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Abstract

In a finite-horizon intertemporal setting, in which society needs to decide and enforce

a socially optimal outcome in each period without being able to commit to future

ones, the paper examines problems of implementing dynamic social choice processes.

A dynamic social choice process is a social choice function (SCF) that maps every

admissible state into a socially optimal outcome on the basis of past outcomes. A SCF

is sequentially implementable if there exists a sequence of mechanisms (with observed

actions and with simultaneous moves) such that for each possible state of the envi-

ronment, each (pure strategy) subgame perfect (Nash-)equilibrium of games played

sequentially by the same individuals in that state generates the outcome prescribed by

the SCF for that state, at every history. The paper identifies necessary conditions for

SCFs to be sequentially implemented, sequential decomposability and sequential Maskin

monotonicity, and shows that they are also suffi cient under auxiliary conditions when

there are three or more individuals. It provides an account of welfare implications of

the sequential implementability in the contexts of sequential trading and sequential

voting.



Introduction

The goal of implementation theory is to study the relationship between outcomes in a

society and the mechanisms under which those outcomes arise. Mechanisms are rules accord-

ing to which outcomes are determined and enforced (constitutions, voting rules, contracts,

etc.). The focus of the theory is thus to design mechanisms for which the strategic properties

induce individuals to choose actions that lead to the desired outcomes.1

In this paper, we study implementation problems in a finite-horizon multi-period setting

with complete information where:

• The information held by the individuals is summarized in the concept of a state. The

true state is common knowledge among the individuals but is unknown to the planner.

At each admissible state, each individual possesses a complete and transitive preference

relation - not necessarily separable - over sequences of outcomes.

• The planner needs to decide and enforce a socially optimal outcome in each period

which depends on private information held by various individuals and on past outcomes.

Thus, the problem of the planner is to design a sequence of mechanisms to implement

a dynamic social choice process. We assume that the planner does not learn the true

state by observing past choices.

• Individuals are unable to make binding agreements about future outcomes.

Non-separability of preferences of individuals and their inability to make commitments are

what distinguish our model from existing dynamic implementation models.

Such a lack of commitment by individuals can be found in many real life situations.

Examples, in particular, are to be found in the political arena, where in each period we

can typically cast a vote against the current tax policy without being able to vote for future

ones. In the literature of positive political economy, it is known that such lack of commitment

leads to ineffi cient outcomes. Similar examples can be found in situations where there is no

supranational legal framework, such as in the context of international trade.

1For a thorough discussion, we refer to Jackson (2001) and Maskin and Sjöström (2002).
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Moreover, such a lack of commitment can also be found in the standard model of sequen-

tial trading due to Radner (1972). Indeed, the basic Arrow-Debreu (1954)’s model assumes

that commodities are traded only once and for all. In its dynamic variant, that assumption

implies that trading takes place at the initial date, and there are no further trades in the

future. This certainly does not resemble a realistic picture of trade because trade takes

place, to a large extent, sequentially over time. Moreover, that feature of Arrow-Debreu’s

model relies on the hypothesis that individuals trust each other to honour their promises

(Gale 1978; 1982). A better model for trading is thus the model of sequential trading, where

individuals can make only one-period-ahead trading arrangements.2 As of today, however,

there has not been offered any strategic or mechanism-design-theoretic foundation for this

model, to our knowledge. The primary reason is that, in the model of sequential trading,

prices and allocations are defined only on an equilibrium path. Therefore, it is still unclear

how those economic variables are formed when traders make mistakes. This paper is an

attempt to address this issue as well.

Furthermore, individuals’preferences for sequences of social decisions are generally not

time-separable, in the sense that preferences for future social decisions depend on current

social decisions, and preferences for current social decisions depend on what social deci-

sions are to be made in the future. Even when an individual’s preference for sequences of

consumptions is time-separable, her preference for sequences of net trades does need to be

time-separable. For example, preferences for how much to save in future periods depend on

how much to save in the current period, and vice versa. Likewise, preferences for future tax

rates naturally depend on the choice of the current tax rate because the underlying saving

behavior will change when we change the current tax rate, which in turn changes preferences

for future tax rates, and vice versa.

