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Standard and non-standard metarefraction
with confocal lenslet arrays
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Department of Physics & Astronomy, Faculty of Physical Sciences, University of
Glasgow, Glasgow G12 8QQ, UK

Abstract

A recent paper demonstrated that two lenslet arrays with focal lengths f1 and f2,
separated by f1 + f2, change the direction of transmitted light rays approximately
like the interface between isotropic media with refractive indices n1 and n2, where
n1/n2 = −f1/f2 [J. Courtial, New J. Phys. 10, 083033 (2008)]. This is true if light
passes through corresponding lenslets, that is lenslets that share an optical axis.
Light can also pass through different combinations of non-corresponding lenslets.
Such light can be either absorbed or allowed to form “ghost images”; either way, it
leads to a limitation of the field of view of confocal lenslet arrays. This paper de-
scribes, qualitatively and quantitatively, a number of such field-of-view limitations.

Key words: confocal lenslet arrays, METATOYs, field of view, geometrical optics,
optical materials
PACS: 42.15.-i

1 Introduction

A recent paper [1] introduced the idea of using a sheet comprising two lenslet
(or microlens) arrays to mimic refraction. The two lenslet arrays have to share
the same focal plane: they are confocal. The basis of this idea is that the equa-
tions describing the light-ray-direction change due to confocal lenslet arrays
(CLAs) and refraction due to refractive-index interfaces are very similar: in
the former, the angles α1 and α2 with which a light ray respectively enters
and exits a CLA sheet (Fig. 1) are related through the equation

tan α1 = η tan α2, (1)
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where

η = −f2

f1
(2)

is minus the ratio of the focal lengths of the two lenslet arrays [1]; in the latter,
the angle of incidence in a medium with refractive index n1, α1, and the angle
of refraction in a medium with refractive index n2, α2, are related through
Snell’s law,

sin α1 =
n2

n1
sin α2. (3)

For small angles, when sin α1,2 ≈ tan α1,2, the equation describing the light-
ray-direction change due to CLAs (Eq. (1)) is the same as Snell’s law, whereby

η =
n2

n1
. (4)

For larger angles, Eq. (1) is different from Snell’s law; it does, for example,
not lead to total internal reflection. However, it could be argued that the
light-ray-direction change according to Eq. (1) is better than refraction due
to Snell’s law, in the sense that it has the following remarkable imaging prop-
erty: a planar CLA sheet images all space with transverse magnification one
and longitudinal magnification η [1]. (In contrast, a planar refractive-index
interface described by Snell’s law images all of space only if n1 = ±n2; in
all other cases, it images only approximately.) Fig. 2 shows an object seen
through CLA sheets for different values of η, demonstrating the apparently
different distance of the object behind the CLA sheets due to the longitudinal
magnification, η.

CLA sheets are examples of METATOYs (metamaterials for light rays) [2].
Other METATOYs include generalizations of CLAs [3] and combinations of
Dove-prism sheets [4,5,6]. The name stems from a number of similarities with
metamaterials [7], for example structural similarities (both metamaterials and
METATOYs are arrays of small elements) and ray-optical negative refraction
[1,5], that is, negative refraction without negative group velocity [8] or amplifi-
cation of evanescent waves required for the sub-wavelength imaging properties
of superlenses [9] and hyperlenses [10,11]. Following Ref. [2], the light-ray-
direction change due to passage through METATOYs is called metarefrac-
tion; considering the close similarity between Eqs. (1) and (3), this seems
appropriate enough. α1 is called the angle of incidence and α2 the angle of
metarefraction.

