
OPTIMAL ALLOCATION WITH EX-POST VERIFICATION
AND LIMITED PENALTIES

Tymofiy Mylovanov and Andriy Zapechelnyuk

Abstract. We study the problem of allocating a prize to one of several agents. The
social value of giving the prize to an agent is privately known by this agent. The
allocation rule chooses the winner of the prize based on the agents’ reports about these
values. After the prize is allocated, the social value of giving the prize to the winner
becomes commonly known and the agent can be penalized for lies about the value. We
show that, if the number of agents is low, the optimal allocation rule takes the form
of a restricted-bid procedure; otherwise, it takes the form of a shortlisting procedure.
Examples of applications of this model are grant competitions, scholarship allocations,
and hiring for a fixed-salary post.

Keywords: mechanism design without transfers, Matthews-Border constraint, short-
listing procedure, verification, limited penalty

JEL classification: D82, D86

Date: August 14, 2016.
Mylovanov: University of Pittsburgh, Department of Economics, 4901 Posvar Hall, 230 South Bouquet
Street, Pittsburgh, PA 15260, USA. Email: mylovanov ατ gmail.com
Zapechelnyuk: Adam Smith Business School, University of Glasgow, University Avenue, Glasgow G12
8QQ, UK. E-mail: azapech ατ gmail.com
We would like to thank four anonymous referees for comments that led to a significant improvement
of the paper. We are also grateful to Simon Board, Daniele Condorelli, Rahul Deb, Hanming Fang,
Drew Fudenberg, Manolis Gallenianos, Sidartha Gordon, Daniel Krähmer, Stephan Lauermann, Michael
Ostrovsky, Mallesh Pai, Rakesh Vohra, and audiences at numerous seminars and conferences.

1



2 TYMOFIY MYLOVANOV AND ANDRIY ZAPECHELNYUK

1. Introduction

A principal has an indivisible prize to give to one of several ex-ante identical agents.
The principal’s value from giving the prize to agent i is privately known by this agent.
The principal asks the agents to report these values and allocates the prize based on the
reports. Ex post, the principal learns the true value from allocating the prize and can
penalize the winner by destroying a certain fraction of his surplus. The principal can
commit to an allocation rule that determines how the prize is allocated as a function of
the agents’ reports and under what circumstances the prize recipient is penalized. There
are numerous economic applications that correspond to our model; we describe some of
them at the end of the introduction.

In our model, the utility is nontransferable. The agents have independent private
values, but these values describe the principal’s utility rather than the agent’s as is more
typical in allocation problems. Ex-post verification coupled with limited penalty is the
only incentive tool available to the principal. Our study complements Ben-Porath, Dekel,
and Lipman (2014), who study a similar allocation problem with different incentive tools:
agents’ reports can be verified at a cost before the allocation decision is made (see a more
detailed comparison later in this section).

In the current paper, we characterize allocation rules that maximize the expected
payoff of the principal. To understand the forces at play on the intuitive level, consider
a naive rule that allocates the prize to the agent with the highest reported value. In
the unique equilibrium, everyone reports the upper-bound value, and the rule de facto
allocates the prize at random. This is so even if the lies are penalized ex post. An
agent with a low value (values are continuously distributed) has only a slight chance of
winning by truthfully reporting his value, since it is nearly certain that another agent has
a higher value. Inflating the report to the upper-bound value substantially increases the
probability of winning the prize, albeit at the cost of loosing a fraction of the surplus.
The argument then unravels: once agents with low values inflate their reports, then
agents with medium and, in turn, high values respond by inflating their reports as well.

The principal can do better than allocating the prize at random. Consider a restricted-
bid procedure that allows the agents to submit reports within some interval between two
thresholds and selects the agent with the highest report (ties are broken randomly). Ex
post, the winner is penalized whenever his report is “inflated,” i.e., when it is above
the lower threshold and exceeds the true value. An agent’s benefit from an inflated
report is bounded by the increment in the probability of selection between submitting
the upper threshold and the lower threshold reports. When this probability increment is
small enough and does not compensate for the loss of the surplus caused by the penalty,
reporting the value closest to the true value within the permitted interval is optimal.
This allocation rule is superior to random allocation, as it only bunches types at the
top, above the upper threshold, and at the bottom, below the lower threshold, while
fully separating types in the middle. We show that, for a small number of agents, the
optimal rule has the described two-threshold structure.
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The optimal allocation rule is different when the number of agents is large. It can
be described as a shortlisting procedure. Agents report whether their values are above
or below a single threshold. The former are shortlisted with certainty, while the latter
are shortlisted with a probability of less than one. A winner is chosen randomly from
the shortlist. If the shortlist is empty, then a winner is drawn at random from the full
set. Ex post, the penalty is imposed if the winner has an above-threshold report and a
below-threshold value.

There is a simple reason that the optimal thresholds merge into one as the number
of agents, n, increases. For a fixed pair of thresholds, an agent who reports the upper
threshold is selected with a probability of at least 1/n. In contrast, if the agent reports
the lower threshold, he is selected with the probability of 1/n times the probability
that the other n − 1 agents have values below that threshold. Thus, for a fixed pair of
thresholds, the ratio of these probabilities grows exponentially in n, making it optimal
to report the upper threshold for large n. To maintain incentive compatibility, this
probability ratio should remain constant as n increases. There are two ways to do
it. First, the distance between the thresholds can be reduced. Second, the prize can
sometimes be allocated to an agent other than the one with the highest report. Since
the principal benefits from selecting the agents with higher values, the former approach
is always preferred. Once the thresholds merge, the probability ratio can still be too
high. In this case, the second method is used and the agents with reports below the
threshold are selected with a positive probability. This is the shortlisting procedure.

We now discuss some of the economic applications of our model. For example, a
government agency announces a grant competition among non-governmental organiza-
tions (NGO). Each NGO privately knows the social value it can produce. After the
completion of the funded project, the agency can conduct a review and decide whether
to blacklist that NGO for future grant applications (or whether to sue the recipient
NGO for funding mismanagement, assuming that litigation is successful with less than
certainty). For another example, a college administration has to allocate an academic
scholarship or a slot in a program to one of the applicants. The students have private
information about their abilities or their fit to the program. The college will be able to
withdraw the remainder of the scholarship from the students with subpar performance.
The last example is a firm that would like to fill a position with a fixed salary. Applicants
have private information about their qualifications. The firm will eventually learn the
qualification of the new hire and can choose to let him or her go.

In all these examples, the principal can punish the agent for lying about her private
information by destroying a part of the prize. This penalty is limited because the agent
enjoys a share of the payoff until the prize is taken away, or with some probability, the
principal may fail to take the prize away because of legal or political reasons (e.g., a court
might side with the worker), or imperfect monitoring. The agent has limited liability
and cannot be punished beyond taking the prize away.

Ben-Porath, Dekel, and Lipman (2014) (henceforth, BDL) study a similar model.
They assume that the principal can verify the information of all agents prior to deciding
on allocation, and verification is costly. The principal faces a tradeoff between reducing
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the cost of verification and improving incentives for the agents to report their information
truthfully. The optimal rule is a one-threshold mechanism. If all agents report values
below the threshold, their values are not verified and the good is allocated to a “favored”
agent. Otherwise, the highest report is verified. Thus, similar to the optimal rules in our
paper, there is distortion and bunching at the bottom. The reason for this distortion
is different: the expected value from allocating to the highest-value agent if all agents
have low valuations does not justify paying the verification cost. In BDL, there is no
distortion at the top because the agents who report high values will be verified and
denied the good if they lie. The difference in the timing of verification between our
models is not essential: if in our model, the principal could recover the entire good with
certainty and there were verification costs, the model would become equivalent to BDL.

In our model, there are no transfers at the interim (allocation) stage and there are
restricted penalties at the ex-post stage. Optimal contracts with transfers that can
depend on ex-post information have been studied in, e.g., Mezzetti (2004), DeMarzo,
Kremer and Skrzypacz (2005), Eraslan, Mylovanov and Yimaz (2014), Dang, Gorton
and Holmström (2015), Deb and Mishra (2013), and Ekmekci, Kos and Vohra (2016).
This literature is surveyed in Skrzypacz (2013).1 Burguet, Ganuza and Hauk (2012) and
Decarolis (2014) study allocation problems with transfers in which the principal has a
lack of commitment and can renege on transfers ex post (e.g., because of bankruptcy).
In these problems, similarly to our model, agents with low values are given rents to
stop them from bidding too aggressively to win the contract.2 For mechanism design
with evidence at the interim stage see Green and Laffont (1986); Bull and Watson
(2007); Deneckere and Severinov (2008); Ben-Porath and Lipman (2012); Kartik and
Tercieux (2012); Sher and Vohra (2015), and Koessler and Perez-Richet (2013). Finally,
for the literature with costly state verification, monetary transfers, and one agent, see
Townsend (1979), Gale and Hellwig (1985), Border and Sobel (1987), and Mookherjee
and Png (1989).

There is a body of literature on mechanism design with partial transfers in which the
agents’ information is non-verifiable. In Chakravarty and Kaplan (2013) and Condorelli
(2012), a benevolent principal would like to allocate an object to the agent with the
highest valuation, and the agents signal their private types by exerting socially wasteful
effort. Condorelli (2012) studies a general model with heterogeneous objects and agents
and characterizes optimal allocation rules where a socially wasteful cost is a part of
mechanism design. Chakravarty and Kaplan (2013) restrict their attention to homoge-
neous objects and agents, and consider environments in which a socially wasteful cost
has two components: an exogenously given type and a component controlled by the prin-
cipal. In particular, they demonstrate conditions under which, surprisingly, the uniform

1See also Glazer and Rubinstein (2004, 2006).
2Similar forces are at play in Mookherjee and Png (1989), who solve for the optimal penalty schedule
for crimes when penalties are bounded.
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lottery is optimal.3 Che, Gale and Kim (2013) consider the problem of efficient alloca-
tion of a resource to budget-constrained agents. They show that a random allocation
with resale can outperform competitive market allocation. In an allocation problem in
which the private and the social values of the agents’ are private information, Condorelli
(2013) characterizes the conditions under which the optimal mechanism is stochastic and
does not employ payments. Bar and Gordon (2014) study an allocation problem with
non-negative interim transfers (subsidies), in which the allocation might be inefficient
because of incentives to save on the subsidies paid to the agents.

