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1 Introduction

In the early 1980s we observe a substantial increase of public investment in high-tech sectors

in the U.S.: investment in equipment and software (E&S), which was 20 percent of total

government investment in 1980, climbs to about 40 percent in 1990 and to more than 50

percent in 2001.1 The composition of private investment also switched towards E&S but more

than a decade later, catching up with the public trend in the 1990s (NSF 2002). Accompanying

this acceleration of the technological intensity of public spending we observe an 18 percent

increase in the relative wage of skilled workers during the 1980s (CPS 1999).

In this paper we argue that the change in the composition of public spending reallocated

market-size from low-tech to high-tech industries, thus enlarging the market for more innovative

products and stimulating innovation. As innovation is a skill-using activity, government policy

may have also helped to stimulate the relative demand for skills and raise the skill-premium.

Our analysis remarks that although government procurement is not an explicit policy tool, it

has often worked as ‘de facto’ innovation policy instrument.

We build a version of the quality-ladder growth model with endogenous supply of skills

(Dinopoulos and Segerstrom 1999). A new and key feature of our model is the introduction of

heterogeneous industries. The economy is populated by a continuum of monopolistic compet-

itive industries with asymmetric innovation power; in the language of quality-ladders models

this implies that each sector has a different quality-jump any time an innovation arrives. In this

setting we introduce government policy, in the form of a public spending rule: the government

can allocate its expenditure in manufactured goods using a continuum of different policy rules,

from the extreme symmetric rule, where each sector gets the same share of public spending, to

an asymmetric rule, meaning that the sector with the highest quality jump receives the greatest

amount of government spending.

In our model, high-tech sectors are those where innovation brings technological improve-

ments, quality jumps, that are greater than average. There are two activities in the economy:

manufacturing, carried out by a continuum of asymmetric firms, and innovation activity or pro-

duction of ideas. We assume that unskilled labor is used exclusively in manufacturing and that

ideas are produced using only skilled labor. As the government reallocates spending from low

1E&S includes a group of investment goods that are considered more innovative than those included in
structures (see Cummins and Violante 2002 and Hobjin 2001b).
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to high-tech sectors, aggregate profits increase. Intuitively, higher quality jumps in high-tech

sectors imply higher mark-ups and larger profits. Hence, a redistribution of public spending in

favor of these sectors raises aggregate profits in the economy. In quality-ladder growth mod-

els monopoly profits are the rewards for innovation activities, so the increase in total profits

produced by the reshuffling of public spending will raise the relative demand for skilled workers.

Finally, there is a training choice in the model that endogenizes skills formation. This

implies that, by increasing the skill premium, high-tech public spending will also raise the

incentives to train and accumulate skills. Therefore, wage inequality generated by our source

of technical change will be a general equilibrium result, where both the supply and the demand

for skills are endogenous.

We adopt a broad interpretation of innovation in order to include all of those activities that

are targeted to increase firm profits. In our model, workers performing innovative activities

are those workers that, with their intellectual skills, contribute to give a firm a competitive

advantage over others. Therefore, we do not restrict our view to R&D activities. While R&D

workers play an important role in innovation, they are not the only skilled workforce that a

firm needs to beat its rivals: managerial and organizational activities, marketing, legal and

financial services are all widely and increasingly used by modern corporations to compete in

the marketplace.

This paper is related to the literature on skill-biased technical change (SBTC).2 Like other

works in this area, we focus on the role of technical change in affecting the U.S. wage struc-

ture in recent decades. In our paper, innovation is skill-biased by assumption, as in models

of exogenous SBTC (i.e. Aghion, Howitt, Violante 2002, Caselli 1999, Galor and Moav 2000,

Krusell, Ohanian, Rios-Rull, Violante 2000), but technical change is endogenous, as in models

of endogenous SBTC (Acemoglu 1998 and 2002b, Kiley 1998).3 We share with endogenous

technology models the idea that innovation is profit-driven and that market-size is one key de-

terminant of profitability. Like endogenous SBTC models, we explore the ‘sources’ of technical

change, but while these works focus on the market-size effect produced by an increase in the

relative supply of skills, in our paper the source of the market-size effect is government spend-

ing. Moreover, strictly speaking, our model is not a model of SBTC in the sense that innovation

2For a review of this literature see Acemoglu (2002), Aghion (2002) and Hornstein, Krusell, and Violante
(2005).

3Galor and Moav (2000) in section IV introduce endogenous technical change through human capital accu-
mulation.
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does not increase the productivity of skilled workers. In our framework, as in Dinopoulos and

Segerstrom (1999), innovation is simply a skill-intensive activity, and wage inequality increases

with the size of this activity.

Our paper is related to Dinopoulos and Segerstrom (1999) version of the quality-ladder

growth model. With respect to that work our contribution is the following: first, on the theory

side, the presence of asymmetric industries allows government spending to affect innovation

and the skill premium. This is not obtainable by simply introducing government spending into

Dinopoulos and Segerstrom’s symmetric framework. Second, while their application focuses on

trade liberalization as the source of technical change and wage inequality, we examine the role

of government policy. To our knowledge, this is the first attempt to assess the relevance of the

public ‘policy channel’ in the debate on technical change and wage inequality in the U.S.

The paper is organized as follows. Section 2 presents the stylized facts on government policy

and wage inequality. Section 3 sets up the model. Sections 4 and 5 derive the main results

and explain the intuition for the macroeconomic consequences of asymmetric steady states.

In section 6 we calibrate the model to match salient long-run facts of the U.S. economy and

perform a quantitative evaluation of our theoretical mechanism. Section 7 provides remarks on

the qualitative and quantitative predictions of the model. Section 8 concludes.

2 Stylized facts

In this section we provide some background evidence on the dynamics of public spending

composition and wage inequality in recent decades. Although government procurement has

never been an explicit policy tool, it has always worked as a de facto relevant innovation

policy instrument. David Hart presents the argument in the following way: “[Public] R&D

spending was typically accompanied by other measures that deserve at least as much credit for

their technological payoffs. For instance, the Department of Defense (DOD) not only funded

much of the physical science and engineering R&D that led to advances in semiconductors

and computers, it also purchased a large fraction of products themselves, especially the most

advanced products. The DOD guaranteed that a market for electronics would exist, inducing

private investment on a scale that would not have otherwise followed even the most promising

research results” (Hart 1998 p.1). Hence, according to this view, public procurement guaranteed

a market to innovative firms, especially in early stages of product development. There is
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evidence that the DOD, NASA and also other government agencies, such as the Department of

Health, contributed to private innovation via demand-pull (see Ruttan 2003, and Finkelstein

2003).