Despite the fact that non-separability of players’preferences and players’lack of com-

mitment are prominent in political economy, business and economics, they have received

scant attention in implementation theory. This paper builds an implementation framework

in which they are taken into account and in which:

2Arrow (1964) was the first to observe that sequential trading and trading at a single point in time are
equivalent when markets are complete.
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1. The objective is to implement dynamic social choice processes. A dynamic social choice

process is a SCF that maps every admissible state into a socially optimal outcome on

the basis of past outcomes.

2. A sequential mechanism is a finite sequence of mechanisms with observed action, each

one being a mechanism with simultaneous moves. These mechanisms are played se-

quentially by the same players. The convention that each mechanism is played in a

distinct period is adopted so that period-t mechanism is played in period t. The mech-

anism played in a given period depends on the past history of the mechanisms and

on the players’corresponding actions. Period-t mechanism requires agents to report

only the information pertaining to period-t problem. Sequential rationality is common

knowledge between the players at every period.

3. The implementation condition is that the game induced by the sequential mechanism has

pure strategy subgame perfect (Nash-)equilibria (SPE) such that each SPE strategy

profile generates the social outcome prescribed by the SCF at every history. When

such a mechanism exists, we say that the SCF is sequentially implementable.

Thus, we are not interested in implementing an outcome in a given period or a sequence

of outcomes but rather we focus on those that are suggested by a dynamic social choice

process (think, for example, of Radner equilibria). In addition, our framework allows us to

analyze what society should do even after it makes a mistake as part of the social choice

objective. Because of non-separability of preferences for intertemporal social decisions, we

assume that what society should choose depends on past outcomes. Therefore, this paper

adds to the literature of implementation in SPE as it enables us to define relevant economic

variables in equilibrium as well as out of equilibrium (see, e.g. Moore and Repullo, 1988;

Abreu and Sen, 1990; Herrero and Srivastava, 1992; Vartiainen, 2007). In contrast to Jackson

and Palfrey (2001), in our framework players cannot ask to replay the mechanism played in

a given period if they do not like the outcome that it recommends.

In the literature on repeated implementation, the available characterization results rely

on the assumption that individuals possess time-separable preferences and on the assumption

that each individual’s discount factor is known to the planner (Kalai and Ledyard, 1998;
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Chambers, 2004; Lee and Sabourian, 2011; Mezzetti and Renou, 2016). The first common

assumption has been criticized in the literature (Jackson, 2001). Although we agree that

results in repeated implementation set-ups have brought new insights on how to design

dynamic resource allocation mechanisms, we pursue a research direction that complements

this literature since the time-preference of individuals is part of the information which is

unknown to the planner and needs to be elicited and since, moreover, individuals’preferences

for social decisions are not necessarily separable.

For a finite horizon T and via backward induction, the paper shows that a SCF that is se-

quentially implementable satisfies two conditions, sequential decomposability and sequential

Maskin monotonicity. Sequential decomposability decomposes the dynamic implementa-

tion problem into several "apparently static" implementation problems, one for each period,

where every allowable individual’s preference for outcome paths is decomposed into T mar-

ginal orderings on the basis of past outcomes, as well as of future choices, and where the

SCF is decomposed into T marginal SCFs. Thus, sequential implementation must be done

as if the planner solves one “static implementation problem”in each period.

Sequential Maskin monotonicity is basically an adaptation of the standard invariance

condition due to Maskin (1999), now widely referred to as Maskin monotonicity, to each

period-t implementation problems. It coincides with Maskin monotonicity if and only if

there is only one period/stage. We also prove that if a SCF satisfies our properties and two

auxiliary conditions that are reminiscent of the so-called no veto-power condition, then it

can be sequentially implemented when there are three or more individuals. This result is

obtained by devising a canonical mechanism for each period, where each individual chooses

a profile of marginal orderings as part of her strategy choice.

