Professor Tara Brendle

  • Professor of Mathematics (Mathematics)

telephone: 01413306361
email: Tara.Brendle@glasgow.ac.uk

Room 429
Mathematics
Mathematics and Statistics Building
Glasgow G12 8SU

Research interests

Personal website

Research Interests

My main research interests involve the interplay between algebra and topology. The automorphism group of a surface is a fundamental object in geometric and combinatorial group theory, low-dimensional topology, and algebraic geometry, for example. My research focuses on how these mapping class groups of surfaces are related to other important classes of groups such as braid groups and Coxeter groups, arithmetic groups, and automorphism groups of free groups, as well as the role played by these groups in determining the structure of 3- and 4-manifolds via constructions such as Heegaard splittings and Lefschetz fibrations.

Research Groups


Publications

All publications | View selected publications

List all by: Type | Date

Jump to: 2017 | 2015 | 2013 | 2008 | 2007 | 2005 | 2004 | 2001
Number of items: 14.

2017

Brendle, T., Childers, L. and Margalit, D. (2017) Mapping class groups. In: Clay, M. and Margalit, D. (eds.) Office Hours With a Geometric Group Theorist. Princeton University Press, pp. 362-387. ISBN 9780691158662

2015

Brendle, T. E. and Margalit, D. (2015) Factoring in the hyperelliptic Torelli group. Mathematical Proceedings of the Cambridge Philosophical Society, 159(2), pp. 207-217. (doi:10.1017/S0305004115000286)

Brendle, T. E. and Margalit, D. (2015) The level four braid group. Journal für die Reine und Angewandte Mathematik (Crelles Journal), (doi:10.1515/crelle-2015-0032) (Early Online Publication)

Brendle, T., Margalit, D. and Putman, A. (2015) Generators for the hyperelliptic Torelli group and the kernel of the Burau representation at t = -1. Inventiones Mathematicae, 200(1), pp. 263-310. (doi:10.1007/s00222-014-0537-9)

2013

Brendle, T.E. and Margalit, D. (2013) Point pushing, homology, and the hyperelliptic involution. Michigan Mathematical Journal, 62(3), pp. 451-473. (doi:10.1307/mmj/1378757883)

Brendle, T., Childers, L. and Margalit, D. (2013) Cohomology of the hyperelliptic Torelli group. Israel Journal of Mathematics, 195(2), pp. 613-630. (doi:10.1007/s11856-012-0075-3)

Brendle, T.E. and Hatcher, A. (2013) Configuration spaces of rings and wickets. Commentarii Mathematici Helvetici, 88(1), pp. 131-162. (doi:10.4171/CMH/280)

2008

Birman, J., Brendle, T. and Broaddus, N. (2008) Calculating the image of the second Johnson–Morita representation. In: Groups of Diffeomorphisms (Birthday Conference in Honor of Professor Shigeyuki Morita), University of Tokyo, 2006,

Brendle, T. and Margalit, D. (2008) Addendum to: commensurations of the Johnson kernel. Geometry and Topology, 12, pp. 97-101. (doi:10.2140/gt.2008.12.97)

2007

Brendle, T.E. and Farb, B. (2007) The Birman–Craggs–Johnson homomorphism and abelian cycles in the Torelli group. Mathematische Annalen, 338(1), pp. 33-53. (doi:10.1007/s00208-006-0066-y)

2005

Birman, J. and Brendle, T. (2005) Braids: a survey. In: Menasco, W. and Thistlethwaite, M. (eds.) Handbook of Knot Theory. Elsevier, pp. 19-103. ISBN 9780444514523

2004

Brendle, T.E. and Farb, B. (2004) Every mapping class group is generated by 6 involutions. Journal of Algebra, 278(1), pp. 187-198. (doi:10.1016/j.jalgebra.2004.02.019)

Brendle, T.E. and Margalit, D. (2004) Commensurations of the Johnson kernel. Geometry and Topology, 8, pp. 1361-1384. (doi:10.2140/gt.2004.8.1361)

2001

Brendle, T.E. and Hamidi-Tehrani, H. (2001) On the linearity problem for mapping class groups. Algebraic and Geometric Topology, 1, pp. 445-468.

This list was generated on Mon Sep 25 12:26:39 2017 BST.
Number of items: 14.

Articles

Brendle, T. E. and Margalit, D. (2015) Factoring in the hyperelliptic Torelli group. Mathematical Proceedings of the Cambridge Philosophical Society, 159(2), pp. 207-217. (doi:10.1017/S0305004115000286)

Brendle, T. E. and Margalit, D. (2015) The level four braid group. Journal für die Reine und Angewandte Mathematik (Crelles Journal), (doi:10.1515/crelle-2015-0032) (Early Online Publication)

Brendle, T., Margalit, D. and Putman, A. (2015) Generators for the hyperelliptic Torelli group and the kernel of the Burau representation at t = -1. Inventiones Mathematicae, 200(1), pp. 263-310. (doi:10.1007/s00222-014-0537-9)

Brendle, T.E. and Margalit, D. (2013) Point pushing, homology, and the hyperelliptic involution. Michigan Mathematical Journal, 62(3), pp. 451-473. (doi:10.1307/mmj/1378757883)

Brendle, T., Childers, L. and Margalit, D. (2013) Cohomology of the hyperelliptic Torelli group. Israel Journal of Mathematics, 195(2), pp. 613-630. (doi:10.1007/s11856-012-0075-3)

Brendle, T.E. and Hatcher, A. (2013) Configuration spaces of rings and wickets. Commentarii Mathematici Helvetici, 88(1), pp. 131-162. (doi:10.4171/CMH/280)

Brendle, T. and Margalit, D. (2008) Addendum to: commensurations of the Johnson kernel. Geometry and Topology, 12, pp. 97-101. (doi:10.2140/gt.2008.12.97)

Brendle, T.E. and Farb, B. (2007) The Birman–Craggs–Johnson homomorphism and abelian cycles in the Torelli group. Mathematische Annalen, 338(1), pp. 33-53. (doi:10.1007/s00208-006-0066-y)

Brendle, T.E. and Farb, B. (2004) Every mapping class group is generated by 6 involutions. Journal of Algebra, 278(1), pp. 187-198. (doi:10.1016/j.jalgebra.2004.02.019)

Brendle, T.E. and Margalit, D. (2004) Commensurations of the Johnson kernel. Geometry and Topology, 8, pp. 1361-1384. (doi:10.2140/gt.2004.8.1361)

Brendle, T.E. and Hamidi-Tehrani, H. (2001) On the linearity problem for mapping class groups. Algebraic and Geometric Topology, 1, pp. 445-468.

Book Sections

Brendle, T., Childers, L. and Margalit, D. (2017) Mapping class groups. In: Clay, M. and Margalit, D. (eds.) Office Hours With a Geometric Group Theorist. Princeton University Press, pp. 362-387. ISBN 9780691158662

Birman, J. and Brendle, T. (2005) Braids: a survey. In: Menasco, W. and Thistlethwaite, M. (eds.) Handbook of Knot Theory. Elsevier, pp. 19-103. ISBN 9780444514523

Conference Proceedings

Birman, J., Brendle, T. and Broaddus, N. (2008) Calculating the image of the second Johnson–Morita representation. In: Groups of Diffeomorphisms (Birthday Conference in Honor of Professor Shigeyuki Morita), University of Tokyo, 2006,

This list was generated on Mon Sep 25 12:26:39 2017 BST.

Grants


Supervision

Current PhD students

Alan McLeay (Geometric group theory and mapping class groups of surfaces)
Luke Jeffreys


Teaching


Additional information