2. Model

2.1. Preliminaries. A principal allocates a single indivisible prize (e.g., a job, schol-
arship, or office space) to one of n ≥ 2 agents. The principal’s payoff from retaining
the prize is normalized to 0, while her payoff from choosing an agent i is xi ∈ [a, b],
where xi is private information of agent i. We assume that b > 0 and we do not restrict
a. In particular, a can be negative. The values of xi’s are i.i.d. random draws, with
continuously differentiable c.d.f. F , whose density f is positive almost everywhere on
[a, b].

The value of the prize for every agent is v(xi) > 0. Each agent i makes a statement
yi ∈ [a, b] about his type xi, and the principal allocates the prize to some agent, or to
none of them, according to a specified rule. After an allocation has been made, the
principal observes type xi of the selected agent and, contingent on this observation,
can destroy a fraction c ∈ (0, 1) of the agent’s payoff.4 This assumption has multiple
interpretations. For example, in the case of a job, the agent can be fired at the end of
a probation period. Alternatively, the agent can be fired immediately after his type is
discovered, but he can appeal to a court and, with some probability, recover the foregone
benefits from employment. Where it is impossible to fire the agent, his surplus can be
decreased through penalties such as unpleasant assignments, moving to a windowless
office, etc. Finally, c can capture the probability with which the principal learns the
agent’s type, after which the agent can be fired.

Parameters a, b, c, and n, and functions F and v are common knowledge. In addition,
we assume that F n−1(0) ≤ 1− c, so that the mass of negative agents is not too large.5

The principal has full commitment power and can choose any stochastic allocation
rule conditional on the reports and any penalty rule conditional on the reports and the
ex-post verified type of the selected agent. By the revelation principle, it is sufficient
to consider allocation rules in which truthful reporting constitutes a Bayesian Nash
equilibrium.

3See also McAfee and McMillan (1992), Hartline and Roughgarden (2008), and Yoon (2011) for envi-
ronments without transfers and money burning. In addition, money burning is studied in Ambrus and
Egorov (2015) in the context of a delegation model.
4In the Appendix, we consider an extension of this model where the penalty c is type-dependent.
5This assumption is useful for elegance of the exposition. We analyse a more general model in the
Appendix without relying on this assumption.
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We assume that allocating the prize to agent i yields payoff xi to the principal if
the agent is not penalized and at most xi if the agent is penalized. In other words,
the penalty is never beneficial for the principal and therefore can only be used as an
incentive tool.6 The optimal penalty rule is thus trivial. Since type xi of the selected
agent is verifiable, it is optimal to penalize the agent whenever he lies, yi 6= xi, and not
to penalize him otherwise.

An allocation rule p associates with every profile of statements ȳ = (y1, ..., yn) a
probability distribution p(ȳ) over {0, 1, 2, . . . , n}. We write pi(ȳ) for the probability of
selection of i ∈ {1, ..., n} and p0(ȳ) for the probability that the prize is not allocated
conditional on report profile ȳ.

Denote by F̄ the product c.d.f. of all n agents and by F̄−i the product c.d.f. of all
agents except i. Also denote by x̄ = (x1, ..., xn) the profile of truthful reports and by
(yi, x̄−i) the same profile, except that xi is replaced by yi. Let gi(yi) be the expected
probability that agent i with report yi is selected, assuming that all other agents make
truthful reports,

gi(yi) =

∫
x̄−i∈[a,b]n−1

pi(yi, x̄−i)dF̄−i(x̄−i).

The principal would like to design an allocation rule that maximizes her expected payoff,

max
p

E
[∑n

i=1
pi(x̄)xi

]
,(P0)

subject to the incentive constraint that truthful reporting is optimal (by the revelation
principle),

vi(xi)gi(xi) ≥ max
yi∈[a,b]

vi(xi)(1− c)gi(yi) ∀xi ∈ [a, b], ∀i ∈ {1, ..., n},(IC0)

and the feasibility constraint that the probabilities are nonnegative and add up to one,
(pi(x̄))i∈{0,...,n} ≥ 0 and

∑n
i=0 pi(x̄) = 1 for all x̄ ∈ [a, b]n.

2.2. Problem in reduced form. We will approach problem (P0) by formulating and
solving its reduced form. Recall that all n agents are ex-ante identical, with types
distributed according to F . This assumption is important for the reduced-form approach
to be applicable.

Define the reduced-form allocation g : [a, b]→ R+ by

(1) g(x) =
n∑

i=1

gi(x), x ∈ [a, b].

We will now formulate the principal’s problem in terms of g:

(P) max
g

∫ b

a

xg(x)dF (x)

6If the principal can benefit from penalizing agents, then she might prefer to ex-post penalize the agent
whose value is negative to recover the lost payoff, even if that agent has been truthful. This is not an
issue if values are nonnegative, a ≥ 0, or if the principal faces an additional constraint that truthful
reports cannot be penalized.
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subject to the incentive constraint

(IC) v(x)g(x) ≥ v(x)(1− c) sup
y∈[a,b]

g(y) for all x ∈ [a, b],

and a generalization of the Matthews-Border feasibility criterion (Matthews 1984, Border
1991, Mierendorff 2011, Hart and Reny 2015) that guarantees the existence of an allo-
cation rule p that induces a given g (see Lemma 1 below):

(F)

∫
{x:g(x)≥t}

g(x)dF (x) ≤ 1−
(
F ({x : g(x) < t})

)n
for all t ∈ R.

Variable g can be interpreted in two ways. First, g(x)
n

is the probability of an agent
being chosen conditional on reporting x under a symmetric allocation rule whose reduced
form is g. Second, g(x)f(x) is the (improper) probability density of selection of type x
from the principal’s perspective. The reason for defining variable g as in (1) (rather than,
for instance, g(x) = 1

n

∑n
i=1 gi(x)) is convenience: the principal’s objective function (P)

and the incentive constraint (IC) are independent of n.

Proposition 1. A reduced-form allocation g is a solution of problem (P) if and only
if there exists a solution p of problem (P0) whose reduced form is g.

As p is reducible to g by definition, the only nontrivial part of the result is the “only if”
part. For a given g that satisfies the feasibility constraint, one can construct a symmetric
p using the Matthews-Border construction. In addition, for a symmetric allocation rule
p, the incentive constraints (IC0) and (IC) are identical, even though (IC0) is a stronger
condition for a general p.

Proof. Observe that, for every p and its reduced form g, objective functions in (P0)
and (P) are identical. We now verify that the reduced form of every solution of (P0) is
admissible for (P), and that for every solution g of (P) there is an admissible allocation
p for (P0) whose reduced form is g.

The feasibility condition (F) is the criterion for the existence of p that implements g.
This condition is due to the following lemma, which is a generalization of the Matthews-
Border feasibility criterion (e.g., Border 1991, Proposition 3.1) for asymmetric mecha-
nisms.

Let (X,X , µ) be a measure space with measure µ. Let Qn be the set of measurable
functions q : Xn → [0, 1]n such that

∑n
i=1 qi ≤ 1. We say that Q : X → R+ is a reduced

form of q ∈ Qn if Q(y) =
∑n

i=1

∫
Xn−1 qi(y, x̄−i)dµ

n−1(x̄−i) for all y ∈ X.

Lemma 1. Q : X → R+ is the reduced form of some q ∈ Qn if and only if

(2)

∫
{x:Q(x)≥t}

Q(x)dµ(x) ≤ 1−
(
µ({x : Q(x) < t})

)n
for all t ∈ R+.

Proof. Sufficiency is due to Proposition 3.1 in Border (1991), which implies that, if
Q satisfies (2), then there exists a symmetric q whose reduced form is Q. To prove
necessity, consider q ∈ Qn and let Q be its reduced form. For every t ∈ R+ denote



8 TYMOFIY MYLOVANOV AND ANDRIY ZAPECHELNYUK

Et = {x ∈ X : Q(x) ≥ t}. Then∫
y∈Et

Q(y)dµ(y) =

∫
y∈X

[
n∑

i=1

∫
x−i∈Xn−1

qi(y, x−i)dµ
n−1(x̄−i)

]
1{y∈Et}dµ(y)

=
n∑

i=1

[∫
(xi,x̄−i)∈Xn

qi(xi, x̄−i)1{xi∈Et}dµ
n(xi, x̄−i)

]

≤
n∑

i=1

[∫
(xi,x̄−i)∈Xn

qi(xi, x̄−i)1∪j{xj∈Et}dµ
n(xi, x̄−i)

]

=

∫
x∈Xn

(
n∑

i=1

qi(x)

)
1∪j{xj∈Et}dµ

n(x) ≤
∫
x∈Xn

1∪j{xj∈Et}dµ
n(x)

= 1−
∫
x∈Xn

1∩j{xj∈X\Et}dµ
n(x) = 1−

(
µ(X\Et)

)n
.

Let p be a solution of (P0). Then its reduced form satisfies the feasibility constraint
(F) by Lemma 1. The incentive constraint (IC) is satisfied as well, since (IC0) applies
separately for each i and thus, in general, is stronger than (IC).

Conversely, let g be a solution of (P). Since g satisfies (F), by Proposition 3.1 in
Border (1991) there exists a symmetric p whose reduced form is g. This p will satisfy
incentive constraint (IC0), since, for symmetric mechanisms, (IC) implies (IC0).

3. Optimal allocation rules

Problem (P) is interesting because of its constraints. First, the incentive constraints
(IC) are global rather than local, as is often the case in mechanism design. Second, the
feasibility constraint (F) is substantive and will bind at the optimum if and only if the
incentive constraint (IC) slacks, which is not the case in the classical mechanism design
for allocation problems. Let us now discuss the implications of these constraints on the
design of optimal rules.

3.1. Incentive compatibility. There is tension between the ability of the principal to
infer the agents’ information and the ability to use this information to the principal’s
benefit by selecting agents with higher types. Suppose that the principal selects an
agent with the highest positive report and selects no one if all reports are negative. In
the unique equilibrium under this rule, everybody reports the highest possible type, b.7

Thus, communication is uninformative and the outcome of this mechanism is identical to
the one where the principal disregards the agents’ reports and picks an agent at random,
provided E[x] ≥ 0, so that allocating the prize to a random agent is better than not
allocating it at all.