Further, the paper provides an account of welfare implications of its suffi ciency result

in the context of sequential trading and sequential voting.

Firstly, we consider a borrowing-lending model with no liquidity constraints, in which

individuals trade in spot markets and transfer wealth between any two periods by borrow-

ing and lending. In this set-up, intertemporal pecuniary externalities arise because trades

in the current period change the spot price of the next period, which, in turn, affects its

associated equilibrium allocation. The quantitative implication of this is that every indi-
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vidual’s marginal preference concerns not only her own consumption/saving behavior but

also the consumption/saving behavior of all other individuals. We show that, under such a

pecuniary externality, the standard dynamic competitive equilibrium solution is not sequen-

tially implementable because it fails to satisfy sequential decomposability. However, we have

also identified preference domains —which involve no pecuniary externalities — for which

the no-commitment version of the dynamic competitive equilibrium solution is definable and

sequentially implementable.

Secondly, we consider a bi-dimensional policy space where an odd number of individuals

vote sequentially on each dimension and where an ordering of the dimensions is exogenously

given. We assume that each voter’s type space is unidimensional, that a majority vote is

organized around each policy dimension and that the outcome of the first majority vote is

known to the voters at the beginning of the second voting stage. This sequential resolution

is common in political economy models (see, e.g., Persson and Tabellini, 2000). In this

environment, we show that the simple majority solution, which selects the Condorcet winner

in each voting stage, is sequentially implementable. In this process, we explicitely state the

conditions on the utility function of each voter that are needed for this SCF to be well-

defined and show that this is the case. As established by De Donder et al (2012) for the case

where there is a continuum of voters, the assumption that both dimensions are strategic

complements, as well as the requirement that the marginal utility of both dimensions is

increasing in the type of the voter, are particularly important for guaranteeing the existence

of a Condorcet winner in each voting stage.

The remainder of the paper is organized as follows. Section 2 sets out the theoretical

framework and outlines the basic implementation model. Necessary and suffi cient conditions

are presented in section 3. Section 4 covers sequentially implementable SCFs in the context

of trading and voting problems. Section 5 concludes. Appendix includes proofs not in the

main body.
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2. Basic framework

Let us imagine that a set of individuals indexed by i ∈ I ≡ {1, · · · , I} have to decide

what outcome is best in each time period indexed by t ∈ T ≡ {1, 2, · · · , T}. Let us denote

the universal set of period-t outcomes by X t, with xt as a typical outcome. Thus, the

universal set of outcome paths available to individuals is the space:

X ⊆
∏
t∈T

X t,

with x as a typical outcome path. The t-head x−t is obtained from the path x ∈ X by

omitting the last t components, that is, x−t ≡ (x1, · · · , xt−1), the t-tail is obtained from x by

omitting the first t − 1 components, that is, x+t ≡
(
xt, · · · , xT

)
, and we identify (x−t, x+t)

with x. The same notational convention will be followed for any profile of outcomes. We

will refer to the t-head x−t as the past outcome history x−t.

The feasible set of period-t + 1 outcomes available to individuals depends upon past

outcome history x−(t+1), that is, X t+1
(
x−(t+1)

)
⊆ X t+1 for every period t 6= T .

We write F t for the collection of functions defined as follows:

F t ≡
{
f t|f t : X−t → X t such that f t

[
x−t
]
∈ X t

(
x−t
)}
, for all t 6= 1.

We also write F for the product space X1 ×F2 × · · · × FT .

The information held by the individuals is summarized in the concept of a state, which

is a complete description of the variable characterizing the environment. Write Θ for the

domain of possible states, with θ as a typical state. For every period t ≥ 2, the description

of the variable characterizing the environment after the outcome history x−t is denoted by

θ|x−t. Moreover, for every t ≥ 2 we write θ|x−t, x+(t+1) for a complete description of the

variable characterizing the environment in period t after the outcome history x−t and the

future sure outcome path x+(t+1).