The properties of CLA sheets as discussed above apply only to light that passes
through corresponding lenslets, that is two lenslets sharing the same optical
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Fig. 1. Light rays passing through confocal-lenslet-array (CLA) sheets. (a) The CLA
sheet is in the xy plane; the figure shows a yz projection. (b) A lenslet in the first
(left) array focusses all incident light rays with angle of incidence α1 to a point in the
focal plane F . Of those rays, those that pass through the corresponding lenslet in the
second (right) array (that is, the lenslet in the second array with the same optical
axis) leave it with an angle of metarefraction α2, where f1 tanα1 = −f2 tanα2. The
focal lengths of the lenslets in the first and second array are f1 and f2, respectively.
Optional absorbers (thick black horizontal lines) can remove light rays that would
otherwise pass through a non-corresponding lenslet in the second array. (Adapted
from Ref. [1].)

axis (like the ones in Fig. 1(b)). Here this is called standard metarefraction.
Light that enters through one lenslet and exits through a lenslet other than
the corresponding lenslet is re-directed differently. This is called non-standard
metarefraction.

The possibility of non-standard metarefraction was already noticed in Ref.
[1], and in all the simulations in Ref. [1] light that would otherwise have
undergone non-standard metarefraction was filtered out with appropriately
placed absorbers, leading to a darkening of part of the view (see Fig. 2). If
such light is not filtered out, it leads to “ghost images”: additional images an
object seen through a CLA sheet (Fig. 3).

The work on CLA sheets is closely related to “integral” photography, a method
for taking (and viewing) three-dimensional (3D) photos [13]. In integral pho-
tography, the second lenslet array views a photo of the intensity distribution
created by the first lenslet array, instead of viewing it directly, as in the case
of CLA sheets. Integral photography can also be seen as the basis of lentic-
ular printing, the technique used to create pictures (for example postcards)
that provide two or more different images when seen from different angles, or
even 3D views [14]. It is also the basis of many 3D displays [15,16]. A setup
that is essentially the same as the camera in integral photography can also
be used in a completely different way: instead of aiming for 3D imaging, such
“multiaperture imaging” [17] is used in combination with digital processing of
the image obtained in the focal plane and concentrates on the small aperture
of the individual lenses, which can include faster optics and lower aberrations
[18]. The digital processing can also lead to superresolution [19]. In these con-
texts, the field of view of lenslet arrays has been researched; a good review
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Fig. 2. Chess piece seen through CLA sheets with different focal-length ratios
η = −f2/f1 and, for comparison, seen directly (inset labelled η = 1). The chess
piece is in the same position in all frames, but the longitudinal imaging properties
of each sheet make the chess piece’s distance behind the sheet appear stretched
by a factor η. The brightness of the view is clearly different for different values
of η. In a few frames, most notably those corresponding to η = −2, η = −1 and
η = 4, the brightness even changes across the view. The reduction in brightness is
due to light that would have undergone non-standard metarefraction being filtered
out by absorbers (see Fig. 1(b)). The frames in this figure are detailed ray-tracing
simulations through the structure of CLA sheets, each comprising 2 × 200 × 200
lenslets, created using the freely-available software POV-ray [12]. The geometry of
the lenslet arrays is described in more detail in Ref. [1]. A movie (MPEG-4, 396
KB) of the view through CLA sheets with the value of η changing can be found in
the supporting online material. (Adapted from Ref. [1].)

of methods to deal with “parasitic images” (the equivalent of what is called
here “ghost images”) and corrections to other lens aberrations can be found
in Ref. [20].

The CLAs discussed here, in which the focal lengths of the two lenslet arrays
are different [1], are a generalization of basic CLAs in which both lenslet
arrays have the same focal length. The latter have been used in pseudoscopic
(depth-inverting) imaging systems [21,22,23] (in the case of Ref. [23] in the
form of arrays of graded-index lenses). Applications include correcting the
pseudoscopic images provided by integral photography [22].