In this paper we propose an aggregate measure of this demand-pull channel for innovation.

We use BEA NIPA data that breaks-up public investment between E&S and structures. E&S

includes a group of investment goods that are considered more innovative than those included

in structures, so we choose E&S as our high-tech aggregate. The focus on investment is due

to the fact that there is no aggregate data keeping track of the technological composition of

public consumption expenditures.

In figure 1 we report the evolution of the skill premium and of the composition of gov-

ernment investment spending, expressed as the ratio of government investment in E&S over

total government investment. The relevant fact here is that both series jump from a fairly

steady course to a rapidly increasing one during the late 1970s early 1980s. This common

and contemporaneous trend change suggests that the shift towards high-tech public spending,

which began around 1974 and radically accelerated around 1978, might have had an influence

on rising inequality in the 1980s.4

[FIGURE 1 ABOUT HERE]

Using the same data we find that also the composition of private investment progressively

shifted towards E&S since the late 1970s. However, the technological composition of public

investment accelerated in the 1980s -the period when wage inequality increased more rapidly-

while the rise of private investment in E&S was concentrated in the 1990s. More precisely, the

yearly average growth rate of private investment was 9 percent while the growth rate of public

investment was 16 percent in the period 1970-90; while private spending jumped on those high

growth rates only in the 1990s.5

As R&D represents an important part of innovation activity, figure 2 shows that, as was

the case for the composition of public spending, the trend of private R&D/GDP also increases

substantially in the late 1970s, along with that of the skill premium.6

4We are not interested in explaining the decline in the skill premium observed in the 1970s. For this reason
the weaker correlation between the two series in the 1970s does not affect our argument.

5We also find that the ratio of public to private investment in the innovative aggregate has been betwen 13
and 26 percent in the period 1970-90. This indicates that the scale of public E&S is not negligible in the period
of interest.

6The technological composition of government procurement affects the market-size of all kinds of innovation
activities, of which R&D is a relevant component.
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[FIGURE 2 ABOUT HERE]

Next, we explore more in detail the properties of the data. We perform a preliminary

econometric analysis to test the correlation between the variables of interest. We would like to

emphasize that our goal here is not to establish causality but only to show some key correlations

that motivate our analysis. The calibration exercise in section 6 will provide a structural

evaluation of the quantitative effect of public spending on wage inequality.

We consider only one dimension of innovation activities, R&D investment, and look for a

positive correlation between government spending, innovation and the skill premium. First, we

regress private investment in R&D, as a share of GDP, to the composition of public spending

for the period 1953-2001.

TABLE I
Public spending composition and R&D investment

dependent variable: R&D/GDP

regressors: coeff prob
GE&S/GI 0.295992 0.0487

R&D/GDP(-1) 0.951597 0.0000
n. of obs. adjusted 55

R-squared 0.98449
Adjusted R-squared 0.984111

Breusch-Godfrey LM F stat 1.051945 prob = 0.407103
Breusch-Godfrey LM Obs*R-squared 6.511739 prob = 0.368366

Source: BEA, Nipa tables sections 5 and 7.

We find that private R&D is positively correlated with public investment in E&S as a share of

total public investment.7

We also look at what the data say about the relationship between non-federal R&D expen-

diture and the skill premium. Here we have shorter time series, 1963-1999, due to skill premium

data availability, but the results are good, as shown in the following table II below.8 We find

7The constant is not displayed in table I because it was not significant even at 10%. Some comments on
some of the standard diagnostic tests we performed are necessary. First, the Ljung-Box Q test rejects the null
hypothesis of residuals autocorrelation. We also performed the Breusch-Godfrey Lagrange multiplier tests and
we were able to reject the null hypothesis of serial autocorrelation at all lags - the one showed in table I is for
four lags. Second, both explanatory variables, when subjected to an Augmented Dickey-Fuller (ADF) test do
not prove stationary. Therefore, we performed the ADF test on the regression residuals: the test statistics is
equal to −5.6633, which also passes the stricter Engle and Yoo (1987) version of the unit root test. Hence, the
regression results can be considered fairly reliable.

8Here again we deal with two non-stationary series, so the basic reliability of the regression is obtained
running the same battery of tests that we discussed in the previous footnote. The Q and the LM-tests rejects
serial autocorrelation of residuals, and statistics of the ADF test on residuals in this case is −5.5058. This
allows us to consider the regression results sufficiently accurate.
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and positive and significative correlation between investment in R&D and the skill premium.

TABLE II
R&D investment and skill premium

dependent variable: skill premium

regressors: coeff prob
R&D/GDP 0.047074 0.0388

skill premium(-1) 0.961224 0.0000
n. of obs. adjusted 36

R-squared 0.914528
Adjusted R-squared 0.912015

Breusch-Godfrey LM F stat 1.213211 prob = 0.325839
Breusch-Godfrey LM Obs*R-squared 5.003754 prob = 0.286913

Source: BEA, Nipa tables sections 5 and 7.

The results in table II are qualitatively in line with those of more extensive and specific empirical

studies. For instance Machin and Van Reenen (1998), using industry-specific R&D intensity

as an indicator of technology, find a strong correlation between technical change and skill

upgrading in the U.S. in the 1980s. More precisely, they find that both R&D intensity and

the wage share of non-production workers grew in the 1980s, and that R&D intensity is a

significative regressor for the wage and employment share of non-production workers in all

manufacturing sectors. In addition to this they also show that while skill-upgrading is observed

within all industries, it appears to be more intense in high-tech sectors.

We can now wonder how the two correlations showed above concur in a unique indirect

correlation between public investment composition and the skill premium. This is assessed by

directly regressing the skill premium to the composition of public spending, as reported in the

next regression table III.9 Again we find a positive and significative correlation.

9As with the previous two regressions the Q and LM-tests allowed us to reject serial correlation of residuals
at all lags. The ADF statistics was −5.8179, which again passes also the stricter Engle and Yoo test.
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TABLE III
Public spending composition and skill premium

dependent variable: skill premium

regressors: coeff prob
GE&S/GI 0.137137 0.0388

skill premium(-1) 0.976489 0.0000
n. of obs. adjusted 36

R-squared 0.917077
Adjusted R-squared 0.914638

Breusch-Godfrey LM F stat 1.373256 prob = 0.266687
Breusch-Godfrey LM Obs*R-squared 5.562143 prob = 0.234321

Source: BEA, Nipa tables sections 5 and 7.