In the usual fashion, individual i’s preferences in state θ are given by a complete and

transitive binary relation, subsequently an ordering, Ri (θ) of elements of X . The corre-

sponding strict and indifference relations are denoted by Pi (θ) and Ii (θ), respectively. The
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statement xRi (θ) y means that agent i judges x to be at least as good as y. The statement

xPi (θ) y means that agent i judges x better than y. Finally, the statement xIi (θ) y means

that agent i judges x and y as equally good, that is, she is indifferent between them.

2.1 Implementation model

Dynamic social objectives

The goal of the central designer is to implement a social choice function (SCF) f : Θ→ F

that assigns to each state θ a dynamic “socially optimal”process

f [θ] =
(
f 1 [θ] , f 2 [θ|·] , · · · , fT [θ|·]

)
,

where:

• f 1 [θ] ∈ X1 is the period-1 socially optimal outcome and

• f t [θ|·] ∈ F t is the period-t socially optimal process that selects the socially optimal

outcome f t [θ|x−t] in period t ≥ 2 at the state θ after the past outcome history x−t ∈

X−t.

To save writing, for every period t 6= 1 and every past outcome history x−t, we write

f+t [θ|x−t] for the t-tail path of socially optimal outcomes in state θ that follows the past

outcome history x−t, whose period-τ element is the value of the composition f τ ◦f τ−1◦· · ·◦f t

at θ|x−t; that is:

f+t
[
θ|x−t

]
≡
(
f τ
[
θ|x−t

])
τ≥t

where f τ [θ|x−t] ≡ (f τ ◦ f τ−1 ◦ · · · ◦ f t) [θ|x−t] for every period τ ≥ t. The image or range of

the period-t function f t of the SCF f at the past outcome history x−t is the set:

f t
[
Θ|x−t

]
≡
{
f t
[
θ|x−t

]
|θ ∈ Θ

}
, for every x−t ∈ X−t with t 6= 1.
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The image or range of the period-1 function f 1 of the SCF f is the set f 1 [Θ] ≡ {f 1 [θ] |θ ∈ Θ}.

Sequential mechanisms

The central designer delegates the choice to individuals according to a sequential (or

multi-period) mechanism (or game form) with observed actions and simultaneous moves and

then commits to that choice. In other words, we assume that the actions of every individual

are perfectly monitored by every other individual as well as that every individual chooses an

action in period t without knowing the period t action of any other individual.

More formally, in the first period all individuals i ∈ I choose actions from nonempty

choice sets Ai (h1), where h1 ≡ ∅ denotes the initial history. Thus, the period-1 action space

is the product space:

A
(
h1
)
≡
∏
i∈I

Ai
(
h1
)
,

with a (h1) ≡ (a1
1 (h1) , · · · , a1

I (h1)) as a typical period-1 action profile.

In the second period, individuals know the history h2 ≡ a1, and the actions that every

individual i ∈ I has available in period 2 depends on what has happened previously. Then,

let Ai (h2) denote the period-2 nonempty action space of individual i when the history is h2

and let A (h2) denote the corresponding period-2 nonempty action space, which is defined

by:

A
(
h2
)
≡
∏
i∈I

Ai
(
h2
)
,

with a (h2) ≡ (a1 (h2) , · · · , aI (h2)) as a typical period-2 action profile.

Continuing iteratively, we can define ht, the (nontrivial) history at the beginning of

period t > 1, to be the list of t− 1 action profiles,

ht ≡
(
a1, a2, · · · , at−1

)
,

identifying actions played by individuals in periods 1 through t − 1. We let Ai (ht) be

individual i’s nonempty action set in period t when the history is ht and let A (ht) be the
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corresponding period-t action space, which is defined by:

A
(
ht
)
≡
∏
i∈I

Ai
(
ht
)
,

with a (ht) ≡ (a1 (ht) , · · · , aI (ht)) as a typical profile of actions.

We assume that in each period t, every individual knows the history ht, this history is

common knowledge at the beginning of period t, and that every individual i ∈ I chooses an

action from the action set Ai (ht). We also assume that in each period t, all individuals i ∈ I

choose actions simultaneously.

