Dr Ulrich Kraehmer

  • Lecturer (Mathematics)

telephone: 01413306835
email: Ulrich.Kraehmer@glasgow.ac.uk


Personal website

Research Interests

Although my core subject is algebra, my work involves or is motivated to some extent by geometry, topology, and operator algebra theory. Concrete key words that one can look up e.g. on Wikipedia are homological algebra, noncommutative geometry, Hopf algebras, quantum groups, and Dirac operators. In a nutshell, I am trying to understand which concepts from geometry, topology or even physics can in fact be generalised to other mathematical oibjects such as rings or abelian categories, and what that is good for.

Research Groups

Due to essential maintenance on Enlighten, links to individual publications may be temporarily unavailable

Jump to: 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2006 | 2005 | 2004 | 2003
Number of items: 15.

2013

Kowalzig, N., and Kraehmer, U. (2013) Batalin-Vilkovisky structures on Ext and Tor. Journal für die Reine und Angewandte Mathematik (Crelles Journal) . ISSN 0075-4102

2012

Kraehmer, U. (2012) On the Hochschild (co)homology of quantum homogeneous spaces. Israel Journal of Mathematics, 189 (1). pp. 237-266. ISSN 0021-2172 (doi:10.1007/s11856-011-0168-4)

Kraehmer, U., Rennie, A., and Senior, R. (2012) A residue formula for the fundamental Hochschild 3-cocycle for SUq(2). Journal of Lie Theory, 22 (2). pp. 557-585. ISSN 0949-5932

2011

Kowalzig, N., and Kraehmer, U. (2011) Cyclic structures in algebraic cohomology theories. Homology, Homotopy and Applications, 13 (1). pp. 297-318. ISSN 1532-0073 (doi:10.4310/HHA.2011.v13.n1.a11)

2010

Kowalzig, N., and Kraehmer, U. (2010) Duality and products in algebraic (co)homology theories. Journal of Algebra, 323 (7). pp. 2063-2081. ISSN 0021-8693 (doi:10.1016/j.jalgebra.2009.12.026)

2009

Hadfield, T., and Kraehmer, U. (2009) Braided homology for quantum groups. Journal of K-theory: K-theory and its Applications to Algebra, Geometry and Topology, 4 . pp. 299-332. ISSN 1865-2433 (doi:10.1017/is008008021jkt063)

Hadfield, T., and Kraehmer, U. (2009) Twisted homology of quantum SL(2) - part II. Journal of K-theory: K-theory and its Applications to Algebra, Geometry and Topology . ISSN 1865-2433 (doi:10.1017/is009009022jkt091)

2008

Kraehmer, U. (2008) The Hochschild cohomology ring of the standard Podleś quantum sphere. Arabian Journal for Science and Engineering , 33 (2C). pp. 325-335. ISSN 1319-8025

Kraehmer, U. (2008) On the non-standard Podleś spheres. In: C*-algebras and Elliptic Theory II. Springer, Birkhäuser Basel, pp. 145-147. ISBN 9783764386030

2006

Hadfield, T., and Kraehmer, U. (2006) On the Hochschild homology of quantum SL(N). Comptes Rendus Mathématique. Académie des Sciences. Paris, 343 (1). pp. 9-13. ISSN 1631-073X (doi:10.1016/j.crma.2006.03.031)

Kraehmer, U. (2006) Poincaré duality in Hochschild (co)homology. In: New Techniques in Hopf Algebras and Graded Ring Theory, 19-23 Sept 2006, Brussels.

Kraehmer, U., and Zieliński, B. (2006) On piecewise trivial Hopf—Galois extensions. Czechoslovak Journal of Physics, 56 (10-11). pp. 1221-1226. ISSN 0011-4626 (doi:10.1007/s10582-006-0428-4)

2005

Hadfield, T., and Kraehmer, U. (2005) Twisted homology of quantum SL(2). K-Theory, 34 (4). pp. 327-360. ISSN 0920-3036 (doi:10.1007/s10977-005-3118-2)

2004

Kraehmer, U. (2004) Dirac operators on quantum flag manifolds. Letters in Mathematical Physics, 67 (1). pp. 49-59. ISSN 0377-9017 (doi:10.1023/B:MATH.0000027748.64886.23)

2003

Kraehmer, U. (2003) FRT-duals as quantum enveloping algebras. Journal of Algebra, 264 (1). pp. 68-81. ISSN 0021-8693 (doi:10.1016/S0021-8693(03)00116-9 )

This list was generated on Tue Oct 1 15:06:55 2013 BST.

Current research staff

James Griffin

Current PhD students

Jake Goodman (Homological algebra)
Ana Rovi (Lie algebroids)
Paul Slevin (Homological Algebra in Monoidal Categories )