This paper is aimed at providing a more detailed analysis of the conditions un-
der which standard and non-standard metarefraction occur in CLAs in which
the lenslet arrays have different focal lengths, and how non-standard metare-
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(a) (b)

Fig. 3. Simulated view of a chess piece through CLA sheets with (a) and without
(b) absorbers that remove light that would otherwise undergo non-standard metare-
fraction (see Fig. 1(b)). In all other aspects, the CLA sheets are identical. In the
former case, the brightness is reduced; in the latter case, additional images (“ghost
images”) of the chess piece appear. The CLA sheets shown here were calculated
for η = 0.5. A movie (MPEG-4, 372 KB) of the view through CLA sheets with no
absorbers as the value of η is varied is contained in the supporting online material.

fraction manifests itself visually. This leads to a qualitative and quantitative
understanding of the field-of-view limitation in such CLA sheets.

2 Standard and non-standard metarefraction for different angles
of incidence and metarefraction

In this section light-ray propagation through one particular pair of corre-
sponding lenslets in CLA sheets is considered. The argument assumes that
the lenslets have the same, circular, aperture and that corresponding lenslets
share the same optical axis.

2.1 Normal incidence

The simplest case is arguably that of normal incidence and normal metare-
fraction, that is angle of incidence α1 = 0 and angle of metarefraction α2 = 0.
This is shown in Fig. 4 for different η ranges. (Fig. 4 also shows which com-
binations of focal lengths correspond to which η range.) Representative light
rays undergoing standard metarefraction are shown as solid arrows. They en-
ter and exit the lenslets with angles α1 = α2 = 0. Such light rays are restricted
to the solid filled areas.

It is possible that light rays exit the second lenslet with α2 = 0, but that
they did not enter through the corresponding first lenslet. Here this is called
non-standard metarefraction of the first kind. In Fig. 4, light rays undergoing
non-standard metarefraction of the first kind are drawn as dashed arrows, and
the area to which they are restricted is striped.
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Fig. 4. Ray paths with angle of incidence α1 = 0 and angle of metarefraction α2 = 0,
undergoing standard and non-standard metarefraction through CLA sheets. The
different diagrams represent the different η ranges, namely η < −1, −1 < η < 0,
0 < η < 1, and 1 < η. These η ranges respectively correspond to the focal-length
combinations [1] f1 > 0, f2 > 0, f1 < f2 (η < −1); f1 > 0, f2 > 0, f1 > f2

(−1 < η < 0); f1 > 0, f2 < 0 (0 < η < 1); and f1 < 0, f2 > 0 (1 < η). Rep-
resentative light rays for various kinds of metarefraction are shown: those entering
and exiting through corresponding lenslets (standard metarefraction) are shown as
solid arrows; those entering through the first lenslet with angle α1 = 0 but miss-
ing the corresponding second lenslet (non-standard metarefraction) are shown as
dotted arrows; and those exiting through the second lenslet with angle α2 = 0 but
which have not passed through the corresponding first lenslet (a different kind of
non-standard metarefraction) are shown as dashed arrows. Light rays undergoing
these three different kinds of metarefraction travel in different areas, respectively
filled solid (standard metarefraction), dotted (wrong second lenslet), and striped
(wrong first lenslet).

It is also possible that light rays enter through the first lenslet with angle
α1 = 0 but miss the corresponding second lenslet, instead passing through
a different lenslet in the second lenslet array and exiting the array with an
angle α2 $= 0. This is called non-standard metarefraction of the second kind.
Light rays undergoing non-standard metarefraction of the second kind, and
the area to which they are restricted, are respectively shown as dotted arrows
and dotted areas in Fig. 4.

It is perhaps mildly surprising that non-standard metarefraction can occur
already at normal incidence, whereby different kinds of non-standard metare-
fraction occur for different η ranges. The following sections investigate non-
standard metarefraction for non-normal incidence and metarefraction. They
continue to use this section’s fill-labelling scheme for standard metarefrac-

6



tion (solid) and non-standard metarefraction of the first (striped) and second
(dotted) kind.