We let H t be the set of all period-t histories, where we define H1 to be the null set, and

let

H ≡
⋃
t∈T

H t

be the set of all possible histories.

For any nontrivial history ht ≡ (a1, a2, · · · , at−1) ∈ H, define a subhistory of ht to be a

sequence of the form (a1, · · · , am) with 1 ≤ m ≤ t − 1, and the trivial history consisting of

no actions is denoted by ∅.

The delegation to individuals is made by means of a sequential mechanism Γ ≡ (I, H,A (H) , g),

where H is the set of all possible histories, A (H) is the set of all profiles of actions available

to individuals, defined by

A (H) ≡
⋃
h∈H

A (h) ,

and g ≡
(
g1, · · · , gT

)
is a sequence of outcome functions, one for each period t ∈ T , with

the property that: a) the outcome function g1 assigns to period-1 action profile a (h1) ∈

A (h1) a unique outcome in X1, and b) for every period t 6= 1 and every nontrivial history

ht ≡ (a1, a2, · · · , at−1) ∈ H t, the outcome function gt assigns to each period-t action profile

a (ht) ∈ A (ht) a unique outcome in X t (g−t (ht)).

The sequential submechanism of a sequential mechanism Γ that follows the history ht

is the sequential mechanism

Γ
(
ht
)
≡
(
I, H|ht, A

(
H|ht

)
, g+t

)
,
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where H|ht is the set of histories for which ht is a subhistory for every h ∈ H|ht,

A
(
H|ht

)
≡

⋃
h∈H|ht

A (h)

is the set of all profiles of actions available to individuals from period t to period T , and

g+t is t-tail of the sequence g that begins with period t after the history ht such that for

every hT ≡
(
a1, · · · , aT−1

)
∈ HT |ht and every a

(
hT
)
∈ A

(
hT
)
it holds that g

(
hT , a

(
hT
))

=(
g−t
(
hT , a

(
hT
))
, g+t

(
hT , a

(
hT
)))
.

Sequential implementation

A sequential mechanism Γ and a state θ induce a sequential game (Γ, θ) (with observed

actions and simultaneous moves within each period). The sequential subgame of the sequen-

tial game (Γ, θ) that follows the history ht ∈ H is the sequential game (Γ (ht) , θ).

Let Ai ≡
⋃
h∈H

Ai (h) be the set of all actions for individual i ∈ I. A (pure) strategy for

individual i is a map si : H → Ai with si (h) ∈ Ai (h) for every history h ∈ H. Individual

i’s space of strategies, Si, is simply the space of all such si.

A strategy profile s ≡ (s1, · · · , sI) is a list of strategies, one for each individual i ∈ I.

The strategy profile s−i is obtained from s by omitting the ith component, that is, s−i

= (s1, · · · , si−1, si+1, · · · , sI), and we identify (si, s−i) with s.

For any strategy si of individual i and any history ht in the sequential mechanism Γ, the

strategy that si induces in the sequential subgame (Γ (ht) , θ) is denoted by si|ht. Individual

i’s space of strategies that follows history ht is denoted by Si|ht. The period-t strategy of

individual i is sometimes denoted by sti.

For every sequential game (Γ, θ), the strategy profile s∗ is a Nash equilibrium of (Γ, θ)

if for every individual i ∈ I it holds that:

g
(
s∗i , s

∗
−i
)
Ri (θ) g

(
si, s

∗
−i
)
for every si ∈ Si.

Let NE (Γ, θ) denote the set of Nash equilibrium strategy profiles of (Γ, θ).
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Moreover, for every sequential game (Γ, θ) and every nontrivial history ht ∈ H, the

strategy profile s∗|ht is a Nash equilibrium of (Γ (ht) , θ) if for every individual i ∈ I and

every past outcome history x−t ∈ X−t it holds that:

(
x−t, g+t

(
s∗i |ht, s∗−i|ht

))
Ri (θ)

(
x−t, g+t

(
si|ht, s∗−i|ht

))
for every si|ht ∈ Si|ht.