7This follows from the observation that, for low enough values of x, bidding truthfully is dominated by
paying penalty c and outbidding everyone else by reporting the highest type, b, and then applying this
argument inductively for other values of x.
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Optimality for the principal implies the monotonicity of g, as the principal would
like to select higher types with higher probability. If an allocation g is nonmonotonic,
by sorting g(F−1) in ascending order, we construct a monotonic g̃ that preserves the
incentive and feasibility constraints but increases the principal’s payoff.

Lemma 2. An optimal reduced-form allocation g(x) is nondecreasing.

The proof of Lemma 2 is in the online appendix.

By Lemma 2 and the assumption that v(x) > 0, the incentive constraint (IC) becomes

(3) g(x) ≥ (1− c)g(b),

where the right-hand side is the maximal payoff that agent i can obtain by lying. It is
equal to the probability of selection that agent i can obtain by lying, g(b), times the
fraction of the retained surplus after the lie is found out, 1− c. Unlike in the standard
mechanism design problems, where typically the only binding incentive constraints are
local, constraint (3) is global.

The incentive constraint (3) induces two properties of an optimal allocation rule:

1. Give a chance to low types. The right-hand side of (3) provides a uniform lower
bound on g. That is, an optimal rule must select any type x, whether positive or
negative, whether low or high, with a probability of at least (1 − c)g(b). In particular,
the monotonicity of g in an optimal rule then implies bunching at the bottom: all agents
with low enough types will be selected with the same probability.

2. Cap the odds of the best. The incentive constraint (3) tightens as the probability of
selecting the highest type increases. Thus, a smaller value of g at the top decreases the
probability of selecting types bunched at the bottom. An optimal rule caps g at some
value below 1, leading to bunching at the top: all agents with high enough types will be
selected with the same probability.

The incentive constraint (3) dictates a different structure of an optimal allocation than
in Ben-Porath, Dekel and Lipman (2014) (BDL). The feature of bunching the types at
the bottom is similar, but the reason behind it is not the same. In our model, the
incentive constraint prevents separation at the bottom, whereas in BDL, the separation
of low-valued agents is feasible but does not justify the verification cost. Unlike our
model, in BDL, there is no bunching at the top because, at the optimum, the agents
who report high values are verified with certainty.

3.2. Feasibility. By Lemma 2, optimality for the principal implies the monotonicity of
g. Hence, the feasibility constraint (F) can be simplified as follows.

Lemma 3. For every weakly increasing g, the feasibility constraint (F) is equivalent to

(4)

∫ b

y

g(x)dF (x) ≤ 1− F n(y), for all y ∈ [a, b].

Proof. Since g is weakly increasing, for every t ∈ R+, sets {x : g(x) < t} and {x :
g(x) ≥ t} are intervals [a, y) and [y, b], respectively, where y = inf{x : g(x) ≥ t}. It is
then immediate that (F) is identical to (4).
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The feasibility constraint (4) has a clear interpretation. Dividing both sides by 1 −
F n(y), we obtain

1

1− F n(y)

∫ b

y

g(x)dF (x) ≤ 1.

The left-hand side is a conditional probability expression. This is the probability of
choosing an agent with at least type y, conditional on the highest type among all agents
being at least y. Naturally, it cannot exceed 1.

There are two properties of an optimal rule that follow from (4).

3. Separation in the middle. On any interval (x′, x′′) where the feasibility constraint
is binding, the density of the selected type, g(x)f(x), must be equal to the density of
the highest type, nF n−1(x)f(x). This implies strictly increasing g(x) = nF n−1(x) on
(x′, x′′), and thus full type separation on that interval. Another implication is that, if
the highest value, max{x1, . . . , xn}, is in that interval, the agent with that value must
be chosen with certainty.

4. Diminishing role of the feasibility constraint for large pools of agents. As the number
of agents n increases, the set of feasible reduced-form allocations satisfying (4) expands,
eventually permitting all allocations as n→∞. However, the incentive constraint (IC)
is independent of n, so, as we will prove later, there exists a finite n̄ such that, for n > n̄,
the incentive constraint determines the optimal allocation, while the feasibility constraint
is not binding. Intuitively, as n rises, the probability of a given low-type agent being
chosen shrinks. To preserve the incentives for truthtelling, the probability of the highest
type of being chosen must shrink at the same rate. Thus, a larger n does not allow for
better differentiation between types. As a consequence, increasing the pool of agents
over some finite size n̄ does not confer any benefit to the principal. This contrasts to
standard auction environments with independent values and monetary transfers, where
the auctioneer can always benefit from more bidders, albeit at a diminishing rate.

3.3. Optimal allocations. We now describe optimal allocation rules. Assume that

(5) if a < 0, then

∫ 0

a

(1− c)xdF (x) +

∫ b

0

xdF (x) > 0.

Since we allow for negative types, it might be optimal for the principal to select no agent.
Assumption (5) is a necessary and sufficient condition for the principal to prefer the
selection of some agent over no agent. Intuitively, the least that the principal can do is
to differentiate between values above and below zero. Specifically, consider an allocation
rule which asks each agent to report whether his value is positive or negative, and then
assigns probability 1

n
(1 − c) to each agent whose report is negative and probability 1

n
to each agent whose report is positive. This rule is feasible and incentive compatible,
and it yields a positive payoff if (5) holds. The converse argument is more involved and
requires to show that, if (5) does not hold, the upper bound on what the principal can
attain is nonpositive. The argument uses the upper bound result of Section 4.1 and thus
is deferred to Section 4.6.
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When the number of agents is small, the optimal rule bunches the types at the top
and at the bottom and separates them in the middle. It can be implemented by a
restricted-bid auction.

Restricted-bid auction. The principal asks each agent to make a statement yi in an
interval [x, x] ⊂ [a, b] and then selects an agent with the highest statement (ties are
broken uniformly at random). Ex post, the chosen agent is penalized if his statement yi
is “inflated”: yi > x and yi > xi.

Informally, a restricted-bid auction categorizes the agents into three groups: “high”
with types above x̄, “middle” with types between x and x̄, and “low” with types below x.
The principal then randomly chooses a candidate from the high group (bunching at the
top). If there are no candidates in that group, the highest type among the middle group
is chosen (separation at the middle). If there are neither high nor middle candidates, a
candidate is randomly selected from the low group (bunching at the bottom). Provided
that n is not too large, one can always find x and x that guarantees the incentive
compatibility of the restricted-bid auction: the greater x and the lower x are, the less
benefit there is for a low-type agent to pretend to be a high type.

However, as we noted in Section 3.2, for a large enough number of agents, the feasibility
constraint is nowhere binding, so optimality only requires bunching at the top and at the
bottom, with the empty middle interval. This is implemented by a different mechanism
called a binary shortlisting procedure.

Binary shortlisting procedure. The principal asks each agent to make a statement
indicating whether his type is above or below some threshold x̄. Every agent who reports
xi ≥ x̄ is shortlisted with certainty, while every agent who reports xi < x̄ is shortlisted
with a specified probability q, which is independent of the reports. Then, an agent is
chosen from the shortlist uniformly at random. In the event that the shortlist is empty,
a uniformly random agent is chosen from the full list. Ex post, the chosen agent is
penalized if his statement has been inflated: a type xi < x̄ has reported being above x̄.

Note that there is no discontinuity between these procedures: a restricted-bid auction
with x = x is identical to the binary shortlisting procedure with the threshold x and
probability parameter q = 0.

We say that two allocation rules p and p′ are equivalent if their reduced forms g and
g′ are identical up to a measure zero.

Theorem 1. There exists a number of agents n̄ such that an allocation rule is optimal
if and only if it is equivalent to a restricted-bid auction when n < n̄ and to a binary
shortlisting procedure when n ≥ n̄.

We prove the theorem and solve for the parameters of the optimal allocation rule in
the next section.

4. Proof of Theorem 1

We proceed with the proof of Theorem 1 as follows. First, we solve the reduced-form
problem without imposing the feasibility constraint (4). The obtained solution gives an
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upper bound on the principal’s optimal payoff, and it is optimal whenever satisfies (4).
We identify the minimum number of agents n̄ above which (4) is not binding for this
upper-bound solution, and show that this solution is a binary shortlisting procedure.

Then, we solve the problem for n < n̄, where the feasibility constraint (4) is binding
and the upper bound is unattainable. We show that the solution is a restricted-bid
auction with suitably defined bounds x and x. This is the most technically interesting
and novel part of the analysis, where we deal with interaction of two non-standard con-
straints: global incentive compatibility and the Matthews-Border feasibility constraint.

4.1. Upper bound on the principal’s payoff. To derive the upper bound on the
principal’s payoff, we solve (P) subject to the incentive constraint (3) while relaxing the
feasibility constraint (4).

First, we simplify the incentive constraint.

Lemma 4. Reduced-form allocation g satisfies the incentive constraint (3) if and only
if there exists r ∈ R+ such that

(6) (1− c)r ≤ g(x) ≤ r for all x ∈ [a, b].

Proof. If (3) holds, then (6) also holds with r = supy∈[a,b] g(y). Conversely, if (6) holds
with some r ∈ R, then it also holds with r′ = supy∈[a,b] g(y) ≤ r, which implies (3).

We now state the result.

Proposition 2. Let (z∗, r∗) be the unique solution of∫ z∗

a

(1− c)(z∗ − x)dF (x) =

∫ b

z∗
(x− z∗)dF (x),(7) ∫ z∗

a

(1− c)r∗dF (x) +

∫ b

z∗
r∗dF (x) = 1.(8)

For any allocation rule, the principal’s payoff is at most z∗. Moreover, if an allocation
rule attains the payoff of z∗ for the principal, then its reduced form must be almost
everywhere equal to

(9) g∗(x) =

{
(1− c)r∗, x < z∗,

r∗, x ≥ z∗.

In words, whenever the upper-bound payoff z∗ is attainable, the solution is a step
function that chooses the minimum incentive compatible probability of allocation (1 −
c)r∗ for reports below z∗ and the maximum incentive compatible probability of allocation
r∗ for reports above z∗. Condition (7) means that the principal determines the optimal
threshold z∗ by equating the marginal utility distortions at the top and at the bottom.
Condition (8) means that, at the optimum, the prize is allocated with probability one.