2.2 Onset of non-standard metarefraction of the first kind: the first critical
angles

Consider looking through a CLA sheet. What you see in a specific direction
is determined by the history of the light rays arriving at the eye from that
direction. When traced backwards from the eye (which is what ray-tracing
software, such as POV-Ray [12], does), light rays undergoing non-standard
metarefraction of the first kind pass through a second lenslet and then miss
the corresponding first lenslet. In the previous section’s labelling scheme, such
light rays are dashed.

If such a dashed light ray is not absorbed, the direction in which the backwards-
traced light ray leaves the CLA sheet (in terms of the direction in which the
light ray actually travels, namely from the source to the eye, this is described
by the angle of incidence) is different from the direction in which standard-
metarefracted light rays leave the sheet. On further backwards-tracing, the
light ray usually hits an object (or point on an object) which is different from
that which a standard-metarefracted light ray would have hit. This “wrong”
object (or point on an object) is then visible as a ghost image in the direc-
tion in which the backwards-traced light ray left the eye. The fraction of light
rays traced backwards from the eye position that have passed through a given
second lenslet and that miss the corresponding first lenslet determines the
brightness of the ghost image seen in the direction of the second lenslet.

If such a dashed light ray is absorbed, then the trajectory of the actual light
ray would end on the absorber and never reach the eye. If the light ray was
nevertheless traced backwards from the eye in the direction from which the
light ray would have arrived had it not been absorbed, then it would also end
on the absorber. In that direction, the observer would therefore see the colour
of the absorber: black. In this case, the fraction of all the light hitting the eye
from an entire second lenslet that is absorbed determines the factor by which
the intensity of the standard-refracted image is dimmed.

Non-standard metarefraction of the first kind occurs over a specific range
of angles of incidence and metarefraction. Fig. 5 sketches light rays passing
through a CLA sheet with the greatest positive incidence angle for which
no non-standard metarefraction of the first kind occurs: no dashed light rays
are present, but the slightest increase in the angle of incidence would mean
that the solid rays no longer completely cover the right lenslet and that the
gap is filled with dashed rays (using the labelling scheme introduced in the
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 < -1

+1 < 

Fig. 5. Calculation of the first critical angles which mark the onset of ghost-image
metarefraction. The thick arrows indicate the “critical” light ray used for the cal-
culation of the critical angles. αc1

1 and αc1
2 are the first critical angles of incidence

and metarefraction, respectively; f1 and f2 are the focal lengths of the left and
right lenslets, respectively; r1 and r2 are the radii of the first and second lenslet, re-
spectively (whereby a lenslet’s aperture radius has the same sign as its focal length
– see main text); yF is the y-coordinate (measured from the optical axis) of the
point at which all light rays intersect the focal plane, F , at the first critical angle
of incidence.

previous section). This angle of incidence is called the first critical angle of
incidence, αc1

1 . No first-kind non-standard metarefraction occurs for any angles
of incidence α1 with a modulus less than αc1

1 , that is for

|α1| < αc1
1 . (5)

The corresponding range of angles of metarefraction, α2 is then

|α2| < αc1
2 , (6)

where αc1
2 is the first critical angle of metarefraction, which is related to the
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first critical angle of incidence by the equation

tan αc1
1 = |η| tan αc1

2 . (7)

This last equation is, of course, Eq. (1) with η replaced by |η| to ensure that
αc1

1 and αc1
2 have the same sign.

Fig. 5 actually shows separate diagrams, one for the case η < −1, the other for
+1 < η. (There is no diagram for −1 < η < +1, as in this range ghost images
occur even at normal incidence – see section 2.1.) αc1

1 can be calculated for
both cases at the same time as follows. Define the aperture radius of a lenslet
to be positive if its focal length is positive; similarly, a lenslet’s aperture radius
is negative if its focal length is negative. (Fig. 5, just like Figs 4, 6 and 7, is
drawn for the simplest case, |r1| = |r2|. Nevertheless, in the range 1 < |η|
the calculations of the critical angles hold also if this is not the case.) In the
coordinate system indicated in Fig. 5, the light ray that passes through the
first lenslet with the first critical angle of incidence and at vertical coordinate
y = r1 passes through the second lenslet at y = −r2. (Note that r1 is negative
in the case +1 < η.) This “critical” light ray is marked in both diagrams in
Fig. 5.

