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Abstract 
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1. Introduction 
 
The study of partial differential equations (PDE) is a fundamental topic in applied 

mathematics. In fact, PDEs are fundamental in many applications in physics, natural 

science and finance. For example, in finance PDEs arise in arbitrage based asset models. 

The widely cited Black and Scholes PDE, that each European option must satisfy, within 

an arbitrage free market, it is a canonical example.  

In the specific example, (i.e. Black and Scholes model above) the PDE has a 

specific analytical solution, however, in many other interesting cases in finance as well as 

other fields, closed form solutions are very difficult to obtain.  Therefore, in these cases 

researchers rely on various numerical methods to obtain a solution. The study of these 

numerical methods represent the area of Computational Partial Differential Equations. 

The most simple applicable algorithm to approximate PDEs rely on the concept of 

discretisation. That is, replacing the PDE of interest by a finite dimensional problem. 

However, replacing the PDE by a discrete model is not trivial at all and generally the 

choice of the finite dimensional model to be used depends on the properties behind the 

mathematical model itself. 

The development of high speed computers has made easier to find accurate 

solutions to PDEs in a very efficient manner, even in most extreme cases of very large 

systems of PDEs. In this study we show how using polynomial methods to approximate 

PDEs. We shall only be focusing on second-order linear PDEs, although it would also be 

interesting to evaluate this methodology when dealing with non-linear types of PDEs. We 

leave this on the agenda for future research. 

Crack-Nicolson (CN) implicit schemes are amongst the most widely used methods in 

these cases. However, the effectiveness of the applications of these schemes rely on the 

choice of the time steps used, and the latter, very often, depend on the problem we are 

facing.  Also CN methods, in general, suffer from poor convergence. 

The method suggested in this paper combines polynomial interpolation to 

approximate the PDE characterising the option pricing problem, and, given our specific 

applications, we use Monte Carlo method to solve the boundary condition for the PDE. 
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We fit the functional at Chebyshev nodes to estimate the coefficients1. The advantage of 

our approach is its flexibility, and the fact that it is easily implementable and since the 

functional, at least in the first empirical example, is approximated using deterministic 

nodes, we obtain less disperse estimates of the coefficients.  In addition, beside our 

specific applications, our method it is applicable in other fields, providing efficient 

solutions to complex systems of partial differential equations. These features make our 

approach very attractive. One reason why polynomial approximations of this type are 

underutilised (in comparison to direct ad hoc approximation methods) by applied 

researchers might be lack of familiarity. Therefore, in Section 3, we provide some 

guidance on how to use them to solve systems of differential equations.  

 The layout of the paper is the following. Section 2 describes the option pricing 

valuation model, which is our application.  Section 3 outlines the approximation method 

we advocate to obtain the solution to the option pricing problem. Section 4 evaluates its 

empirical performance. Section 5 summarises the main findings of this study and offers 

some concluding remarks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                              
1
 Tzavalis and Wang (2003) use a similar approach based on Chebyshev approximation to approximate the 

optimal exercise boundary in the context of a stochastic volatility model. Their method also relies on 
extrapolation procedures. 
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2. The Valuation Model  
 
In this paper we present a simple and flexible method to approximate partial differential 

equations. We start showing how to use the method by pricing an European option. 

Suppose that the price of a non-dividend-paying asset in period 0 is 0S , and denote with 

K  the strike price of a put option written on that asset.  

 
Assumption 1: We assume that the option value depends on the stock price at expiry of 

the option and time, ),( tSV tt . 

 

Suppose also that the process for S  is described by the following geometric 

Brownian motion: 

 
tttt dZSrdtSdS σ+=                   (1) 

 
 
where dZ   is a standard increment of a Wiener process, and σ the variance parameter.  

We can expand 
dt

dVE 1)( , using Ito`s Lemma and the stochastic process above to 

obtain: 
 

               ssts VSVrSVrV 22
2
1 σ++=    (2) 

           
where (.)V  represents the derivative with respect to the argument in the subscript. 

 
All European options, in absence of arbitrage, must satisfy Equation (2). A call option 

will have at expiry a payoff given by KS − , if KS > , while for a put option we have at 

expiry the payoff SK − , if  SK > . Therefore, in our specific case, the boudary 

condition is given by 

 

),0max(),( SKtSV −=    (3) 
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If we set the value function above )()(),( tcstsV φ≈ , where φ  is a suitable basis for an n-

dimensional family of approximating functions and )(tc  is an n-vector of time-varying 

coefficients, equation (2) can be re-written as follows: 

 

                     )()()()]()(''
2
1)('[)(')( 22 tcstcsrsssrstcs ψφφδφφ ≈−+≈                          (4) 

 
 
To determine )(tc , we select n-values (nodes) of s , is , and solve (4) for that particular 

set of values. Given the n-dimensional family of basis functions chosen, (4) can now be 

re-written in the form of a system as follows: 

 

)()(' tctc Ψ=Φ                       (5) 
 
 
where Φ and Ψ   are two nn×  matrices. 
 