Proof. We solve max
g

∫ b

a
xg(x)dF (x) subject to the incentive constraint (6) and the

relaxed feasibility constraint that requires the total probability of allocation not exceed
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the unity,
∫ b

a
g(x)dF (x) ≤ 1. The Lagrangian of this problem is

max
g

min
z

∫ b

a

xg(x)dF (x) + z

(
1−

∫ b

a

g(x)dF (x)

)
, or

max
g

min
z

(
z +

∫ b

a

(x− z)g(x)dF (x)

)
,

subject to (6), where z ≥ 0 is a Lagrange multiplier.

Observe that the incentive constraint (6) must be everywhere binding, since the objec-
tive function is linear in g. The solution is a step function that, for some constant r ≥ 0,
chooses the minimum incentive compatible value (1 − c)r below z and the maximum
incentive compatible value r above z,

g(x) =

{
(1− c)r, x < z,

r, x ≥ z.

Now substitute the obtained g(x) into the objective function and optimize over z and r,

(10) max
r≥0

min
z≥0

(
z +

∫ z

a

(x− z)(1− c)rdF (x) +

∫ b

z

(x− z)rdF (x)

)
.

To rule out boundary solutions, observe that, under assumption (5), this objective func-
tion is linear and strictly increasing in r at z = 0. Hence, z > 0 at the optimum.
Furthermore, if r = 0, then the objective function is strictly increasing in z and achieves
the minimum at z = 0, which cannot be optimal, as noted above. Hence, r > 0 at the
optimum.

Consequently, if a solution exists, it must satisfy the first-order conditions∫ z

a

(1− c)(x− z)dF (x) +

∫ b

z

(x− z)dF (x) = 0,(11)

1−
∫ z

a

(1− c)rdF (x)−
∫ b

z

rdF (x) = 0.(12)

Notice that these conditions are equivalent to (7) and (8).

The left-hand side of (11) is strictly decreasing in z, nonpositive at z = b, and, under
assumption (5), positive at z = 0, thus admitting a unique solution z∗. Moreover,
z∗ ∈ (0, b]. In addition, for a given z ∈ (0, b], the left-hand side of (12) is linearly
decreasing in r and positive at r = 0, thus admitting a unique solution r∗ > 0.

4.2. Attainment of the upper bound. The reduced-form solution g∗ might not be
feasible when the number of agents is small. We now derive a condition on the number
of agents that ensures the feasibility of g∗.

By Lemma 3, g∗ is feasible if and only if
∫ b

z∗
g∗(x)dF (x) ≤ 1 − F n(z∗), which after

substituting g∗ from (9) becomes:

(13) (1− F (z∗))r∗ ≤ 1− F n(z∗).
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Note that this is a condition on the primitives, as z∗ and r∗ are determined by F and c
and independent of n.

Denote by n̄ the smallest number of agents that satisfies (13). It follows that:

Corollary 1. There exists an allocation rule that attains the upper-bound payoff of z∗

if and only if n ≥ n̄.

Condition (13) is not particularly elegant. Instead, one can use a sufficient condition,
which is simple and independent of F , z∗, and r∗.

Corollary 2. There exists an allocation rule that attains the upper-bound payoff of z∗

if c ≤ n−1
n

.

In other words, the principal’s upper-bound payoff can be achieved when the penalty
is not too large, leaving at least 1

n
-th of the value of the prize to the agent.

Proof. Using (8), rewrite (13) as 1−F (z∗)
(1−c)F (z∗)+1−F (z∗)

≤ 1−F n(z∗). Solving for 1−c yields

F n−1(z∗)

1 + F (z∗) + F 2(z∗) + . . .+ F n−1(z∗)
≤ 1− c.

This inequality holds when c ≤ n−1
n

, because:

F n−1(z∗)

1 + F (z∗) + . . .+ F n−1(z∗)
=

1

F 1−n(z∗) + F 2−n(z∗) + . . .+ 1
≤ 1

n
≤ 1− c.

4.3. Shortlisting procedure. An allocation rule that implements g∗ with bunching of
types above and below the threshold is a binary shortlisting procedure. The threshold
type is z∗, while the probability q of shortlisting low-type agents has to be calculated to
give the desired probabilities, g∗(x) = (1− c)r∗ for x < z∗ and g∗(x) = r∗ for x ≥ z∗.

Corollary 3. Let n ≥ n̄. Then the binary shortlisting procedure with the threshold
x̄ = z∗ and the probability parameter

(14) q = 1− c

s

attains the upper bound z∗, where s is the unique solution of equation8

(15) (1− s)sn−1 =
1

r∗

(
1− 1

r∗

)n−1

, s ∈
[
n−1
n
, 1
]
.

The proof is in the online appendix.

8Equation (15) has two solutions on [0, 1]. One of them, s = 1− 1
r∗ , is outside the domain [n−1

n , 1], as

n ≥ n̄ implies 1
r∗ >

1
n (as shown in the proof).
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4.4. Small number of agents. When the number of agents is small, n < n̄, attainment
of the upper-bound payoff z∗ is prevented by the feasibility constraint. The problem be-
comes more difficult, as we need to handle the interaction of the feasibility and incentive
constraints.

Our approach is to fix a number r, find the maximal principal’s payoff on the set of
reduced-form allocations g with supremum r, and show that this is implemented by a
restricted-bid auction. Then the optimal allocation can be determined by taking the
maximum with respect to r.9

For r ∈ R+ denote by Gr the set of reduced-form allocations that are weakly increasing
and satisfy the incentive constraint (6) for r. Note that Gr contains an optimal allocation
only if10

r ∈ R ≡ [1,min{n, 1/(1− c)}].

Fix r ∈ R. We would like to maximize the principal’s payoff on Gr subject to the
feasibility constraint (4),

max
g

∫ b

a

xg(x)dF (x)(Pr)

s.t. (1− c)r ≤ g(x) ≤ r, x ∈ [a, b],(16) ∫ b

x

g(y)dF (y) ≤ 1− F n(x), x ∈ [a, b].(17)

One can interpret g(x)f(x) as an improper probability density that has to satisfy∫ b

a
g(x)f(x)dx ≤ 1 and treat (Pr) as the problem of allocation of the probability mass

among the types on [a, b].

To solve problem (Pr), we allocate the probability mass among the types, starting
from the highest type b and proceeding to lower types, by setting the maximum density
permitted by the constraints (illustrated by Fig. 1). Formally, we solve

max
g

∫ b

a

(∫ b

x

g(t)dF (t)

)
dx s.t. (16) and (17).

This problem is identical to (Pr), by integration by parts of the objective function. The
solution of this problem is a pointwise maximal function that respects the constraints,
gr(x) = r for all x ≥ x̄r, and gr(x) = nF n−1(x) for x < x̄r. The latter is derived from

the constraint (17) satisfied as equality,
∫ b

x
g(y)f(y)dy = 1 − F n(x). The threshold x̄r

is the point where these constraints meet (the colored areas on Fig. 1 have equal size):

9This approach is analogous to Ben-Porath, Dekel and Lipman (2014), who show that, without loss
of optimality, one can restrict attention to favored-agent mechanisms parametrized by agent i and
threshold v∗, and then find an optimal mechanism within this subclass.
10If r > 1/(1− c), then every allocation in Gr must satisfy g(x) ≥ (1− c)r > 1, so it violates feasibility,∫ b

a
g(x)dF (x) > 1. If r > n, then every allocation in Gr is also in Gn, since g(x) ≤ n by feasibility, and

reducing r weakens the left-hand side of (6). Finally, if r < 1, then every allocation in Gr is inferior to

the uniformly random allocation,
∫ b

a
xg(x)dF (x) ≤

∫ b

a
xrdF (x) < E[x].
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n

r

nF n−1(x)

gr(x)

(1− c)r

x
r x̄r

a b

Fig. 1. A solution with a given supremum r.

∫ b

x̄r
rdF (x) = 1− F n(x̄r), or simply11

(18) r(1− F (x̄r)) = 1− F n(x̄r).

To sum up, we allocate gr(x) = r on the interval [x̄r, b] and gr(x) = nF n−1(x) on the
interval [xr, x̄r). All the types below the lower threshold xr are assigned the minimum
density permitted by the incentive constraint, (1− c)r. The threshold xr is the smallest
number that satisfies two constraints, xr ≥ 0 and the total mass not exceeding unity:∫ xr

a

(1− c)rdF (x) +

∫ x̄r

xr

nF n−1(x)dF (x) +

∫ b

x̄r

rdF (x) ≤ 1.

The latter constraint can be simplified. Using (18) and integrating out the constant
parts yields (1− c)rF (xr) + (F n(xr)− F n(xr)) + (1− F n(xr)) ≤ 1, or, equivalently,

F n−1(xr) ≥ (1− c)r.

It is apparent that either xr solves the above as an equality or xr = 0, whichever is
greater. Note that xr ≥ 0, since r ≥ 1 and, by assumption, F n−1(0) ≤ 1− c. Thus xr is

11Note that there is a unique solution of (18), as 1−Fn(x)
1−F (x) = 1 + F (x) + ...+ Fn−1(x) ∈ [1, n] is strictly

increasing and continuous, and by assumption, r ∈ R ⊂ [1, n].
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the solution of12

(19) F n−1(xr) = (1− c)r.

The solution of problem (Pr) is thus

(20) gr(x) =


(1− c)r, x < xr,

nF n−1(x), xr ≤ x < x̄r,

r, x ≥ x̄r,

where x̄r and xr are given by (18) and (19).

We have shown that gr maximizes the principal’s payoff,
∫ b

a
xg(x)dF (x), on the set

of functions Gr for a given r ∈ R. The next proposition summarizes this result and
characterizes the optimal value of r.

Proposition 3. Let n < n̄. Then, a reduced-form allocation g is optimal if and only if
g = gr, where r is the solution of

(21) (1− c)
∫ xr

a

(xr − x)dF (x) =

∫ b

xr

(x− xr)dF (x)

and xr and xr are defined by (18) and (19).

The optimal value of r maximizes
∫ b

a
xgr(x)dF (x). Equation (21) is the first-order

condition for this maximization problem, which turns out to have a unique solution. As
in (7), the optimal thresholds equate the principal’s marginal utility distortions at the
top and at the bottom. The complete proof is in the online appendix.

4.5. Restricted-bid auction. The reduced-form allocation gr bunches the types above
xr and below xr and fully separates types in the interval [xr, x̄r]. This reduced-form
allocation can be implemented by the restricted-bid auction with the bid interval [xr, x̄r].
In equilibrium, an agent bids his type truthfully if it belongs to the interval [xr, x̄r], bids
xr if his type is above xr, and bids xr otherwise. If one or more agents have types
above xr, the restricted bid auction selects one of these agents with equal probability
(bunching above xr). If the highest type belongs to [xr, x̄r], it is selected with probability
one (separation). Otherwise, all bids are equal to xr and the restricted bid auction selects
one of the agents at random (bunching below xr).