In our opinion this set of facts and preliminary evidence provide a sufficient motivation to

dig deeper into the links between public spending composition, technology, and wage inequality.

3 The model

3.1 Households

Households differ in their members’ ability to become skilled workers, and the ability, θ, is

uniformly distributed over the unit interval. Households have identical intertemporally addi-

tively separable and unit elastic preferences for an infinite set of consumption goods indexed

by ω ∈ [0, 1], and each is endowed with a unit of labor/study time whose supply generates no

disutility. Households choose their optimal consumption bundle for each date by solving the

following optimization problem:

max

Z ∞

0

N0e
−(ρ−n)t log uθ(t)dt (1)

subject to

log uθ(t) ≡
Z 1

0

log

⎡⎣jmax(ω,t)X
j=0

λjωqθ(j, ω, t)

⎤⎦ dω
cθ(t) ≡

Z 1

0

⎡⎣jmax(ω,t)X
j=0

p(j, ω, t)qθ(j, ω, t)

⎤⎦ dω
Wθ(0) + Zθ(0)−

Z ∞

0

N0e
− t

0 (r(τ)−n)dτTdt =

Z ∞

0

N0e
− t

0 (r(τ)−n)dτcθ(s)dt

where N0 is the initial population and n is its constant growth rate, ρ is the common rate of

time preference, with ρ > n and where r(t) is the market interest rate. qθ(j, ω, t) is the per-

member flow of good ω ∈ [0, 1] of quality j ∈ {0, 1, 2, ...} purchased by a household of ability

7



θ ∈ (0, 1) at time t ≥ 0. p(j, ω, t) is the price of good ω of quality j at time t, cθ(t) is nominal

expenditure, and Wθ(0) and Zθ(0) are human and non-human wealth levels. A new vintage of

a good ω yields a quality equal to λω times the quality of the previous vintage, with λω > 1.

Different versions of the same good ω are regarded by consumers as perfect substitutes after

adjusting for their quality ratios, and jmax(ω, t) denotes the maximum quality in which good ω

is available at time t. As is common in quality ladders models, we assume price competition10

at all dates, which implies that in equilibrium only the top quality product is produced and

consumed in positive amounts. T is a per-capita lump-sum tax.

The instantaneous utility function has unitary elasticity of substitution, implying that goods

are perfect substitutes, once you account for quality. Thus, households maximize static utility

by spreading their expenditures evenly across the product line and by purchasing in each

line only the product with the lowest price per unit of quality, that is the product of quality

j = jmax(ω, t). Hence, the household’s demand of each product is:

qθ(j, ω, t) =
cθ(t)

p(j, ω, t)
for j = jmax(ω, t) and is zero otherwise (2)

The presence of a lump sum tax does not change the standard Euler equation:

.
cθ
cθ
= r(t)− ρ (3)

Individuals are finitely-lived members of infinitely-lived households, being continuously born

at rate β and dying at rate δ, with β − δ = n > 0; D > 0 denotes the exogenous duration

of their life11. People are altruistic in that they care about their household’s total discounted

utility according to the intertemporally additive functional shown in (1). They choose to train

and become skilled, if at all, at the beginning of their lives, and the (positive) duration of their

training period, during which the individual cannot work, is set at T < D.

Hence an individual with ability θ decides to train if and only if:Z t+D

t

e−
s
t r(τ)wL(s)ds <

Z t+D

t+Tr

e−
s
t r(τ)max (θ − γ, 0)wH(s)ds,

with 0 < γ < 1/2. The ability parameter is defined so that a person with ability θ > γ is able

10All qualitative results maintain their validity under the opposite assumption of quantity competition.
11As in Dinopoulos and Segerstrom (1999, p.454) it is easy to show that the above parameters cannot be

chosen independently, but that they must satisfy δ = n
enD−1 and β = nenD

enD−1 in order for the number of births
at time t to match the number of deaths at t+D.
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to accumulate skills (human capital) θ−γ after training, while a person with ability below this

cut-off gains no human capital from training.

We will focus on the steady state analysis, in which all variables grow at constant rates

and where wL, wH , and cθ are all constant. It follows that r(t) = ρ at all dates, and that the

individual will train if and only if her ability is higher than

θ0 =
£¡
1− e−ρD

¢
/
¡
e−ρTr − e−ρD

¢¤ wL

wH
+ γ ≡ σ

wL

wH
+ γ. (4)

The supply of unskilled labor at time t is:

L(t) ≡ θ0N(t) =

µ
σ
wL

wH
+ γ

¶
N(t). (5)

We set wL = 1, so that the unskilled wage becomes our numeraire. Following the same steps

as Dinopoulos and Segerstrom (1999), the reader can easily verify that the supply of skilled

labor at time s is:

H(t) = (θ0 + 1− 2γ) (1− θ0)φN(t)/2, (6)

with 0 < φ =
¡
en(D−TR) − 1

¢
/
¡
enD − 1

¢
< 1. In steady state the growth rate of L(t) and H(t)

is equal to n.

3.2 Manufacturing

Firms can hire unskilled workers to produce any consumption good ω ∈ [0, 1] of the second

best quality under a constant returns to scale (CRS) technology with one worker producing

one unit of product. However, in each industry the top-quality product can be manufactured

only by the firm that has discovered it, whose rights are protected by a perfectly enforceable

patent law.

As usual in Schumpeterian models with vertical innovation (see e.g. Grossman and Helpman,

1991, and Aghion and Howitt, 1992) the next best-quality of a given good is invented by means

of innovation activity performed by challenger firms in order to earn monopoly profits that will

be destroyed by the next innovator. During each temporary monopoly the patentholder can

sell the product at prices higher than the unit cost. We assume that the patent expires when

further innovation occurs in the industry. Hence monopolist rents are destroyed not only by

obsolescence but also because a competitive fringe can copy the product using the same CRS

technology.
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The unit elastic demand structure12 encourages the monopolist to set the highest possible

price to maximize profits, but the existence of a competitive fringe sets a ceiling to it equal to

the lowest unit cost of the previous quality product. This allows us to conclude that the price

p (jmax(ω, t), ω, t) of every top quality good is:

p (jmax(ω, t), ω, t) = λω, for all ω ∈ [0, 1] and t ≥ 0. (7)

Our fiscal policy tool will be sector specific per-capita public spending Gω(t) ≥ 0, for all

ω ∈ [0, 1] and t ≥ 0. The government uses tax revenues to finance public spending in different

sectors and we assume that the government budget is balanced at every date: N(t)T (t) =

N(t)
R 1
0
Gω(t)dω . Moreover, we will assume N(t)T (t) < γN(t)/a, i.e. T (t) < γ/a, in order

to guarantee that public expenditure is feasible. Since we are interested in steady states, in

which per-capita variables are constant, from now on we will drop time indexes from per-capita

taxation and per-capita expenditures.