All light rays that enter the first lenslet with the first critical angle of incidence
intersect in the same point in the focal plane, at y-coordinate yF . In the
following, the critical light ray will be used to calculate yF . Then the principal
light ray through the center of the first lenslet, which passes straight through
the lenslet, will be used to calculate αc1

1 .

Between the lenslets, the slope of the critical light ray is −(r1 + r2)/(f1 + f2).
In particular, this is the slope of the critical light ray between the first lenslet
and the focal plane, which implies that

yF − r1

f1
= − r1 + r2

f1 + f2
, (8)

so

yF = r1 −
r1 + r2

f1 + f2
f1. (9)

From the principal light ray that passes through the first lenslet’s center with
the first critical angle of incidence it can be seen that

tan αc1
1 =

yF

f1
. (10)
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Solving for αc1
1 and substituting the expression for yF in Eq. (9), this becomes

αc1
1 = tan−1

(
r1

f1
− r1 + r2

f1 + f2

)

. (11)

This is the expression for the first critical angle, valid in the range 1 < |η|.

It is useful to try out Eq. (11) for the simplest case (and for which the figures
are drawn), namely |r1| = |r2| = r. For a CLA sheet’s η value to fall into the
range η < −1, its focal lengths have to satisfy the inequalities f1 > 0, f2 > 0,
and f1 < f2 (Fig. 4). The fact that both focal lengths are positive means,
according to our sign convention for aperture radii, that both aperture radii
are also positive, so r1 = r2 = r. Equation (11) then becomes

αc1
1 = tan−1

(
r

f1
− 2r

f1 + f2

)

= tan−1 r(f2 − f1)

f1(f1 + f2)
.

(12)

As f1 < f2 and the values of all parameters in the argument of the inverse
tangent are positive, the critical angle αc1

1 is also positive. According to the
definition of αc1

1 , Eq. (5), this means there is a range of incidence angles α1,
centered around normal incidence, for which no non-standard metarefraction
of the first kind occurs, which is what was expected from the discussion in
section 2.1 and in this section so far.

In the case +1 < η, a CLA sheet’s focal lengths have to satisfy f1 < 0 and
f2 > 0 according to Fig. 4. According to our sign convention, the aperture
radii are then −r1 = r2 = r, so now Eq. (11) becomes

αc1
1 = tan−1 −r

f1
. (13)

Reassuringly, as f1 < 0, αc1
1 is again positive.

2.3 Onset of non-standard metarefraction of the second kind: the second crit-
ical angles

Whenever non-standard metarefraction of the second kind occurs, not all the
light that enters through the first lenslet subsequently passes through the cor-
responding second lenslet. The standard-refracted image is therefore dimmed.
Light that misses the corresponding second lenslet either leads to ghost im-
ages at another angle of metarefraction, or (if filtered out with absorbers) it
is absorbed entirely.
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-1 <  < 0

0 <  < 1

Fig. 6. Calculation of the second critical angles, which mark the onset of dimming
of standard-refracted light.

In analogy to the first critical angles, the second critical angles of incidence
and metarefraction, αc2

1 and αc2
2 , are respectively defined as the modulus of the

angle of incidence and metarefraction at which the dimming of the standard-
refracted image starts to occur. Fig. 6 shows diagrams of light passing through
confocal lenslet arrays at the second critical angles of incidence and metare-
fraction, drawn for the cases −1 < η < 0 and 0 < η < 1. (For η < −1 and
+1 < η, dimming occurs even at normal incidence.)