By the construction of xr, as given in (18), an agent with type above xr is selected
with the probability of r/n. By (19), an agent with type below xr is selected with the
probability of at least (1− c)r/n, and thus has no incentive to inflate his report.

Corollary 4. Let n < n̄. Then, the restricted-bid auction with the bid interval [xr, x̄r]
attains the optimal payoff for the principal, where xr and x̄r are the thresholds in the
optimal reduced-form allocation gr in Proposition 3.

12Note that there is a unique xr defined by (19), as r ∈ R ⊂ [1, 1/(1 − c)], so (1 − c)r ∈ [0, 1], and
Fn−1(x) is strictly increasing and continuous.
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Proof. The payoff of the principal from the restricted-bid auction with bid interval
[xr, x̄r] is equal to

V ∗ = F n(xr)E[x|x < xr] +

∫ x̄r

xr

xdF n(x) + (1− F n(x̄r))E[x|x ≥ x̄r]

=
F n(xr)

F (xr)

∫ xr

a

xdF (x) +

∫ x̄r

xr

xnF n−1(x)dF (x) +
1− F n(x̄r)

1− F (x̄r)

∫ b

x̄r

xdF (x)

=

∫ xr

a

(1− c)rxdF (x) +

∫ x̄r

xr

xnF n−1(x)dF (x) +

∫ b

x̄r

rxdF (x) =

∫ b

a

gr(x)dF (x),

where in the last line we used (18), (19), and (20).

4.6. No allocation. Let us now prove that assumption (5) is necessary and sufficient
for the principal to select an agent with a positive probability and to receive a positive
payoff.

Proposition 4. The optimal allocation rule chooses no agent and attains zero payoff if
and only if

(22)

∫ 0

a

(1− c)xdF (x) +

∫ b

0

xdF (x) ≤ 0.

Proof. By Proposition 2, the principal’s payoff cannot exceed z∗ given by the first-order
condition (7). Since (7) has a unique solution, the upper-bound payoff z∗ is nonpositive
if ∫ z

a

(1− c)(z − x)dF (x) ≥
∫ b

z

(x− z)dF (x) at z = 0,

which is identical to (22). Conversely, if (22) does not hold, then the rule

g(x) =

{
(1− c)r, x < 0,

r, x ≥ 0.

is incentive compatible, is feasible for a small enough r > 0, and yields the payoff

r

(∫ 0

a

(1− c)xdF (x) +

∫ b

0

xdF (x)

)
> 0.

5. Discussion and comparative statics

There are two notable features of optimal allocation when the principal must rely on
reported information, which is in sharp contrast to the case of observable agent types.

First, no matter how many agents participate, low types must be chosen with a
positive probability. Even agents with negative types, no matter how bad they are for the
principal, must be treated the same way since the principal cannot distinguish between
good and bad types and has to provide incentives for telling the truth to everyone.
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Moreover, the probability of choosing the very top types has to be capped to reduce the
benefit of lying.

Second, in the environment with observable types, the probability of choosing a type
above any given threshold is strictly increasing in the number of agents. This is not true
in our model. In fact, in the restricted-bid auction, as n goes up, there is more pooling
at the top: the upper threshold x decreases. Eventually, when n ≥ n̄, the optimal
reduced-form allocation is a binary categorization that assigns only two values, high and
low, to types above and below some threshold, respectively.

We now present comparative statics results with respect to

(a) the payoff of the principal;

(b) the size of the pooling interval of high types;

(c) the size of the separating interval in the middle for the case of a small number of
agents, n < n̄.

We denote the threshold of the high pooling interval by x and the lower threshold
of the separating interval by x.13 The high pooling interval, [x, b], consists of all types
above the upper quality bar x that are treated identically in the allocation mechanism.
The larger the interval is, the less discriminatory the optimal mechanism will be for high
types. The separating interval, [x, x], has a positive length when n < n̄. The size of
this interval is indicative of the allocation rule’s ability to discriminate the types in the
middle.

The amount of ex-post penalty affects the agents’ incentives and is crucial for the
structure of the optimal mechanism. As the penalty c decreases, the principal is less
able to discriminate between high and low types. The gap between the probabilities
assigned to high and low types eventually becomes smaller as c approaches zero, leading
to the uniformly random allocation.

Proposition 5a. Suppose that the penalty c marginally increases. Then the principal
is better off. The size of the high pooling interval, [x, b], decreases. Suppose in addition

that n < n̄ and that f(x)
F (x)

is decreasing.14 Then, the size of the separating interval, [x, x],
increases.

An increase in the number of applicants, n, has a non-obvious effect that we have
already discussed. A larger n relaxes the feasibility constraint (F) while having no effect
on the incentive constraint (IC) and the objective function (P). The principal can thus
implement the allocation closer to the upper bound.

Proposition 5b. Let n < n̄. Then, as n goes up, the principal is better off. The size of
the high pooling interval, [x, b], increases, and the size of the separating interval, [x, x],
decreases. Any increase of n above n̄ has no effect.

13For n < n̄, x = xr and x = xr as defined by (18) and (19) at the optimal r. For n ≥ n̄, x = z∗ as
defined by (7).
14This is the well-known monotone hazard rate condition.
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While keeping the allocation ratio between high and low types fixed to ensure incentive
compatibility, the principal has leeway in choosing the size of the pooling intervals for
high and low types. There is a trade-off: a better differentiation of high types (smaller
interval [x̄, b]) entails worse differentiation of low types (larger interval [a, x]). This
tradeoff depends on the distribution of types. An f.o.s.d. improvement of the distribution
increases the single optimal threshold when n ≥ n̄, and it has an ambiguous effect on
the structure of the optimal mechanism when n < n̄: both optimal thresholds can either
increase or decrease.

Proposition 5c. Suppose that F is replaced by F̃ , where F̃ f.o.s.d. F . Then the principal
is better off. If n ≥ n̄ under F , then the size of the high pooling interval, [x, b], decreases.

The effects of a mean-preserving spread or a rotation of the distribution (Johnson and
Myatt 2006) are ambiguous. When both low and high types are less numerous, whether
the principal benefits from it and whether more discrimination or more pooling of high
types is optimal depends on the exact change of the distribution of types.

The proof of Propositions 5a, 5b, and 5c is in the online appendix.

6. Conclusion

In the introduction, we argued that there are multiple environments that correspond
to our model: a grant agency selecting an applicant to fund, a college administrator
awarding a slot in an academic program, or a firm recruiting for a fixed-salary position.

Of course, our model is a just a simplification intended to capture a relevant tradeoff
in settings with ex-post verification and limited penalties. The incentive constraint
bounds the ratio in probabilities of the selection of the highest and lowest types. If the
low types are not promised to be selected with a sufficiently high probability, they will
mimic the high types, so the principal may as well select an agent at random. The cap
on the highest probability means bunching the types at the top, while the floor on the
lowest probability means bunching the types at the bottom. Keeping the difference in
these probabilities fixed, the principal faces the tradeoff between making the rule more
competitive by selecting higher types with higher probability and reducing rents that
have to be given to the low types.

In applications, bunching can take the form of categorization, quotas, or the use of
irrelevant and ad hoc criteria to rule out applicants. A grant agency can sort applicants
into, for example, three categories: “highly competitive,” “competitive,” and “non-
competitive”. After that, it can allot certain amounts of funding for each category
and randomly allocate the appropriated funding within the categories.15 An academic
program can assign a quota for scholarships that are need-based and automatically enter
every applicant who did not qualify for merit-based funding into a lottery for need-
based scholarships. Management of a company can invoke irrelevant or vague qualifying
criteria such as seniority, prior allocation of resources, or some specific performance

15Our model assumes a single indivisible good. This is for clarity of exposition. Extension to multiple
goods is mechanical, as long as we maintain the assumption that each agent demands the same amount
of good.
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measure to disqualify departments from obtaining new office space. As long as the
application of these criteria is random and independent of merit from the perspective
of the departments, its effect on the incentives of the departments will be equivalent to
bunching.

Our analysis shows that adding agents beyond some number does not benefit the
principal and that, for a large number of agents, the optimal allocation rule is a binary
shortlisting procedure. There is an alternative implementation of the optimal rule for a
large number of agents: The principal randomly excludes some agents, and categorizes
the remaining agents as above or below the bar. If there are agents above the bar,
one of them is chosen at random. Otherwise, an agent is randomly chosen among all
agents. We see similar mechanisms in practice. Job search forums are full of anecdotes
of HR departments discarding every fifth application or arbitrarily dividing applications
into two piles and throwing away an “unlucky” pile. If candidates apply over time, a
company might keep the search open for a fixed period of time or until a certain number
of candidates have applied. If the quality of the candidates does not correlate with their
arrival time, the optimal rule for the company is to hire the first candidate above the
bar and to hire at random from the pool of applicants if all candidates are below the
bar and the search is closed.

Appendix: Type-dependent penalties

Here, we consider a more general model where the penalty c depends on the agent’s
type. Formally, we assume that, ex post, the principal observes the selected agent’s true
type xi and can impose a penalty c(xi) ≥ 0, which is subtracted from the agent’s value
v(xi). Our primary interpretation of c is the upper bound on the expected penalty that
can be imposed on the agent after his type has been verified.16 Functions v and c are
bounded and almost everywhere continuous on X ≡ [a, b].

As before, we formulate the principal’s problem in terms of the reduced-form alloca-
tion:

(P) max
g

∫
x∈X

xg(x)dF (x),

subject to the incentive constraint,

(IC) v(x)g(x) ≥ (v(x)− c(x)) sup
y∈X

g(y) for all x ∈ X,

and the feasibility constraint,

(F)

∫
{x:g(x)≥t}

g(x)dF (x) ≤ 1−
(
F ({x : g(x) < t})

)n
for all t ∈ [0, n].

The idea of the solution is the same as in Section 4.4. We fix a supremum value
of g, denoted by r, interpret g(x)f(x) as a probability density, and allocate the maxi-
mum density to high types, starting from the top, b, and proceeding down, subject to

16The assumption that xi is verified with certainty can be relaxed; if α(xi) is the probability that xi is
verified and L(xi) is the limit on i’s liability, then set c(xi) = α(xi)L(xi).