 
Once the coefficients have been obtained as in (5), to price the financial option, we, first, 

use the process in (1) to obtain estimates of (3). Finally, we multiply this by the estimated 

coefficients. Averaging gives the price of the option.  

 
3.  Polynomial Approximation       
 
In this section we describe in greater detail the approximation method adopted in this 

paper. Let 1+ℜ∈ nV  be a function defined on the interval ],[ ba , the latter may well not be 

tractable analytically, and assume that P  is a polynomial that interpolates V  at the 

distinct 1+n   points ],[ basi ∈ , with ∑
=

=
n

i
ii scsP

0
)()( φ . In order to solve the problem in 

Section 2 by approximation we need to define: (a) the family of basis functions to 

approximate the function V , (b) the interpolation nodes, is . In this section we show that 

Chebyshev polynomials in conjunction with Chebyshev nodes offer the best solution to 

our problem. 
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Theorem 1: if ],[ baV ℜ∈ , then for all 0>ε  there exists a polynomial )(sP  such that 

ε≤−∈∀ |)()(|],[ sPsVbas . 

 

Remark 1. The above theorem is known as the Weierstrass theorem. It states that any 

continuous function can be approximated with a certain degree of accuracy by using a 

polynomial. Although very important theoretically, this theorem is of little practical use 

since it does not give any indication of what polynomial is the most appropriate to use, or 

even what order polynomial is needed to achieve a certain degree of accuracy. 

The error made by using a polynomial of order n  to approximate the function 

given in Theorem 1 can be easily calculated as: 

 

∏
=

+ −
+

=−
n

i
i

n ssV
n

sPsV
0

)1( )()(
1

1)()( ε  

                                     
 
The objective of using such an efficient polynomial consists in choosing a set of nodes is  

so as to make the term ∏
=

−
n

i
iss

0

)( as small as possible (Judd, 1998). One possibility is to 

approximate the function V at the n-evenly spaced nodes. However, it is well known that 

in general, even for smooth functions, polynomials of this type do not produce very good 

approximations.2 Therefore, we suggest approximating the function over the interval 

],[ ba , at the Chebyshev nodes defined as: 

 

ni
n
isi ,...,1,0),

22
12cos( =

+
+

= π            

 
 

Our approach can be justified by appealing to Rivlin’s theorem, stating that Chebyshev 

node polynomial interpolants are nearly optimal polynomial approximants (Rivlin, 1990), 

                                              
2
 A classic example is Runge`s function (Rivlin, 1990). 
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and has been shown to perform well empirically (Rivlin, 1990). Chebyshev nodes are 

also known to possess a further convenient property, i.e. equi-oscillation 3(Judd, 1998). 

As important as the choice of the nodes interpolants is that of a family of functions from 

which the approximant P will be drawn. We suggest using a Chebyshev polynomial. This 

is defined as4: 

 
))cos(cos()( siasi =Γ  ni ,...,1,0=  

 
with ,1)(0 =Γ s ,)(1 ss =Γ and )(2)( 11 sss nnn −+ Γ−Γ=Γ  

              
Therefore: 

∑
=

Γ=
n

i
ii scsV

0
)()(      (6) 

 

 where ∑
=+

=
n

i
ksV

n
c

0
0 )(

1
1  and  ∑

=+
=

n

i
kki siasV

n
c

0
))cos(cos()(

1
2 , ni ,...,1=  

  

A Chebyshev basis polynomial, in conjunction with Chebyshev interpolation nodes, 

produces an efficient interpolation equation which is very accurate and stable over n . 

However, in our case, to solve the problem in (3), the polynomial we choose should be 

able to replicate, not just the function V at nsss ,...,, 21 , but also its derivatives 

''
2

'
1 ,...,, nsss . Therefore the approximant that solves our problem can be defined as 

follows5: 

 

∑
=

=∀=Γ
n

i
iiii nsVsc

1
1,...,1),()(       

             ∑
=

=∀=Γ
n

i
iiii nsVsc

1
2,...,1),(')'('                            

                                              
3
 This property states that the maximum error of a cubic function, for example, shall be reached at least five 

times, and the sign of this error should alternate between the interpolation points. 
4
 Note that in this application we use the general formula for the Chebyshev basis, however there exists also 

a recursive formula. 
5
 Note that, although one can also use Hermite polynomials to approximate the functional and the slopes, 

the latter are inefficient (Judd, 1998). 
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with nnn =+ 21 . 
 
