Computer Vision & Autonomous Systems

Computer-based analysis of images to extract information and classify their contents is becoming increasingly important in all walks of life. For example, by combining the science of 'photogrammetry' (measurement using cameras) with digital camera technology it becomes possible to capture 3D models of people, animals and objects that are metrically accurate and photo-realistic in appearance. Furthermore, it is possible to analyse and animate these models by computer for applications such as virtual actors or sports science.

The Computer Vision and Autonomous Systems group, CVAS, in the School of Computing Science, investigates fundamental issues of how to analyse images and also how apply this knowledge within practical applications. Our projects cover all aspects of human body modelling in 3D, including animation and surface skin modelling. This approach opens a wide array of application areas such as; creative media, engineering, medicine, textiles & clothing, military & security, internet & communications, forensic and fine art. A key objective of the work of the group is to combine 3D measurement and modelling techniques with image understanding approaches to construct cognitive robot vision systems that actively search their operating environments using passive digital cameras.

CVG research topics

  • Medical and veterinary analysis of 3D surface anatomy to assess change following surgical intervention and surgical outcome prediction.
  • Object recognition from 2D & 3D information extracted from static images and moving image sequences.
  • Biologically motivated computer vision, including computational models of the mammalian retina and the early visual pathway for efficient and robust image analysis and interpretation.
  • Active binocular robot vision systems, able to operate in unstructured and cluttered real-world environments searching and locating visual cues and objects required in autonomous applications such as unmanned vehicle navigation, flexible manufacture, telemedicine and suspicious object inspection.
  • 2D and 3D image compression.
  • 3D electron tomography.
  • Parallelisation of optical flow.
  • Hiearchical visual featue extraction.

Academic Staff: Dr W Paul Cockshott, Dr J. Paul SiebertDr Gerardo Aragon Camarasa,

Honorary Research Fellow: Dr John W Patterson.

Research Students:  Mr Aamir Khan,  Mr Finlay McCourt, Xiaomeng Wang, Lai Meng Tang, Long chen, 

This Week’s EventsAll Upcoming EventsPast EventsAdd an event

This Week’s Events

There are no events scheduled for this week

Upcoming Events

There are no upcoming events

Past Events

Add an event

To add an event to the system, please click here (GUID required, staff only).
You can also try out the new events webapp by clicking here (available to staff and students).