22 TYMOFIY MYLOVANOV AND ANDRIY ZAPECHELNYUK

the constraints. However, two issues that arise because of a type-dependent incentive
constraint.

The first issue is that the feasibility constraint (F) is not tractable without making
more assumptions about the structure of admissible allocations g. To restore tractability,
we assume that the share of the after-penalty surplus is monotonic:

Assumption 1 (Monotonicity).

v(x)− c(x)

v(x)
is weakly increasing.

That is, agents with higher types stand to lose less from lying to the principal. This
is a natural assumption for the applications we consider: agents who have better values
for the principal are likely to have better outside options.

Under the above assumption, using the same argument as in Lemma 2, without loss,
we can consider weakly increasing allocations. By Lemma 3, for monotonic allocations
the feasibility constraint (F) is equivalent to

(Fmax)

∫ b

x

g(y)dF (y) ≤ 1− F n(x), for all x ∈ X.

The second issue is that, even after simplifying the feasibility constraint, we must
still handle a non-trivial interaction between feasibility and type-dependent incentive
compatibility. To address this complexity, we separate the global incentive constraint
(IC) into two simpler constraints. Let r = supy∈X g(y). Then, (IC) can be expressed as
(c.f. Lemma 4)

g(x) ≤ r, x ∈ X,(ICmax)

g(x) ≥ h(x)r, x ∈ X,(ICmin)

where h(x) denotes the share of the after-penalty surplus truncated at zero:

h(x) = max

{
v(x)− c(x)

v(x)
, 0

}
, x ∈ X.

For every r ∈ R+, derivation of a solution of (Fmax) subject to (ICmax) and (ICmin),
denoted by gr, follows four steps.

Step 1. Existence. We identify the interval of r that ensures the existence of a feasible
and incentive compatible allocation that respects sup g = r. Let r̄ be the greatest value
of r that satisfies ∫ b

x

rh(y)dF (y) ≤ 1− F n(x) for all x ∈ X.

Observe that allocation g(x) = h(x)r, x ∈ X, is feasible and incentive compatible for all
r ∈ [0, r̄]. Moreover, since this is the minimal allocation that satisfies (ICmin) for every
given r, every incentive compatible allocation is infeasible when r > r̄.
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Step 2. Solution for negative types. The principal prefers to minimize the density
assigned to the negative types. Denote by a0 the greatest point in [a, 0] that satisfies

(23)

∫ a0

a

rh(y)dF (y) ≥ F n(a0).

There are two possibilities. First, a0 = 0 and
∫ 0

a
rh(y)dF (y) > F n(a0). That is, the

only binding constraint for below-zero types is (ICmin), so these types can be assigned
the minimal incentive compatible density, gr(x) = h(x)r for all x < 0. Moreover, the
principal prefers to allocate all available probability mass to the positive types. Thus,

the total mass to types in [0, b] must be fully allocated at the optimum,
∫ b

0
gr(y)dF (y) =

1− F n(0).

The second possibility is a0 ≤ 0 and
∫ 0

a
rh(y)dF (y) = F n(a0). That is, the assignment

of the minimal incentive compatible density gr(x) = h(x)r is feasible only for types in
[0, a0]. Incentive and feasibility constraints meet at a0, and for type a0, the feasibility

constraint is binding,
∫ b

a0
gr(y)dF (y) = 1 − F n(a0). The feasibility constraint (Fmax)

then implies
∫ b

a0
gr(y)dF (y) = 1− F n(a0).

To sum up, in either case, we set gr(x) = h(x)r for all x < a0, and the feasibility
constraint must be binding at a0,

(24)

∫ b

a0

gr(y)dF (y) = 1− F n(a0),

so the total mass to types in [a0, b] must be fully allocated at the optimum. This
constraint means that an agent should be selected unless all agents have types below a0.
Conditions (Fmax) and (24) imply the following constraint:

(Fmin)

∫ x

a0

g(y)dF (y) ≥ F n(x)− F n(a0) for all x ∈ [0, b].

In what follows, we disregard the types below a0 and solve the problem on [a0, b]
subject to constraint (24).

Step 3. Concatenation of the maximal and the minimal solutions. To find an optimal al-
location for the types above a0, we consider two auxiliary problems, (Pmax) and (Pmin),
whose solutions are the pointwise maximal and minimal functions subject to, respec-
tively, (ICmax)-(Fmax) and (ICmin)-(Fmin). Allocation gr is constructed by concatenating
the two solutions.

Let Ḡ(x) :=
∫ b

x
g(t)dF (t) and consider the following problem:

max
g

∫ b

a0

Ḡ(x)dx s.t. (ICmax) and (Fmax).(Pmax)

Similarly, let G(x) :=
∫ x

a0
g(y)dF (y) and consider the following problem:

min
g

∫ b

a0

G(x)dx s.t. (ICmin) and (Fmin).(Pmin)
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Problems (Pmax) and (Pmin) are the same as (P), but with relaxed incentive compati-
bility, subject to only (ICmax) and (ICmin), respectively. Indeed, notice that the objective
functions are the same up to a constant (by integration by parts). In addition, with a
constant mass to be allocated, (24), constraint (Fmin) is equivalent to (Fmax), but is
expressed in terms of the complement sets. Thus, for any given r, (Pmax) is the problem
where the original incentive constraint (IC) is replaced by the constraint in which the
probability of allocation to all types is capped by r. Similarly, (Pmin) is the problem
where the original incentive constraint (IC) is replaced by the constraint in which the
probability of allocation to each type x is at least rh(x).

A concatenation is an allocation gr that satisfies for some z ∈ (a0, b]:

(25) gr(x) =


rh(x), x ∈ [a, a0),

g
r
(x), x ∈ [a0, z),

gr(x), x ∈ [z, b],

where g
r
(x) and gr(x) denote the solutions of (Pmin) and (Pmax). We say that gr is an

incentive-feasible concatenation if it satisfies (ICmax), (ICmin), (F), and (24).

Theorem 2. A reduced-form allocation rule g∗ is a solution of (P) if and only if g∗ is
an incentive-feasible concatenation gr, where r solves

max
r∈[0,r̄]

∫
X

xgr(x)dF (x).

Before proving the theorem, let us discuss what the solutions of the auxiliary problems
(Pmax) and (Pmin) look like. The solution gr of (Pmax) is the pointwise maximal function
subject to the constraints, as the following lemma shows.

Lemma 5. For every r ∈ [0, r̄], the solution of (Pmax) is equal to

gr(x) =

{
nF n−1(x), x ∈ [a0, x̄r),

r, x ∈ [x̄r, b],

where x̄r < b is implicitly defined by

(26)

∫ b

x̄r

rdF (x) = 1− F n(x̄r).

Proof. As r ≤ r̄ < nF n−1(b) = n, there exists x̄r such that the feasibility constraint
(Fmax) does not bind, while the incentive constraint (ICmax) binds for x ≥ x̄r, and the
opposite is true for x < x̄r. Consequently, gr(x) = r for x ≥ x̄r, while gr(x) = nF n−1(x)
for x < x̄r. The value of x̄r is the unique solution of (26). i.e., the feasibility constraint
binds at all x ≤ x̄r and slacks at all x > x̄r.

The solution gr is illustrated by Fig. 2 (left). The blue curve is nF n−1(x) and the
red curve is r; the black curve depicts gr(x). Starting from the right (x = b), the black
line follows r so long as constraint (Fmax) slacks. Down from point x̄r constraint (Fmax)
is binding, and the highest ḡr(x) that satisfies this constraint is exactly nF n−1(x) for
x < x̄r.
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n

b

r

nF n−1(x)

x̄r

ḡr(x)

a b

rh(x)

nF n−1(x)

g
r

(x)

a

rh(x)

Fig. 2. Examples of solutions of Pmax (left) and Pmin (right).

Concerning the solution g
r

of (Pmin), it is the pointwise minimal function subject to

the constraints. It is more complex, as it involves function h(x) in the constraints. Fig. 2
(right) depicts an example of g

r
. The blue curve is nF n−1(x) and the red curve is rh(x);

the black curve depicts g
r
(x). Starting from the left (x = a), the black line follows rh(x)

up to the point where the blue area is equal to the red area (so the feasibility constraint
starts binding), and then jumps to nF n−1(x). Then, the black curve follows nF n−1(x)
so long as it is above rh(x). After the crossing point, the incentive constraint is binding
again, and the black curve again follows rh(x).

A more specific result can be obtained if we make an assumption of “single-crossing” of
incentive and feasibility conditions. Recall that the feasibility constraint means that the
probability of choosing a type above a certain level, x, cannot exceed the probability that
such a type realizes, 1−F n(x), for a given distribution F and a given number of agents
n. When the incentive constraint is absent, h = 0, all that matters is the feasibility
constraint. As we increase h uniformly for all x (constant h), in (Pmin) (where the
constraint g(x) ≤ r is ignored), the incentive constraint g(x) ≥ rh(x) will be binding for
all types below some threshold, but the feasibility constraint is still binding for all types
above the threshold. The “single-crossing” assumption is a sufficient condition that
yields this structure for type-dependent h. It precludes multiple alternating intervals
where one of the constraints, incentive or feasibility, binds and the other slacks. Formally,
for every r, there exists a threshold xr such that, for function g(x) = rh(x), the feasibility
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constraint (Fmin) is satisfied (possibly, with slack) on interval [a0, x] for any x below the
threshold and is violated for any x above the threshold.

Assumption 2 (Single-crossing property). For every r ∈ R+, there exists xr ∈ [0, b]
such that

(27)

∫ x

a0

rh(y)dF (y) ≥ F n(x)− F n(a0) if and only if x ≤ xr.

Assumption 2 is clearly satisfied under constant h. The concavity of h(F−1(·)) is also
sufficient.

Lemma 6. Assumption 2 holds if h(F−1(t)) is weakly concave.

Proof. By the concavity of h(F−1(t)), for every n ≥ 1, h(F−1(t)) − ntn−1 is concave.
Hence, by the monotonicity of F , for all r ≥ 0,

rh(y)− nF n−1(y) is quasiconcave.

It is immediate that the subset of (a0, b] where expression
∫ x

a0
(rh(y)− nF n−1(y))dF (y)

is negative is a (possibly, empty) interval (xr, b]. If that expression is nowhere negative,
then xr = b; if it is everywhere negative, then xr = a0. Then, (27) is immediate.