From the static consumer demand (2) we can immediately conclude that the demand for

each product ω is:

N(t)
R 1
0
cθdθ

λω
+

N(t)Gω

λω
≡ cN(t)

λω
+

N(t)Gω

λω
= qω, (8)

where c =
R 1
0
cθdθ is average per-capita consumption. Sectorial market-clearing conditions

imply that demand equals production of every consumption good by the firm that monopolizes

it, qω. It follows that the stream of profits accruing to the monopolist which produces a state-

of-the-art quality product will be equal to:

π(ω, t) = qω (λω − 1) = (cN(t) +GωN(t))

µ
1− 1

λω

¶
. (9)

Hence a firm that produces good ω has an expected discounted value that satisfies

v(ω, t) =
πω

ρ+ I(ω, t)−
.
v(ω,t)
v(ω,t)

=
qω (λω − 1)

ρ+ I(ω, t)−
.
v(ω,t)
v(ω,t)

,

where I(ω, t) denotes the worldwide Poisson arrival rate of an innovation that will destroy the

monopolist’s profits in industry ω. In a steady state where per-capita variables all grow at the

same rate, it is easy to prove that
.
v(ω,t)
v(ω,t)

= n. Hence the expected value of a firm becomes

v(ω, t) =
qω (λω − 1)

ρ+ I(ω, t)− n
. (10)

12Any CES utility index with elasticity of substitution not greater than one would imply this result.
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3.3 Innovation races

In each industry leaders are challenged by the innovation activity of followers that employ skilled

workers and produce a probability intensity of inventing the next version of their products. The

arrival rate of innovation in industry ω at time t is I(ω, t), and it is the aggregate summation

of the Poisson arrival rate of innovation produced by all R&D firms targeting product ω.

In each sector new ideas are introduced according to a Poisson arrival rate of innovation

by use of a CRS technology characterized by the unit cost function bwHX(ω, t), with b > 0

common in all industries, and X(ω, t) > 0 measuring the difficulty of innovation in industry ω.

Hence the production of ideas is formally equivalent to buying a lottery ticket that confers to

its owner the exclusive right to the corresponding innovation profits, with the aggregate rate of

innovation proportional to the “number of tickets” purchased. The Poisson specification of the

innovative process implies that the individual contribution to innovation by each skilled labor

unit gives an independent (additive) contribution to the aggregate instantaneous probability

of innovation: hence innovation productivity is the same if each skilled worker undertakes her

activity by working alone as when she works with others in large firms.

The technological complexity indexX(ω, t) has been introduced into endogenous growth the-

ory after Charles Jones’ (1995) empirical criticism of R&D based growth models that generate

scale effects in the steady state per-capita growth rate. According to Segerstrom’s (1998) inter-

pretation of Jones’ (1995) solution to the “strong scale effect” problem (Jones 2005), X(ω, t) is

increasing in the accumulated stock of effective innovation:

.

X(ω, t)

X(ω, t)
= μI(ω, t), (TEG)

with positive μ, thus formalizing the idea that early discoveries fish out the easier inventions

first, leaving the most difficult ones for the future. This formulation implies that increasing

difficulty of innovation causes per-capita GDP growth to vanish over time unless an ever-

increasing share of resources are invested in innovation, thereby requiring a growing educated

population.13 In the present framework with quality-improving consumer’s goods “growth” is

interpreted as the increase of the representative consumer utility level over time.

13The acronym “TEG” refers to the “temporary effects on growth” of policy measures such as innovation
subsidies and tariffs: they cannot alter the steady state per-capita growth rate, which is instead pinned down by
the population growth rate. For this reason these type of frameworks are also called “semi-endogenous” growth
models.
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For industries targeted by innovation the constant returns to innovation activity and free

entry and exit imply the no-arbitrage condition

v(ω, t) ≡ qω (λω − 1)
ρ+ I(ω, t)− n

= bwHX(ω, t). (11)

The usual Arrow or replacement effect (Aghion and Howitt 1992) implies that the monopolist

does not find it profitable to undertake any innovation activity at the equilibrium wage.

4 Balanced growth paths

We are now in a position to analyze the general equilibrium implications of the previous setting.

Since each final good monopolist employs unskilled labor to manufacture each commodity, the

unskilled labor market equilibrium is

N(t)θ0 =

Z 1

0

qωdω =

Z 1

0

N(t)

µ
c

λω
+

Gω

λω

¶
dω = N(t) [Γc+ Ω] . (12)

Therefore:

c =
θ0 − Ω

Γ
, (13)

where Γ =
R 1
0

1
λω
dω and Ω =

R 1
0

Gω

λω
dω. Eq.s (8), (10), and (11) imply that

N(t)

λω
(c+Gω) = bwHXω

ρ+ Iω − n

(λω − 1)
, (14)

which - since wH =
σ

θ0−γ and (13) holds - can be rewritten as:

1

λω

µ
θ0 − Ω

Γ
+Gω

¶
=

bσ

θ0 − γ
xω

ρ+ Iω − n

λω − 1
, for all ω ∈ [0, 1], (15)

where xω ≡ Xω

N
denotes the population-adjusted degrees of complexity of product ω. Similarly,

the skilled labor market equilibrium implies:

(θ0 + 1− 2γ) (1− θ0)φ/2 = b

Z 1

0

Iωxωdω. (16)

In steady state all per-capita variables are constant and therefore
.
X(ω,s)
X(ω,s)

= n. Hence (TEG)

implies: I = n/μ. As usual in semi-endogenous growth models with increasing complexity the

steady-state arrival rate of innovation in every industry is a linear increasing function of the

population growth rate. Hence we can rewrite (15) and (16) as follows:

1

λω

µ
θ0 − Ω

Γ
+Gω

¶
=

bσ

θ0 − γ
xω

ρ+ n/μ− n

λω − 1
, for all ω ∈ [0, 1], (17)
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(θ0 + 1− 2γ) (1− θ0)φ/2 = b
n

μ

Z 1

0

xωdω ≡ b
n

μ
x. (18)

Proposition 1 If Ω−ΓG
Γ

< (1−2γ)φμσ(ρ+n/μ−n)
2nγ

a steady state always exists for every distribution

of λω > 1 and Gω > 0. At each steady state the following properties hold:

a. Gω > Gω0 implies xω > xω0 and ∂xω/∂Gω > ∂xω0/∂Gω0 iff λω > λω0

b. θ0 is an increasing function of Ω

Proof. See the Appendix.