Once the basis functions (approximants) have been chosen and the approximant nodes 

defined, the basis coefficients ic  can be obtained. If we define the following Chebyshev-

Vandermode type matrix Τ : 

 
 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

ΓΓΓ

ΓΓΓ
ΓΓΓ

=Τ

−

−

−

)110

212120

111110

(.)()(
....

)(.)()(
)(....)()(

nnnn

n

n

sss

sss
sss

 

 
 
then the coefficients ic ; )',...,,( 110 −= ncccc  of )(sV  solve Vc =Τ , with )( iiij sΓ=Γ being 

the j basis function evaluated at the i-th interpolation node. When s  is allowed to vary 

over some other interval, say ]1,1[],[ −≠Tt , we rescale the value of s  to *s where 

))()((
2
1* tTstTs ++−= 6. 

 As an example of using different basis functions, we anticipate some of the 

empirical results presented in the next section and after pricing an European option we 

calculate the approximation error. We use two different basis functions (i.e. Chebyshev 

basis and spline basis). The approximation error is shown in Figures (1-2). 

 

Insert Figures (1-2) here 

 

As can be seen, when the approximation is calculated using Chebyshev basis functions 

the error is of the order of 1×10-15 for a polynomial of order 20. Spline functions do not 

                                              
6
 An interesting issue here is the non-singularity of the Vandermode matrix over Chebyshev basis as above. 

In theory, there is no guarantee that the matrix is non-singular. However, in practice, in general applications 
such as ours, we can conjecture that as long as the number of indeterminates exceeds the sparsity with 
respect to Τ , non-singularity should hold. Alternatively, we suggest two ways to overcome the problem: 
(a) simply use the singular value decomposition of Τ ; (b) use the generalised Vandermode matrix over 
Chebyshev. In fact, for this type of matrix Werther (1993) proves that, as long as the indeterminates take a 
value [1, ∞], the generalised Vandermode matrix over Chebyshev basis is non-singular. 
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achieve a comparable degree of accuracy even increasing the order of the polynomial to 

30.   Furthermore, Chebyshev polynomials exhibit their usual oscillation which appears 

fairly evenly over the interval we have considered. On the other hand, spline polynomials 

exhibit larger oscillations at the edges of the interval.  

 

4. Option Pricing 

 

To show how to empirically use the proposed method we provide now two examples. We 

start with the first example, which has already described in section 2. In the first case, we 

use the proposed methodology to value an European put option written on a stock . In this 

case, there is the possibility to compare the empirical result given by our methodology 

with the Black and Scholes closed form solution. We use the absolute error (ASE) as a 

measure of accuracy.  

 

Table 1 shows the results for the entire set of options considered. We also report 

the results using the Black and Scholes method (1973 - B&S henceforth).  

 

Insert Table 1 here 

 

We fit (4) using the first twenty Chebyshev basis to estimate the parameters ic in (4)7. 

The basis number has been chosen using Theorem 6.4.2 in Judd (1998). Once the 

coefficients have been estimated, we estimate the boundary condition in (3) by simulating 

200,000 paths for the stock. We can see that regardless the option considered, our method 

produces rather accurate option prices. The absolute error reported at the bottom of Table 

1 confirms that.  

 

 

 

 

                                              
7
 Note that we estimate these coefficients using Chebyshev nodes and Chebyshev basis. 
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6. Investment Under Uncertainty 

 

The second empirical example we consider is taken from the Investment theory under 

uncertainty. We consider the case of having to decide when it is optimal to shutdown a 

machinery, assuming that there is no maintenance cost for maintaining the machine alive. 

Suppose that )(tπ is the profit generated by the machinery at time t , and suppose that it 

follows the Brownian motion process below 

 

dzadttd σπ +=)( ,  0)0( ππ =        (7) 

 

where a is the rate of depreciation of the investment, σ is the volatility of profit, and 

dz is an increment of a Wiener process. 

 

We report three paths of the process in Figure 3. We have considered the parameters 

reported at the bottom of Table 3 and the time 10=T , has been divided in one-hundred 

time steps. As it appears clear, the investment will, in general, produce a loss before 3 

years. However the decision to shutdown the machinery cannot be only taken by looking 

at the dynamics of these paths. In fact, this is a more complex problem since once the 

machinery has been shutdown it cannot be re-started again. That is the investment is 

irreversible. Therefore, one has to consider the optimal policy to decide when it is 

convenient to shutdown the investment. 