In a similar way to the derivation of the first critical angle of incidence, the
second critical angle of metarefraction can be shown to be

αc2
2 = tan−1

(
r2

f2
− r1 + r2

f1 + f2

)

, (14)

from which the second critical angles of incidence can be calculated through
the analog of Eq. (7),

tan αc2
1 = |η| tan αc2

2 . (15)
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Fig. 7. Calculation of the third critical angles. Like in previous figures, the critical
light ray is indicated as a thick solid arrow.

The expressions for the second critical angles, Eqs. (14) and (15), are valid for
|η| < 1.

2.4 Disappearance of standard metarefraction: the third critical angles

Under the assumptions for which the results presented in this section are
derived, at least some normally-incident light is standard-refracted: in the
range |η| < 1, all the normally incident light is standard-refracted; in the
range |η| > 1, some of the light exits through the “wrong” lenslet and forms
ghost images at higher angles of metarefraction, but at least part of the light
passes through the corresponding second lenslet and is therefore normally
refracted. As the angle of incidence is increased beyond αc1

1 , the region of
standard metarefraction shrinks and then disappears completely. The angles
of incidence and metarefraction for which standard metarefraction disappears
are called the third critical angles, αc3

1 and αc3
2 ; this case is shown in Fig. 7.

The calculation of the third critical angles starts with the observation that in
all η ranges both third critical angles have to be positive as otherwise there
would be no standard metarefraction at normal incidence. This means that the
third critical angles are simply the absolute values of the angles of incidence
and metarefraction sketched in Fig. 7.
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As before, the slope of the critical light ray (see Fig. 7) between lenslets can
be calculated. This slope is

r1 − r2

f1 + f2
. (16)

From this it is possible to calculate the y-coordinate of the point at which the
critical light ray – and indeed all light rays with the same angle of incidence
– intersect the focal plane. Placing the optical axis at y = 0, as before, the
y-coordinate of this intersection point is

yF = −r1 + f1
r1 − r2

f1 + f2
. (17)

This means the corresponding angle of incidence is given by the equation

tan α1 =
yF

f1
= −r1

f1
+

r1 − r2

f1 + f2
. (18)

The third critical angle of incidence is the modulus of the angle of incidence,
which is therefore

αc3
1 =

∣∣∣∣∣tan−1

(

−r1

f1
+

r1 − r2

f1 + f2

)∣∣∣∣∣ . (19)

The third critical angle of metarefraction can be calculated similarly. The
result is

αc3
2 =

∣∣∣∣∣tan−1

(
r2

f2
+

r1 − r2

f1 + f2

)∣∣∣∣∣ . (20)

Eqs. (19) and (20) are valid for any value of η.

3 Comparison with simulations

Fig. 8 shows the view through CLA sheets with the same values of η as those
shown in Fig. 2, but with a few changes that allow more direct comparison with
the results from the previous sections for the calculation of the critical angles.
Because Fig. 8 was simulated with the camera placed on the sheet normal
through the center of each CLA sheet, the center of each sheet corresponds to

13
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Fig. 8. Comparison of calculated critical angles of metarefraction with simulations.
As the camera is positioned on the sheet normal through the sheet’s center, points
on the sheet at the same distance from the sheet center – circles centered on the
sheet – correspond to constant angles of metarefraction (Fig. 9). The first, second,
and third critical angles of metarefraction (see Table 1) are respectively indicated
by dashed, dotted, and solid circles. Note that the circles corresponding to the first
and second angles of metarefraction in the case η = −1 have radius zero and are
therefore shrunk to a point in the sheet center. Note also that the third critical
angle in the case η = +0.5 is too large to be shown. In units of the side length of
each floor tile, the side length of the sheet is 1 and the camera was positioned a
distance z = 6 in front of the sheet. As each sheet’s center corresponds to a 0◦ angle
of metarefraction, the angle of metarefraction in the middle of each sheet edge is
therefore 4.8◦, that at the corners of each sheet is 6.7◦. The frames were simulated
like those in Fig. 2, but with the following differences: Fig. 2 was simulated for CLA
sheets consisting of lenslets with square apertures and a short depth of focus, with
the simulated camera focussed onto the image of the chess piece; here the lenslet
apertures were circular and the depth of focus infinite.