An example that satisfies Assumption 2 is a linear value of the prize, v(x) = αx+ β,
and constant penalty, c(x) = c, β ≥ c ≥ 0, provided that F n−1(x) is weakly convex.

Lemma 7. Let Assumption 2 hold. Then, for every r ∈ [0, r̄], the solution of problem
(Pmin) is equal to

(28) g
r
(x) =

{
rh(x), x ∈ [a0, xr],

nF n−1(x), x ∈ (xr, b].

Proof. By Assumption 2, we have (ICmin) binding on [a0, xr] and (Fmin) binding on
(xr, b]. Consequently, g

r
(x) = rh(x) on [a0, xr], while g

r
(x) = nF n−1(x) on (xr, b].

Proof of Theorem 2. Because of the condition (24), we can interpret g(x)f(x)
1−Fn(a0)

as

the probability density on [a0, b]. A necessary condition for allocation g to be optimal
is that

G(x) :=
1

1− F n(a0)

∫ x

a0

g(y)dF (y)

is maximal w.r.t. the first-order stochastic dominance order (f.o.s.d.) on the set of
c.d.f.s that satisfy (IC) and (F). We will prove that the set of f.o.s.d. maximal functions
is the set of incentive-feasible concatenations {gr}r∈[0,r̄]. Optimization on the set of these
functions yields the solutions of (P).

Indeed, consider an arbitrary g̃ that satisfies (IC), (F), and(24), where r = supX g̃(x).
Let us compare

G̃(x) =
1

1− F n(a0)

∫ x

a0

g̃(y)dF (y) and Gr(x) =
1

1− F n(a0)

∫ x

a0

g̃r(y)dF (y),
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where gr is an incentive-feasible concatenation (25), where g
r

and gr are concatenated

at some z. Because g
r

is the solution of (Pmin), we have for all x ≤ z

Gr(x) =
1

1− F n(a0)

∫ x

a0

g
r
(y)dF (y) ≤ 1

1− F n(a0)

∫ x

a0

g̃(y)dFy) = G̃(x).

Furthermore, because gr is the solution for (Pmax), for all x > z, we have

1−Gr(x) =
1

1− F n(a0)

∫ b

x

gr(t)dF (t) ≥ 1

1− F n(a0)

∫ b

x

g̃(t)dF (t) = 1− G̃(x).

Hence, Gr f.o.s.d. G̃.

It remains to show that for every r ∈ [0, r̄] there exists a unique incentive-feasible
concatenation gr. For gr to be feasible, it must satisfy (24) or, equivalently,

(29)

∫ z

a0

g
r
(x)dF (x) +

∫ b

z

gr(x)dF (x) = 1− F n(a0).

Let z be the greatest solution of (29). Such a solution exists, because the value of∫ z

a0
g
r
(x)dF (x) +

∫ b

z
gr(x)dF (x) is continuous in z (recall that F is assumed to be con-

tinuously differentiable), and by (Fmin) and (Fmax),∫ b

a0

gr(x)dF (x) ≤ 1− F n(a0) ≤
∫ b

a0

g
r
(x)dF (x) for all r ∈ [0, r̄].

First, we show that z ≥ xr, and consequently, gr(x) = r for all x ≥ z by Lemma 5.
By definition, (Fmax) is satisfied with equality by gr at x = x̄r. If (Fmin) is also satisfied
with equality by g

r
at x = x̄r, then (29) is satisfied with z = x̄r. Hence, the greatest

solution of (29) is weakly higher than x̄r. If, in contrast, (Fmin) is satisfied with strict
inequality at x = x̄r, then the left-hand side of (29) is less than 1 − F n(a0) at x̄r, is
increasing in z, and has a solution on (x̄r, b]. Thus, z ≥ xr.

Furthermore, consider any solution z′ of (29) such that z′ < x̄r. Then, either (ICmin)
is violated at some x ≥ z′, in which case concatenation obtained at z′ is not incentive
compatible, or (Fmin) is satisfied with equality for all x > z′, so g

r
(x) = nF n−1(x) on

[z′, x̄r]. In addition, by Lemma 5, gr(x) = nF n−1(x) on [z′, x̄r]. Hence, concatenation at
any z ∈ [z′, x̄r] produces the same g∗r and, furthermore, z = x̄r is the greatest solution
of (29). Hence, an incentive-feasible concatenation is unique.

Next, we show that, for every r ∈ [0, r̄], gr satisfies (IC), (24), and (F). Note that gr
satisfies (24) and (F) by construction. To prove that gr satisfies (IC), we need to verify
that g

r
(x) satisfies (ICmax) for x < z and gr(x) satisfies (ICmin) for x ≥ z. We have shown

above that gr(x) = r for all x ≥ z, which trivially satisfies (ICmin). To verify (ICmax),
observe that, for x ≤ z, it must be that g

r
(x) ≤ r, as otherwise z is not a solution of

(29). Assume by contradiction that g
r
(x′) > r for some x′ ≤ z. Since rh(x′) < r, the

constraint (Fmin) must be binding at x′, implying g
r
(x′) = nF n−1(x′) ≥ r. However,

we have shown above that either z = x̄r or (Fmin) is not binding at z. We obtain the
contradiction in the former case because nF n−1(x′) < nF n−1(x̄r) < r, where the last
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inequality is by construction of x̄r. In the latter case, g
r
(z) < r, implying that g

r
is

decreasing somewhere on [x′, z], which is impossible by (Fmin) since (Fmin) is satisfied
with equality at x′.

Online Appendix: Omitted Proofs

Proof of Lemma 2. Consider an allocation g(x) that satisfies (IC) and (F). We
construct a monotonic g̃(x) that preserves constraints (IC) and (F), but increases the
principal’s payoff.

We have assumed that F has almost everywhere positive density, so F−1 exists. Define

S(t) =
∣∣{y : g(F−1(y)) ≤ t}

∣∣, t ∈ R+.

Note that S is weakly increasing and satisfies S(t) ∈ [0, 1] for all t. Define

g̃(x) = S−1(F (x))

for all x where S−1(F (x)) exists, and extend g̃ to [a, b] by right continuity. Observe that
g̃ satisfies (F) by construction. In addition,

sup
x∈[a,b]

g(x) = sup
y∈[0,1]

g(F−1(y)) = S−1(1) = sup
y∈[0,1]

g̃(F−1(y)) = sup
x∈[a,b]

g̃(x),

thus g̃ satisfies (IC). Finally, we show that g̃ yields a weakly greater payoff to the
principal. By construction,∫ z

a

g̃(x)dF (x) ≤
∫ z

a

g(x)dF (x) for all z ∈ [a, b],

and it holds with equality for z = b. Hence, using integration by parts, the expression∫ b

a

x(g̃(x)− g(x))dF (x) = b

∫ b

a

(g̃(x)− g(x))dF (x) −
∫ b

a

(∫ z

a

(g̃(x)− g(x))dF (x)

)
dz

is nonnegative.

Proof of Corollary 3. Let Q =
∫ z∗

a
qdF (x) +

∫ b

z∗
dF (x) be the ex-ante probability to

be short-listed, and let A and B be the expected probabilities to be chosen conditional
on being shortlisted and conditional on not being short-listed, respectively:

A =
n∑

k=1

1

k

(
n− 1

k − 1

)
Qk−1(1−Q)n−k and B =

1

n
(1−Q)n−1.

The associated reduced-form rule is as follows. An agent’s probability gi(x) to be chosen
conditional on xi ≥ z∗ and xi < z∗ is given by A and qA+(1− q)B, respectively. Hence,

(30) g(x) ≡
∑

i
gi(x) =

{
n(qA+ (1− q)B), x < z∗,

nA, x ≥ z∗.
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We now prove that g is identical to g∗ whenever q satisfies (14). We have

Q =

∫ z∗

a

qdF (x) +

∫ b

z∗
dF (x) =

∫ z∗

a

(
1− c

s

)
dF (x) +

∫ b

z∗
dF (x)(31)

=

(∫ z∗

a

(
1− c
s
− 1− s

s

)
dF (x) +

∫ b

z∗

(
1

s
− 1− s

s

)
dF (x)

)
=

1

s

(∫ z∗

a

(1− c)dF (x) +

∫ b

z∗
dF (x)

)
− 1− s

s

=
1/r∗

s
− 1− s

s
=

1− r∗ + r∗s

r∗s
,

where we used (8). Hence, 1−Q = r∗−1
r∗s

. Next,

A =
n∑

k=1

1

k

(n− 1)!

(k − 1)!(n− k)!
Qk−1(1−Q)n−k =

1

nQ

n∑
k=1

n!

k!(n− k)!
Qk(1−Q)n−k

=
1

nQ
(1− (1−Q)n) .

Substituting (31) into the above yields

A =
r∗s

n(1− r∗ + r∗s)

(
1− (r∗ − 1)n

(r∗s)n

)
.

By (15), after some algebraic transformations,

A =
r∗s

n(1− r∗ + r∗s)

(
1− (r∗ − 1)n

(r∗s)n

)
=
r∗

n
.

Also, using (31) and (15) we obtain

B =
1

n
(1−Q)n−1 =

1

n

(r∗ − 1)n−1

(r∗s)n−1
=

(1− s)r∗

n
.

Substitute A and B into (30):

n(qA+ (1− q)B) =
(s− c)nA+ cnB

s
=

(s− c)r∗ + c(1− s)r∗

s
= (1− c)r∗

and nA = r∗. Hence, g(x) = g∗(x) for all x ∈ X.

It remains to show that, whenever n ≥ n̄, this shortlisting procedure is feasible and
well defined, i.e., h ≥ s and the solution of (15) exists and is unique.

Let n ≥ n̄. Observe that F (z∗) < 1, as evident from (7) and the assumption that
c > 0. Using the definition of r∗, we can rewrite (13) as

r∗ ≤ 1− F n(z∗)

1− F (z∗)
= 1 + F (z∗) + F 2(z∗) + . . .+ F n−1(z∗) < n.

In addition, 1/r∗ = (1− c)F (z∗) + 1− F (z∗) < 1. Consequently, 1
n
< 1

r∗
< 1.