Proposition 1a suggests that an increase in government spending in sector ω stimulates

innovation in that specific industry through a market size effect - according to (TEG) the

difficulty index xω is proportional to investment in innovation in sector ω. Moreover the propo-

sition shows that 1 dollar of government spending is more effective in stimulating innovation

when directed towards sectors with high quality jumps. The importance of proposition 1b

will become clearer later; for the moment it suffices to note that it shows that the share of

unskilled workers θ0 is increasing with the technology-adjusted average government spending

Ω.14

5 Fiscal policy rules

Here we specify rules for public spending and derive the basic result of the paper. The fiscal

policy rule that we use is a linear combination of two extreme rules: a perfectly symmetric rule

in which every sector gets the same share of public spending, that is Gω = G , and a rule that

allocates public spending in proportion to the quality jump in innovation, that is Gω = Gλω
λ
. A

linear combination of the two extreme rules yields the general rule Gω = (1−α)G+αG
¡
λω/λ

¢
,

with 0 ≤ α ≤ 1.

Proposition 2 Every move from a symmetric rule to a rule that more heavily promotes sectors

with above-average quality-jumps, that is an increase in α, produces a decrease in Ω , which in

turn implies a decrease in the share of the population that decides not to acquire skills θ and an

increase in the skill premium wH.

14The average goverment spending is G =
R 1
0
Gωdω.
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Proof. The general rule yields Ω = G
hR 1
0
1−α
λω

dω + α
λ

i
and deriving Ω with respect to α we

obtain ∂Ω/∂α = G
h
−
R 1
0

1
λω
dω + 1

λ

i
: Jensen’s inequality implies that ∂Ω/∂α < 0. Thus, a shift

to more asymmetric spending (an increase in α ) decreases Ω that, according to Proposition

1.a, generates a decrease in the share of the population that decides not to acquire skills, θ0.

Recalling that the skill premium is wH = σ/ (θ0 − γ), we conclude that a higher α leads to

higher wage inequality.

Proposition 2 contains the basic result of the model: when government switches to a policy

promoting high-tech sectors there is an increase in the relative supply of skilled workers and

an increase in the skill premium.15 This result is directly related to our asymmetric-industry

setting. One dollar of public money in high-tech sectors yields more additional profits than

those lost taking one dollar away from low-tech sectors, and the net result is an increase in

aggregate profits and innovation activity.16 When industries are symmetric the profit rate is

the same in all industries and aggregate profits are not affected by a reshuffling of government

spending.

It is worth stressing that the effect of public spending composition on innovation and growth

takes place only along the transition to the steady state. We work with a semi-endogenous

framework where long-run growth is pinned down by the growth rate of population (I = n/μ).

Although steady state growth rates are not affected, policies altering the scale innovation will

have a permanent impact on the levels. Hence, the steady state relative labor demand and

supply will change according to our findings in proposition 2.

6 Quantitative analysis

Regression results in section 2 suggest that the model identifies an important link. In this

section we try to measure the quantitative relevance of our mechanism by calibrating a two-

sector version of the model.17 Since the only available data on public spending composition

concern investment, in the calibration exercise we need to reinterpret the model in terms of

intermediate goods. As is common in the literature an alternative interpretation of quality-

ladder models is one where households consume a homogeneous consumption good which is

15This theoretical result matches two well known stylized facts of the U.S. labor market (see Acemoglu 2002a
figure 1).
16From (9) we know that λω coincides with the markup over the unit cost for the sector ω. It follows that

markups are higher in high-tech sectors.
17All the results obtained for the model with a continuum of sectors hold for this simplified version.
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assembled from differentiated intermediate goods. The static utility function in (1) can be then

interpreted as a CRS production function where superior quality intermediate goods are more

productive in manufacturing the final good.18

The exercise consists of choosing the 8 parameters of the model {D,Tr, ρ, γ, n, μ, λ1, λ2} to

match salient long-run features of the U.S. economy. Since we work with intermediate goods,

we need to choose our unit of time to be large enough to match their average life time. For

this purpose we choose five years as our unit of time.19 After calibrating the model we explore

the effects of government policy on the skill premium between two 5-years periods, 1976-80 and

1987-91.20 We compute the increase in the skill premium produced by shocking the model with

the change in the composition of public spending showed in figure 1, and compare it with the

actual increase observed in the data.

The calibration of some parameters is standard. We set ρ, which in the steady state is equal

to the interest rate r, to 0.07 to match the average real return on the stock market of 7 percent

for the past century, estimated in Mehra and Prescott (1985).21 We calibrate n to match a

population growth rate of 1.14%, as in Jones and Williams (2000). Since our time unit is 5

years, both ρ and n must be multiplied by five, as we do in table II below. We choose the total

working life time D = 40 as in Dinopoulos and Segerstrom (1999) and the total training time

Tr = 5 to match the average years of college in the US - both values must be adjusted for our

time unit in table II.22 We choose the threshold γ to bound the relative supply of unskilled

workers above 75 percent of the workforce, as in Dinopoulos and Segerstrom (1999).

The crucial parameters of the calibration are the R&D difficulty index μ, and the quality

jumps of the low and high-tech sectors, λ1 and λ2 respectively. We calibrate the quality jumps

using estimates of the sectorial markups for 2-digit U.S. manufacturing firms. We use the

18See Grossman and Helpman (1991) ch. 4.
19Since there is no capital in the model we consider intermediate goods as fully depreciating every period.

Average full depreciation period of intermediate goods is 8-10 years. We choose the lenght of a period to be
not greater of the average training time, which we reasonably assume to be 5 years.
20We choose 1976-80 as the starting year because it corresponds to the moment when the composition of

public spending starts moving faster towards high-tech goods, and it is also very close to the turning point of
the dynamics of the skill premium. We limit the analysis to the period 1976-91 because these are the years
where the bulk of the increase in the U.S. skill premium took place (see figure 1).
21Jones andWilliams (2000) suggest that the interest rate in R&D-driven growth models is also the equilibrium

rate of return to R&D, and so it cannot be simply calibrated to the risk-free rate on treasury bills - which is
around 1%. They in fact calibrate their R&D-driven growth model with interest rates ranging from 0.04 to
0.14.
22Dinopoulos and Segerstrom (1999) use a training time of four years, we stretch it to five to match our time

unit of five years.
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revised OECD classification of high-tech and low-tech sectors as in Hatzichronoglu (1997)23.