an angle of metarefraction α2 = 0◦. Light rays from a point a distance r from
the sheet center correspond to an angle of metarefraction (Fig. 9)

tan α2 =
r

z
, (21)

where z is the distance of the camera from the sheet. This means that the
points on the CLA sheet that are seen in light that has left the CLA sheet
with the same angle of metarefraction lie on circles around the sheet center.
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Fig. 9. Relationship between angle of metarefraction and intersection point on the
sheet for light rays simulated in Fig. 8. A light ray (solid arrow) intersects a CLA
sheet (thick vertical line) a distance r from the sheet center before hitting the
camera, which is positioned on the sheet normal through the sheet center at a
distance z from the sheet. The distance r is related to the angle of metarefraction,
α2, through Eq. (21).

η -2 -1 -0.5 +0.5 2 4

f1 0.025 0.04 0.05 0.05 -0.025 -0.02

f2 0.05 0.04 0.025 -0.025 0.05 0.08

αc1
2 0.95◦ 0◦ N/A N/A 2.9◦ 1.8◦

αc2
2 N/A 0◦ 1.9◦ 5.7◦ N/A N/A

αc3
2 2.9◦ 3.6◦ 5.7◦ 17◦ 8.5◦ 3.0◦

Table 1
Table of critical angles of metarefraction, calculated for the CLA sheets shown in
Fig. 8. The cases for which there are no first or second critical angles (as the first
or second kind of non-standard metarefraction occurs for all angles, so there is no
onset) are marked “N/A”. In all cases, |r1| = |r2| = 0.0025; the sign of r1 is that of
f1, the sign of r2 is that of f2.

Table 1 lists the parameters for which the simulations in Fig. 8 (and those in
Fig. 2) were performed, and the corresponding critical angles of metarefraction
calculated from these parameters. The circles corresponding to these critical
angles of metarefraction are superposed on the simulations in Fig. 8. The
critical angles are relatively small, and it is worth pointing out that it should
be possible to design CLA sheets with significantly greater critical angles. It is
clear from the equations derived above that the critical angles can be increased
by increasing the lenslets’ aperture radii and/or decreasing their focal lengths,
that is, by decreasing the lenslets’ F -numbers,

F# =
|f |
2|r| . (22)

However, decreasing a lens’s F -number also increases its geometric-imaging
aberrations. This is the reason why the CLA-sheets modelled in Figs 2 and 8
deliberately use large F -numbers, in the case of Fig. 8 ranging from F# = 8
(f = −0.02) to F# = 32 (f = 0.08): the particular CLA-sheet design modelled
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in Figs 2 and 8, which was chosen because it had been implemented previously
[1], only produces an acceptable imaging quality for large F -numbers 1 . Dif-
ferent CLA designs should allow acceptable imaging quality in combination
with significantly greater critical angles.

Perhaps the most obvious feature of Fig. 8 is that outside the (solid) circle
corresponding to the third critical angle of metarefraction the intensity falls
of very rapidly and very little light passes the sheet ouside this circle and
reaches the camera. This confirms the considerations in section 2.4, according
to which no light that has passed the sheet outside this circle should reach
the camera (Fig. 8 was calculated with absorbers that remove all light rays
undergoing non-standard metarefraction), but only approximately: there is
clearly some light that passes through the sheet just outside the solid circle
and then reaches the camera, most notably in the case η = 4. The origin for
this “leakage” is not completely clear, but one possible reason could be the
fact that in the simulations for Fig. 8, the apertures of corresponding lenslets
were not separated exactly by the sum of the lenslets’ focal lengths. This is due
to the fact that corresponding lenslets are set up such that the centers of their
outside surfaces were separated by the sum of the lenslets’ focal lengths, but
because the lenslet surfaces are curved, the edges of corresponding lenslets
– the effective apertures – were separated by a slightly different distance.
In the simulations, this separation is within less than 1% of the lens-center
separation.