Observe that (1− s)sn−1 unimodal on [0, 1] with zero at the endpoints and the max-
imum at s = n−1

n
. Moreover, it is strictly decreasing on [n−1

n
, 1]. Since the right-hand
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side of (15) is strictly between zero and the maximum, there exists a unique solution of
(15) on [n−1

n
, 1].

Now we prove that c ≤ s. It is immediate if c ≤ n−1
n

(since s ∈ [n−1
n
, 1]). Assume now

that c > n−1
/
n. Because n ≥ n̄, condition (13) must hold, which can be written as

F n−1(z∗) ≤ (1− c)r∗.

Thus, the right-hand side of (15) satisfies:

1

r∗

(
1− 1

r∗

)n−1

=

(
cF (z∗)

)n−1

r∗
≤ (1− c)cn−1.

That is, n ≥ n̄ and (15) entail

(1− s)sn−1 =
1

r∗

(
1− 1

r∗

)n−1

≤ (1− c)cn−1.

As (1 − s)sn−1 is decreasing on [n−1
n
, 1] and we have assumed c > (n − 1)/n, it follows

that c ≤ s.

Proof of Proposition 3. We have already established that the solution g must satisfy
(20) for some r ∈ R = [1,min{n, 1/(1 − c)}]. It remains to show that the optimal r is
the unique solution of (21).

Let us first derive how xr and xr change w.r.t. r. From (18) we have

(1− F (xr))dr − rf(xr)dxr = −nF n−1(xr)f(xr)dxr.

Hence,

dxr
dr

=
1− F (xr)

(r − nF n−1(xr))f(xr)
,

and thus

(32) xr(nF
n−1(xr)− r)f(xr)

dxr
dr

= −xr(1− F (xr)).

Next, if xr = 0, then
dxr

dr
= 0. Suppose that xr > 0. By (19) it satisfies (1− c)rF (xr) +

1− F n(xr) = 1. Hence,

(1− c)F (xr)dr + (1− c)rf(xr)dxr − nF n−1(xr)f(xr)dxr = 0.

Hence,

dxr
dr

=

{
F (xr)

(nFn−1(xr)−(1−c)r)f(xr)
, if xr > 0,

0, if xr = 0.

Thus we obtain

(33) xr((1− c)r − nF n−1(xr))f(xr)
dxr
dr

= −xrF (xr).
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Finally, with g = gr, the principal’s objective function is

W (r) =

∫ xr

a

x(1− c)rdF (x) +

∫ xr

xr

xnF n−1(x)dF (x) +

∫ b

xr

xrdF (x).

Taking the derivative w.r.t. r and using (32) and (33) we obtain

dW (r)

dr
=

∫ xr

a

x(1− c)dF (x) +

∫ b

xr

xdF (x) + xr((1− c)r − nF n−1(xr))f(xr)
dxr
dr

+ xr(nF
n−1(xr)− r)f(xr)

dxr
dr

=

∫ xr

a

x(1− c)dF (x) +

∫ b

xr

xdF (x)− xrF (xr)− xr(1− F (xr))

=

∫ xr

a

(x− xr)(1− c)dF (x) +

∫ b

xr

(x− xr)dF (x).

The equation dW (r)
dr

= 0 is exactly (21). To show that it has a unique solution, observe

that
dxr

dr
≥ 0 and

dxr

dr
> 0 (since gr(xr) = nF n−1(xr) ≥ (1−c)r and gr(xr) = nF n−1(xr) ≤

r by (IC)). Consequently, dW (r)
dr

is strictly decreasing in r. Moreover, for r sufficiently
close to 0, we have both xr and xr close to a, in which case W (r) > 0, and similarly, for
r = 1/(1− c), we have xr = xr = b, in which case W (r) < 0.

Proof of Propositions 5a, 5b, 5c. The points of interest are the optimal principal’s
payoff z∗ and the structure of the optimal allocation mechanism.

First, let us deal with the optimal principal’s payoff z∗.

5a: Increasing c affects only the incentive constraint (IC) by making it looser. Opti-
mization on a larger set yields a weakly higher optimal payoff.

5b: Increasing n affects only the feasibility constraint (F) by making it looser. Op-
timization on a larger set yields a weakly higher optimal payoff. When n ≥ n̄, the
feasibility constraint is not binding and hence has no effect on the optimal payoff.

5c: Let F̃ (x) ≤ F (x) for all x. This affects the feasibility constraint (F) by making it
looser for all x. Optimization on a larger set yields a weakly higher optimal payoff.

Next, we deal with the structure of the optimal allocation mechanism: threshold x̄
of the high pooling interval and threshold x of the low pooling interval for the case of
n < n̄. The interval [x, x] is the separating interval. There are three cases to consider.

Case 1: n ≥ n̄. By Proposition 2, the optimal allocation has to satisfy the equation

(1− c)
∫ z∗

a

(z∗ − x)dF (x) =

∫ b

z∗
(x− z∗)dF (x).

Integrating by parts, we obtain

(34) (1− c)
∫ z∗

a

F (x)dx =

∫ b

z∗
(1− F (x))dx.
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In this case, the threshold of the high pooling interval and the principal’s payoff are the
same, x̄ = z∗. The separating interval is empty.

5a: From (34) it is immediate that dz∗

dc
> 0. That is, the size of the high pooling

interval is decreasing in c.

5b: Equation (34) is independent of n, so a change in n has no effect (so long as
n ≥ n̄).

5c: Let F̃ (x) ≤ F (x) for all x. From (34) it is immediate that replacing F with F̃
yields a greater solution z∗. That is, the high pooling interval shrinks.

Case 2: n < n̄ and x = 0. By Proposition 3, the optimal allocation has to satisfy
equation (21) where we use x = 0:∫ 0

a

(−x)(1− c)dF (x) =

∫ b

x

(x− x)dF (x).

Integrating by parts, we obtain

(35) (1− c)
∫ 0

a

F (x)dx =

∫ b

x

(1− F (x))dx.

Note that (18) is satisfied, as it has a free variable r that does not appear in (35).

Assuming that variations of the parameters are marginal and x remains equal to zero,
the value of interest is the threshold x of the high pooling interval. The change in the
length of the separating interval t = x− x is the same as the change in x.

5a: From (35) it is immediate that dx
dc

> 0. That is, the high pooling interval is
decreasing and the separating interval is increasing in c.

5b: Equation (35) is independent of n. Hence, a change in n has no effect, so long as
x = 0.

5c: Let F̃ (x) ≤ F (x) for all x. From (35) it is immediate that replacing F by F̃
yields a greater solution x. That is, the high pooling interval shrinks and the separating
interval expands.

Case 3: n < n̄ and x > 0. By Proposition 3, the optimal allocation is described by
thee variables, x, x, and r, that must satisfy (18), (19), and (21). Combining (18) and
(19) to eliminate r, we obtain

(36) (1− c)1− F n(x̄)

1− F (x̄)
= F n−1(x).

Also, integrating (21) by parts, we obtain

(37) (1− c)
∫ x

a

F (x)dx =

∫ b

x̄

(1− F (x))dx.

Thus, the structure of the optimal allocation is characterized by x̄ and x that satisfy
(36) and (37).
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Let us now evaluate dx̄
dn

, dx
dn

, dx̄
dc

, and d(x̄−x)
dc

. After taking the full differential of (36)
and (37) w.r.t. x̄, x, c, and n, we obtain

0 = Lx̄dx̄− Lxdx− Lcdc+ Lndn,

0 = Mx̄dx̄+Mxdx−Mcdc,
(38)

where

Lx̄ = (1− c) d

dx̄
(1 + F (x̄) + F 2(x̄) + ...+ F n−1(x̄)) > 0,

Lx =
d

dx
F n−1(x) > 0,

Lc = 1 + F (x̄) + F 2(x̄) + ...+ F n−1(x̄) > 0,

Ln = −
(

(1− c) F n(x̄)

1− F (x̄)
lnF (x̄) + F n−1(x) lnF (x)

)
> 0,

Mx̄ = 1− F (x̄) > 0,

Mx = (1− c)F (x) > 0,

Mc =

∫ x

a

F (x)dx > 0,

where we used c > 0, x > a and x̄ < b (i.e., the best payoff is better than random
allocation) and that f(x) is everywhere positive.

To evaluate dx̄
dn

and dx
dn

, we set dc = 0 and solve the system of equations (38),

dx̄

dn
= −

LnMx

Lx̄Mx + LxMx̄

< 0,

dx

dn
=

LnMx̄

Lx̄Mx + LxMx̄

> 0,

and hence d(x̄−x)
dn

< 0.

To evaluate dx̄
dc

and dx
dc

, we set dn = 0 and solve the system of equations (38),

dx̄

dc
=
LxMc + LcMx

Lx̄Mx + LxMx̄

> 0,

dx

dc
=
Lx̄Mc − LcMx̄

Lx̄Mx + LxMx̄

.

To prove d(x̄−x)
dc

> 0, it is sufficient to check that Lx−Lx̄

(1−c)Lc
> 0. By (36) we have

Lc = 1 + F (x̄) + F 2(x̄) + ...+ F n−1(x̄) =
1

1− c
F n−1(x).
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Thus,

Lx− Lx̄

(1− c)Lc

=
d

dx̄
F n−1(x)

F n−1(x)
−

d
dx̄

(1 + F (x̄) + F 2(x̄) + ...+ F n−1(x̄))

1 + F (x̄) + F 2(x̄) + ...+ F n−1(x̄)

=
(n− 1)f(x)

F (x)
− (1 + 2F (x̄) + ...+ (n− 1)F n−2(x̄))f(x̄)

1 + F (x̄) + F 2(x̄) + ...+ F n−1(x̄)

> (n− 1)

(
f(x)

F (x)
− f(x̄)

F (x̄)

)
≥ 0,

where we use

(1 + 2x+ 3x2...+ (n− 1)xn−2)

1 + x+ x2 + ...+ xn−1
<
n− 1

x
, x ∈ (0, 1),

and the hazard rate condition, F (x)/f(x) is increasing.

Lastly, we cannot conclude anything from (36)-(37) about how the thresholds change
if F is f.o.s.d. improved.

To summarize:

5a: The high pooling interval decreases and, under the hazard rate condition, the
separating interval increases in c;

5b: The high pooling interval increases and the separating interval decreases in n.

5c: The result is ambiguous. If F̃ (x) ≤ F (x) for all x, we are unable to make any
conclusions about how thresholds x̄ and x change if F is replaced by F̃ .
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