be rewritten:

|∇χ|2 − k2 =
∇2ρ

ρ
. (7)

Therefore, for general monochromatic waves, sub-
and superoscillation is governed the laplacian of the
wave’s real amplitude. In particular, the superoscillatory
boundary contours are given by the nodal lines of ∇2ρ.

The superoscillatory fraction for other band-limited
isotropic spectra is easy to calculate. For instance, for
a top-hat spectrum (disk spectrum) with equal weight-
ing for all waves with wavenumber k < kmax, it is
easy to show that k2 = k2

max/2 [17]. The superoscil-
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(a) (b)

Fig. 2. (Color online) A random superposition of 100
two-dimensional plane waves with the same wavenum-
ber k. (a) Phase pattern (hues); (b) intensity pattern
(grayscale). The white contour denotes the line |∇χ| = k.
The suboscillatory region, occupying statistically 2/3 of
the area, is shaded with a dark filter in (a). Several phase
singularities can be seen in the superoscillatory region of
(a). The intensity contour enclosing the lowest 1/3 of
the intensity pattern is also shown in (b), in red. This is
close to the white superoscillation contour, but the two
are clearly different. The area plotted is (4π/k)2.

latory fraction here is then fdisk = 1/5. Interpolat-
ing between the two is the case of an annular spec-
trum, where kmax(1 − δ) ≤ k ≤ kmax, where δ is a
scaled thickness: δ = 1 is the disk spectrum, and the
limit δ → 0 is the monochromatic ring spectrum. For
the annular spectrum, k2 = k2

max(2 − 2δ + δ2)/2, and
fannulus = 1 − 4/(6 − 2δ + δ2), which smoothly interpo-
lates between the two limiting cases.

Of course, several familiar speckle spectra, such as a
gaussian distribution of k, are not band-limited, and so,
strictly speaking, cannot be superoscillatory. Speckle
fields that are considered in the paraxial regime (as is
customary) are one example: in the paraxial regime, all
transverse wavenumbers (even infinitely large ones) are
– again strictly speaking – infinitesimal compared to the
z-component of the full wavevector, so the transverse
wavenumbers in paraxial fields can be unbounded. On
the other hand, it is also possible that the transverse
wavenumberse are bounded, in which case our discussion
on superoscillations applies.

It is, of course, possible to study superoscillation in
volumes of three-dimensional wave fields, not subject to
the drawback of paraxiality (the fields relevant to Ref.
12). A natural choice would be superpositions of isotropi-
cally random monochromatic waves in three dimensions,
modelling, for example, (scalar) field modes of chaotic
cavities [10,16]. These calculations, generalized to D di-
mensions, appear in a follow-up paper [18].

The stability of transverse, highly superoscillatory
fields on paraxial propagation has been previously con-
sidered [3]: the superoscillations were found to propa-
gate towards the far field, but ultimately were suppressed
by suboscillatory regions. The naturally-occurring super-

oscillations considered here have far smaller phase gradi-
ents than those in Ref. 3, but their area fraction is statis-
tically constant on propagation. In the extreme case of
the transversely monochromatic, diffraction-free speckle
patterns, the superoscillatory regions are themselves in-
variant on propagation.

We are grateful to Michael Berry, John Hannay, Kevin
O’Holleran and Miles Padgett for discussions. MRD and
JC are supported by the Royal Society of London.
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