The light dimming due to non-standard metarefraction of the second kind is
not represented at all in our ray-tracing simulations. This can be understood
by the following argument which considers the light from an arbitrary small
part of the chess piece’s surface that subsequently passes through a specific
lenslet in the first lenslet array. Physically, for given lighting conditions the
power of this light is fixed; losing any of the power leads to dimming. Exactly
such loss of power happens for angles above the second critical angles, as
represented by the dotted light rays in the cases η < −1 and 1 < η in Fig.
4: such light rays get refracted into the wrong angle of metarefraction, and
are lost from the correct angle of metarefraction (in the case of Fig. 4, 0◦).
However, if the solid light rays are traced backwards, none of the light appears
lost in any way, so this particular dimming is consequently not represented.
(Perhaps it is helpful to look at this in the following, slightly different, way.
The solid area in Fig. 4 can be seen as the standard-refracted beam. In those
cases where dotted light rays occur, namely η < −1 and 1 < η, the beam

1 Each CLA sheet consists of a single block of glass or transparent plastic (refractive
index n) of thickness (f1 +f2)/n, whereby the lenslets of focal lengths f1 and f2 are
formed by spherical surface dimples of radius f1(n− 1)/n and f2(n− 1)/n, respec-
tively (see Fig. 1(c) in Ref. [1]). The modelled design was chosen because it should
be easy to manufacture; little attention was paid to field-of-view considerations.
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diameter is smaller as it enters the first lenslet compared to when it leaves the
second lenslet. This means that the power contained in the beam gets spread
across a larger area, which should lead to a reduction in intensity.)

The effect of non-standard metarefraction of the first kind is represented in
Fig. 8, but its effect is far less obvious than that of the third critical angles.
The effect of the lenslet arrays’ square symmetry obscures the effect further,
for example in the frames corresponding to η = 2 and η = 4. Nevertheless,
the dashed circle (which represent the first critical angles of metarefraction)
arguably gives an indication of the size of the clear circle in the center of each
frame, most notably for η = 2 and η = 4.

4 Conclusions

This paper starts to study optical imperfections of generalized CLA sheets,
specifically light passing through non-corresponding lenslets, which leads to
non-standard metarefraction.

The formulae that were derived for the critical angles contain only the focal
lengths of the lenslets and the radius of each lenslet. They therefore provide a
clear guide on what needs to be done to increase the field of view. However, it
should be noted that an increase in the radius of each lenslet aperture without
a corresponding increase in the focal length increases the angle at which light
rays travel, and with it aberrations, unless great care is taken in the lens design.
Therefore the field of view needs to be traded off against imaging quality.

Several questions remain. In this paper only the simplest generalized CLAs
were studied, so it is natural to examine the critical angles for more complex,
generalized, CLAs [3]. Similarly, little is known about the field of view of
the closely related Dove-prism sheets [4], and of combinations of Dove-prism
sheets that perform negative metarefraction [5] and light-ray rotation [6].

We have recently started to realize experimentally CLAs from lenticular ar-
rays intended for lenticular printing, the technique used to create images that
change when viewed from different directions [24]. As a first step we have
demonstrated arrays of confocal cylindrical lenses which act like METATOYs
that flip one transverse component of the light-ray direction [25]. In future
we intend to combine lenticular arrays with different focal lengths so that
they act like arrays of confocal elliptical lenses, which are examples of gen-
eralized CLAs [3]. Using the fabrication and alignment techniques developed
for complex micro-optical systems [26], it should be possible to build much
higher-quality – and more general – generalized CLAs.
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