Roeger (1995) estimates sectorial markups for the period 1953-84, we take the lower bound of

both high-tech and low-tech groups in these estimates, that is, we consider a 15 percent and a

34 percent markup for low and high-tech respectively24. In our 5-year time frame this implies

setting λ1 = (1 + 0.15 ∗ 5) = 1. 75 and λ2 = 1 + 0.34 ∗ 5 = 2. 7.

Once we have calibrated the two quality jumps we can use the equation for the growth rate

to obtain the difficulty index parameter μ:

g =

.
u

u
= I

Z 1

0

log λωdω =
n

μ

1

2
(lnλ1 + lnλ2) . (19)

From the Penn World tables we take an average GDP growth rate for the period 1976-1991 in

the U.S. of 2.3 percent and using the quality jumps, calibrated as explained above, we obtain

μ equals to 0.47, which is the parameter of the R&D difficulty index25.

To account for the real weight of public investment expenditure on the overall economy we

introduce government investment as a share of total private investment.26 Therefore we set

βω =
Gω

c
and the demand in (8) becomes

cN(t)

λω
+

N(t)βωc

λω
=

N(t)c

λω
(1 + βω) = qω.

Working out the equilibrium with this modification, reducing the system to one equation - as

23In our high-tech group we include sectors classified as high-tech and medium high-tech in Hatzichronoglu
(1997), and similarly we contruct our low-tech group. We are aware of using different sector classifications for
markups and for public investment. This is due to lack of estimates of markups for E&S and strucutures, and
to lack of data on goverment procurement by industry. This simplification does not seem to be problematic
because calibrating the markups using different growth rates for E&S and structures we would obtain a similar
picture. In fact, calibrating μ externally we could use two separate growth equations, g1 = (n/μ) lnλ1 and
g2 = (n/μ) lnλ2, and estimates of the growth rates in E&S and structure to calibrate λ1 and λ2. Cummins
and Violante (2002) find that average technical change in E&S in the last 30 years in the U.S. to be between 5
and 6 percent. Gort, Greenwood and Rupert (1999) find a 1 percent yearly average structures-specific technical
change in the last three decades.
24We take the lower bounds of Roeger’s estimates because we want to provide a baseline calibration with

reasonable markup levels. Too high markup levels would inflate incentives to innovate in the model and lead to
an overstatement of the results. We also performed the calibration with the average markups in Roegers (1995)
weighted with the sectoral output share. This leads to an average markup of 45 percent and in low-tech and of
70 percent in high-tech sectors. In the comparative static exercise we obtain results similar to those reported
below.
25We use equal weights for the two sectors for simplicity. We have also performed the exercise using some

measure of the weights of the high-tech and low-tech sectors in the real economy and we get similar results.
Using sectoral output shares, for instance, we obtain a 51 percent high-tech share and a 49 percent low-tech
share.
26Private spending in the model, labeled c, is consumption. In the calibration, since we work with investment

data, private spending is private investment.
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we did in (A.1.1) - and substituting wH =
σ

θ0−γ into it we obtain a relation between the skill

premium and the composition of public spending (share of low-tech goods G1
c
and share of

high-tech goods G2
c
):

µ
σ

wH
+ 1− γ

¶µ
1− σ

wH
+ γ

¶
φ/2 =

n( σ
wH

)

μσ(ρ+ n/μ− n)

µ σ
wH

+ 1

Γ+Ψ

¶¡
1− Γ+ β −Ψ

¢
, (20)

where β =
R 1
0
βωdω = 0.5 ∗ G1

c
+ 0.5 ∗ G2

c
and Ψ =

R 1
0

βω
λω
dω = 0.5 ∗ G1

λ1c
+ 0.5 ∗ G2

λ2c
. Table IV

below summarizes our calibration.

TABLE IV
Summary of calibration

parameter value moment to match source
D 8 life time after college Dinopoulos-Segerstrom 1999
T 1 years of college Dinopoulos-Segerstrom 1999
ρ 0.15 interest rate Jones and Williams (2000)
n 0.07 population growth rate Jones and Williams (2000)
γ 0.75 lower-bound for the share of unskilled Dinopoulos-Segerstrom 1999
μ 0.47 GDP growth rate of 2.3% Penn World Tables
λ1 1.75 low-tech markup of 15% Roeger (1995)
λ2 2.7 high-tech markup of 34% Roeger (1995)

To asses the effect of public spending on wages we use BEA NIPA data on government

investment in structure (G1), our low-tech aggregate, and E&S (G2), our high-tech aggregate.27

NIPA data on public expenditure shows the following composition in the two periods of interest:

in 1976-80 average government investment in structure was 29 percent and in E&S was 7 percent

of total private investment (G1
c
= 0.29 and G2

c
= 0.07); respectively, in 1987-91 the low-tech

expenditure share decreased to 26 percent and the high-tech share rose to 18 percent. In

our calibrated model this change in the composition of public spending in favor of high-tech

sectors produces a 2.1 percent increase in the skill premium. For the observed skill premium

we use CPS data from Krusell et al. (2000) on average wages of college graduates and high-

school graduates. In the period considered this measure of the skill premium increased by 17.8

27Notice that here we do not exactly use the fiscal policy rules specified in section 5. This is because when
in this simplified version of the model those rules would not allow us to catch the entire effect of a change in
the composition of public spending on the skill premium. In fact, in the case of extreme asymmetric spending
(α = 1) our rule predicts that the low-tech sector gets a share of the public spending that is proportional to it’s
quality jump. While, in the data the extreme asymmetry would mean that the spending going to the low-tech
sector would be zero (G1 = 0). Thus, to keep the model closer to the data in the quantitative excercise we
use directly government investment in the two sectors, as a share of total private investment, as an index of
spending composition.
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percent. Hence, our demand composition shock can explain 12 percent of the total increase in

the skill premium shown in the data.28

We also explore the sensitivity of the results to changes in the difference in the sectorial

quality jumps, which is a proxy of the ‘technology gap’ between the two sets of industries. We

leave λ1 unchanged and increase λ2 to match an average weighted markup of 79 percent - the

weights are sectorial output shares. These changes increase the percentage of the observed skill

premium explained by the model from 12 to 24 percent. Hence, the quantitative importance

of our mechanism increases with the technology gap between low and high-tech sectors.29

7 Discussion

In this section we provide a discussion on the predictions of the model and on the quantitative

results obtained.