 

Following Dixit and Pindyck (1994), suppose that ),( tF π is a claim of the profit flow, π , 

and suppose it is determined as  

 

∫ −
Γ∈=

T
rt dtteEtF

0

)(max),( ππ τ            (8) 

 

where r is the risk free rate of interest, T is the time and Γ∈τ is a random stopping time. 
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Suppose that the machinery can be eliminated only up to time 
−

T . After that time it has to 

run forever. We assume that if the machinery is eliminated cannot be re-installed, this 

assumption highlights the irreversibility of the investment. 

 

The Bellman Equation for the optimal stopping problem can be written as 

 

)],([)1(,0max(),( 1 dttdFErdtdttF ++−+= − ππππ           (9) 

 

 

Therefore, if the machinery is eliminated the profit will be zero.  If we continue to hold 

alive the machinery, then the profit is given by the conditional expectation in (9). One 

can show that for this case, the value function F , in the continuation region, satisfies the 

following Bellman equation  

 

 

πππ σπ FaFrF 22/1++=          (10) 

 

where (.)F is the derivative with respect to the sub-script. 

 

Under the assumption that if not abandoned by 
−

T , the machinery has to run forever, the 

terminal condition can be written as )/2^/,0max(),( ππ rraTF +=
−

. 

We can still use the same approach as in Section (3) to solve this optimal stopping 

problem. However, now solving (10) at each stopping times require more effort. One way 

could consist in using finite difference methods. However, this approach turns out to be 

very time consuming. On the other hand using Richardson extrapolation methods would 

increase the speed but at a cost of, sometimes, poor convergence. The method described 

in Section (3) can be adapted to this specific case. In fact, it is very similar in spirit to the 
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Least-Squares algorithm introduced in Longstaff and Scwartz (2001). The coefficient 

c in Section 3 are still estimated using Chebyshev polynomials and the same approach as 

before but now the interpolant nodes are projected using (7)8. We assume that there is a 

threshold at $0.87 and once it has been reached one has to decide if it is convenient to 

shutdown the machinery. Using 200 time steps, four Chebyshev basis functions and one 

hundred thousands replications, we estimate that it is optimal to shutdown the machinery 

soon after its second year of life. This empirical result is in line with the three paths 

shown in Figure (3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                              
8
 We have aslo tried to estimates the parameters using Chebyshev nodes but in this specifi case we obtained apoor fit. Therefore we suggest, when dealing with 

optimal stopping problems, to not use Chebyshev nodes. 
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7. Conclusions 

 

In this study we suggest a simple way to approximate partial differential equations 

suggesting a method based on Chebyshev approximation at Chebyshev nodes. We 

provide two empirical examples. The first example consisted in pricing an European put 

option. The second example consisted in solving an optimal stopping problem. In the last 

example the proposed methodology did not use determinist nodes to approximate the 

functional but rather stochastic ones. Our method is simple to apply and extend and 

provide a reliable framework which can be applied either to price more complex 

derivative instruments or used in many interesting cases in economics.  We leave this on 

the agenda for future research.  
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Figure 1 
 
Approximation error using (8) and Chebyshev polynomial when volatility is equal to 0.2 
and the interest rate is 0.048. 
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Figure 2 
 
Approximation error using (8) and splines basis when volatility is equal to 0.2 
and the interest rate is 0.048 
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K Sigma t (yrs) B&S CC (2008) 

40 0.2 0.0833 0.8403 0.838 

40 0.2 0.3333 1.5221 1.472 

40 0.2 0.5833 1.8812 1.802 

45 0.2 0.0833 4.8399 4.837 

45 0.2 0.3333 4.7804 4.771 

45 0.2 0.5833 4.84 4.813 

40 0.3 0.0833 1.2988 1.297 

40 0.3 0.3333 2.4275 2.426 

40 0.3 0.5833 3.0634 3.062 

45 0.3 0.0833 4.9796 4.976 

45 0.3 0.3333 5.5288 5.517 

45 0.3 0.5833 5.9723 5.946 

40 0.4 0.0833 1.7575 1.758 

40 0.4 0.3333 3.3336 3.3335 

40 0.4 0.5833 4.2473 4.246 

45 0.4 0.0833 5.236 5.235 

45 0.4 0.3333 6.3767 6.359 

45 0.4 0.5833 7.1654 7.131 

ABE    0.0151 

Table 1 
Column 4 shows the results using the Black and Scholes (1973) method.  
Column 5 shows the results using our suggested method (Caporale and Cerrato – CC). 
RMSE at the bottom of the table is the root mean square error. 
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Figure 3 
 
The stochastic process in Figure 3 has been simulated using 1.0−=a , 2.0=σ , and 

10 =π . 