Within and between-industry changes. In our model the demand-composition shock

produces skill-upgrading in high-tech sectors and de-skilling in low-tech sectors. Recent empir-

ical works have showed that skill-upgrading and increasing wage inequality took place in both

high-tech and low-tech sectors in the period of interest, with higher intensity in the former

group of industries (see i.e. Machin and Van Reenen,1998). Our results cannot fully match

this empirical evidence. Here two remarks are needed: first, we do not claim that our source of

innovation is the only one that might have played a role in explaining the observed dynamics

of technical change and wage inequality. Second, even restricting the focus on the ‘policy chan-

nel’ our analysis is limited to a single, demand-side, policy tool. It is likely that supply-side

innovation policies, such as R&D subsidies and technology transfer, might also have affected

technology and wages in recent years. For instance, the introduction in 1981 of R&D subsidies

through the Research and Experimentation (R&E) Tax Credit, by reducing the after-tax cost

28The measure of inequality that we use, wH/wL, might overstate the increase in the skill premium when
we bring the model to the data. This happens because the average wage of skilled workers in the model isR 1
θ0
(θ − γ)wHdF (θ) which is smaller than wH . We do not use this measure in the calibration because there is

a semplification in the model that counterbalances the overstatement of the skill premium generated by using
wH as average skilled wages. In fact we assumed that unskilled workers do not accumulate human capital,
and so their average wage is simply wL. In the data average wages of both skilled and unskilled are computed
taking into account the ‘abilities’, or human capital, of heterogeneous workers in the two groups. Hence, using
wL in the model for the average unskilled wage understates the real measure of the skill premium. Our take is
to leave human capital accumulation out of the measure of inequality in the calibration to avoid distortions in
both directions.
29It is worth to notice that the substantial but relatively small amount of inequality explained by our mechanim

might be biased downward by the lack of data on the technological composition of public consumption.
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of innovation might have increased the relative demand for skills and the skill premium in all

sectors of the economy. Introducing R&D subsidies in the model would allow us to have a policy

tool that produces skill-upgrading in all industries symmetrically. The extent to which R&D

subsidies would compensate for the negative skill-upgrading in low-tech industries produced

by government expenditures will depend on the parameters of the model and on the relative

strength of the two types of policies.

In appendix B we have extended the model to include a simple symmetric subsidy to R&D.30

We have used Hall (1993) estimates of the effective credit rate produced by the R&E Tax

Credit, and measured the effects of R&D subsidies on wage inequality. The annual across-

sectors average credit rate varies between 3.04 percent in 1981 and 7.49 percent in 1991.31 In

our starting period, 1976-80 the credit is 0, and in the ending period, 1987-91, the average credit

rate is estimated to be around 4 percent per year. In our calibrated model this subsidy shock

produces a 3.2 percent increase in the skill premium, accounting for about 18 percent of the real

change in the skill premium over the period. Hence, when we introduce a supply-side policy

tool, the model could predict skill-upgrading and increasing wage inequality in both high-tech

and low-tech sectors, with higher intensity in the former group of industries, in accordance with

the evidence in Machin and Van Reenen (1998).

Moreover, there is consensus in the literature that most of the recent increase in wage

inequality is explained by within-industry changes and that between-industry changes play a

minor but non-negligible role. Berman, Bound and Griliches (1994), for instance, find that

between-industry changes explain about one-third of the total increase in the share of the wage

bill of non-production workers in the period 1979-87. They also find that the primary source of

inequality induced by between-industry changes was explained by defense procurement.32 Our

findings are not far from this general picture.

Finally, the recent empirical literature on sector-specific technical change confirms the idea

that high-tech sectors have been the major engine of innovation in the last decades.33 Cummins

30Appendix B is available upon request.
31The credit rate was initially set at 25 percent of “incremental” R&D: incremental meant above the level of

the previous year in 1981, and in the following years the increase was measured over the average R&D spending
in the previous three years. The credit rate was also reduced to 20 per cent from 1982 onward. Although the
credit rate has been fairly constant, its incremental feature generates a persistent incentive for private firms to
increase their R&D investment over time.
32They rely on evidence that defense related industries tend to employ a large proportion of non production

workers, especially with the emphasis put on high-tech weapons since the late 1970s (see also O’Hanlon, 2000).
33See Hornstein et al. (2005).

19



and Violante (2002) find the average technical change in E&S over the last 30 years in the

U.S. to be between 5 and 6 percent. In this literature, the change in E&S is proxied by the

difference in growth rates between constant-quality consumption prices and quality-adjusted

prices of investment in E&S. The substantial decline of the quality-adjusted price of capital

equipment since the early 1970s provides evidence of E&S-specific technical change. Recently

some empirical works have shown that, although technical change in structures is less relevant

than in equipment goods, it has been positive and significative in the last decades. Gort,

Greenwood and Rupert (1999) find a 1 percent yearly average structures-specific technical

change during the last three decades. In line with this evidence, the demand-pull effect of

public spending composition reduces the quality-adjusted prices of high-tech goods more than

those of low-tech goods.

Autonomous private innovation. We want to emphasize that our analysis is not meant

to exclude or downplay any autonomous role of private innovation. Indeed, one could introduce

asymmetry in private spending and study the effects of changes in its composition on the wage

structure. According to the facts discussed in section 2 we expect that the shift in public

spending composition will be relatively more important in the 1980s, and private spending

composition will be the main factor in the 1990s.

8 Conclusions

In this paper we have shown that the technological content of government procurement played

a significant role in explaining the wave of innovations that hit the U.S. economy in recent

decades and its effects on the wage structure. The interaction between policy and the het-

erogeneous industry structure yields the basic theoretical contribution of the paper: a shift

in the composition of public spending towards highly innovative sectors increases aggregate

expenditure in innovation and the skill premium.

We identify and quantify the role of a new source of technical change, government policy,

which complements the role of international trade (Dinopoulos and Segerstrom 1999 and Ace-

moglu 2003) and of the relative supply of skills (Acemoglu 1998 and 2002b, and Kiley 1998).

It is worth stressing once again that our model is not, strictly speaking, a model of skill-biased

technical change. However, introducing endogenous factor-bias in the set-up and assuming that

high-tech goods are produced by skilled workers and low-tech goods by unskilled workers, the
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composition of government spending would have the same qualitative effects on inequality.

This paper represents a first attempt to evaluate the effects of policy on technology and

wages and is amenable to many extensions. Further research is needed to fill the data gap that

prevents a more rigorous evaluation of the magnitude of the policy effects on wages. Lacking

data on the technological composition of aggregate government procurement, in our empirical

analyses we have used the only available sub-sample: the composition of government investment.

Despite the support for our theory provided by such data, a larger sample of government

procurement would certainly refine the results. Hence, some effort should be devoted to the

collection of data on the composition of public consumption between high-tech and low-tech

sectors; this would allow for a better quantitative assessment of our demand-side policy channel.

Moreover, it would be interesting to introduce asymmetric private spending and evaluate the

relative importance of public and private spending composition in producing a demand-driven

mechanism of innovation and inequality.

A second line of future research would involve a more complete investigation of the ‘policy

channel’ by explicitly introducing into the model some supply-side policy tools that might have

contributed to increase private incentives to innovate in the 1980s. In this period, in fact,

we observe the introduction of new policy tools aimed at facilitating firms’ access to public

technology, improve intellectual property rights and, more in generally, reduce the private cost

of innovation. The introduction of the Research and Experimentation Tax Credit in 1981

discussed in the previous section; the Bayh-Dole Act of 1980 and the Federal Technology

Transfer Act of 1986, which transformed federal laboratories into sources of innovation for U.S.

firms; the establishment in 1982 of the Court of Appeals for the Federal Circuit, which improved

the protection granted to patents holders; the National Cooperative Research Act of 1984,

which reduced antitrust prosecution of joint ventures for pre-commercial research. Mowery

(1998) describes this set of policies as a "structural change in the U.S. national innovation

system". There is sufficient consensus among technology policy scholars that the post-1980

shift, started during the Reagan and Bush administrations and continued as a trademark of

Clinton’s economic policy, represents a crucial move towards an explicit commercial innovation

policy in the U.S..34

Finally, our basic theoretical finding highlights a mechanism of ‘zero-cost’ growth policy that

34For a more detailed analysis of the changes in technology policy in the 1980s see Mowery and Rosenberg
(1989), Mowery (1998), and Branscomb and Florida (1998).
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can be relevant for recent policy debates, especially in those countries that, burdened by large

public debt, wish to stimulate growth without using deficit spending. For instance, low-cost

growth policies have recently played a central role in the implementation of the Lisbon Agenda

in the E.U.. (see Sapir 2003).35 In our semi-endogeous set-up reshuffling public expenditure in

favor of high-tech sectors promotes higher economic growth along the transition to the steady

state. Introducing the asymmetric industry structure into a fully-endogenous R&D-driven

growth model (i.e. Dinopoulos and Thompson, 1998, Howitt, 1999, Peretto, 1998) the increase

in the technological composition of government spending would increase long-run growth. This

could be another interesting area of future research.

9 Appendix

Proof of the existence of the steady state. Solving (17) for xω and integrating it w.r.t. ω

we get:

x =
θ0 − γ

bσ(ρ+ n/μ− n)

£
(θ0 − Ω) (Γ−1 − 1) + (G− Ω)

¤
(A1)

and substituting this into (18) we obtain the following synthetic equilibrium condition:

(θ0 + 1− 2γ) (1− θ0)φ/2 =
n(θ0 − γ)

μσ(ρ+ n/μ− n)

£
(θ0 − Ω) (Γ−1 − 1) + (G− Ω)

¤
. (A.1.1)

The LHS of this eq. (A11) is a strictly concave quadratic polynomial with roots on 2γ − 1

and 1, and the RHS of eq. (A11) is a strictly convex quadratic polynomial with roots γ and
Ω−ΓG
1−Γ . It follows that, if the stated parameter restrictions are satisfied, there exists always one

and only one real and positive solution θ0 ∈ (γ, 1). The proof follows from the fact that the

specified parameter restriction allows the intercept (the value of the polynomial at θ0 = 0)

of the LHS polynomial to be bigger than in intercept of the RHS polynomial. Specifically

LHS(0) > RHS(0) implies:

(1− 2γ)φ/2 > nγ

μσ(ρ+ n/μ− n)
(
Ω− ΓG

Γ
),

35For a recent survey on growth policies see Aghion and Howitt (2005).
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which rearranged leads to the parameter restriction. It is easy to see that this condition allows

for a unique solution36. Moreover for Minkowski’s inequality Ω − ΓG < 0, therefore when

1− 2γ > 0 no restriction on parameters is needed for a unique solution.

Proof of Proposition 1.a. Solving (17) for xω we get:

µ
λω − 1
λω

¶µ
θ0 − Ω

Γ
+Gω

¶
θ0 − γ

bσ(ρ+ n/μ− n)
= xω,

and deriving w.r.t. Gωwe obtain

∂xω
∂Gω

=

µ
λω − 1
λω

¶
θ0 − γ

bσ(ρ+ n/μ− n)
,

which is always positive since λω > 1, θ0 > γ and ρ > n. From this derivative we can also

see that ∂xω/∂Gω > ∂xω0/∂Gω0 when (λω − 1) /λω > (λω0 − 1) /λω0 which is always true if

λω > λω0.

Proof of Proposition 1.b Rearranging (A11) we get a single polynomial in θ0 and Ω:

F (θ0;Ω) =
n(θ0 − γ)

μσ(ρ+ n/μ− n)

£
(θ0 − Ω) (Γ−1 − 1) + (G− Ω)

¤
− (θ0 + 1− 2γ) (1− θ0)φ/2.

(A.1.2)

Using the Implicit Function Theorem we get:

dθ0
dΩ
=
−∂F/∂Ω
∂F/∂θ0

=

=

n(θ0−γ)
μσ(ρ+n/μ−n)Γ

n
μσ(ρ+n/μ−n)

£
(θ0 − Ω) (Γ−1 − 1) + (G− Ω)

¤
+ n(θ0−γ)

μσ(ρ+n/μ−n)(Γ
−1 − 1) + φ (θ0 − γ)

> 0

This results follows from the fact that θ0 > γ, ρ > n, Γ−1 > 1 and finally, from (A1) we

know that the expression inside the square brackets is greater than zero.
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Figure 1. Public spending composition and the skill premium: 1963-99
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Note: public spending composition is government investment in E&S as a share of total government 
investment.  Sources: BEA, NIPA Tables section 5 for investment and  Krusell, Ohanian, Rios-Rull and 
Violante (2000) and Current Population Survey (1999) for the skill premium. 
  

Figure 2. Private R&D spending and the skill premium
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Source: NSF, Science and Engineers Indicators 2004 and Krusell, Ohanian, Rios-Rull and Violante (2000) 
and Current Population Survey   (1999).  
 