Let NE (Γ (ht) , θ) denote the set of Nash equilibrium strategy profiles of (Γ (ht) , θ).

A strategy profile s∗ is a subgame perfect equilibrium (SPE) of a sequential game (Γ, θ)

if it holds that:

s∗|ht is a Nash equilibrium of
(
Γ
(
ht
)
, θ
)
, for every history ht ∈ H.

Let SPE (Γ, θ) denote the set of SPE strategy profiles of (Γ, θ), with sθ as a typical element.

Definition 1 A sequential mechanism Γ ≡ (I, H,A (H) , g) implements the SCF f : Θ →

F in SPE if for every θ ∈ Θ,

f 1 [θ] = g1 (SPE (Γ, θ)) , and

f t
[
θ|g−t

(
ht
)]

= gt
(
SPE

(
Γ
(
ht
)
, θ
))
, for every ht ∈ H t with t 6= 1.

If such a mechanism exists, the SCF f is sequentially implementable.

3. Necessary and suffi cient conditions

3.1 Sequential decomposability

In this section, we first propose a property, sequential decomposability, and show that

this is a necessary condition for sequential implementation. While this property is heavy in

notation, its idea is simple. This property decomposes the dynamic implementation problem

into several “apparently static”implementation problems, one for each period, where every

allowable individual i’s preference for outcome paths is decomposed into T -periods marginal

orderings and where the SCF is decomposed into T -periods marginal SCFs.
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This necessary condition is derived by using the approach developed by Moore and

Repullo (1990) and thus it is stated in terms of the existence of certain sets. These sets are

denoted by Y−t, Y 1 and Y t (y−t) and represent respectively the set of feasible past outcome

histories up to period t 6= 1, the set of period-1 attainable outcomes and the set of period-t

attainable outcomes after the past outcome history y−t. Moreover, the condition consists

of three parts: the first part characterises the period-T implementation problem, the second

one relates to the implementation problem of period t 6= 1, T and the third one relates to

the period-1 implementation problem.

Solving backward, for any feasible past outcome history y−T , the period-T marginal

ordering of individual i in state θ at y−T , that is, at θ|y−T , denoted by Ri

[
θ|y−T

]
, is equal

to:

yTRi

[
θ|y−T

]
zT ⇐⇒

(
y−T , yT

)
Ri (θ)

(
y−T , zT

)
, for every yT , zT ∈ Y T

(
y−T

)
. (1)

We denote by R
[
θ|y−T

]
the profile of period-T marginal orderings at θ|y−T and by

D
[
Θ|y−T

]
the period-T domain of marginal orderings at Θ|y−T , that is:

D
[
Θ|y−T

]
≡
{
R
[
θ|y−T

]
|θ ∈ Θ

}
. (2)

Therefore, the first part of the condition can be formulated as follows:

(i) The preference domain D
[
Θ|y−T

]
is not empty, and there is a period-T function ϕT :

D
[
Θ|y−T

]
→ Y T

(
y−T

)
such that:

ϕT
(
R
[
θ|y−T

])
= fT

[
θ|y−T

]
, for every θ ∈ Θ. (3)

To introduce the second part of the condition, let us suppose that in our way back to

period 1 we have reached period t 6= 1, T and that y−t is a feasible past outcome history.

Given that in our framework sequential rationality is common knowledge between the players

(at every stage of the game) and given that the objective of the planner is to implement a

dynamic social choice process prescribed by the SCF f , every player will "look ahead" and a
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period-t outcome yt will be evaluated at the past outcome history y−t as well as at the future

sure outcome path f+(t+1) prescribed by the SCF in response to the outcome history path

(y−t, yt). On this basis, the period-t marginal ordering of individual i in state θ at the past

outcome history y−t and at the future sure outcome path prescribed by the social process

f+(t+1), that is, at θ|y−t, f+(t+1), denoted by Ri

[
θ|y−t, f+(t+1)

]
, is equal to:

ytRi

[
θ|y−t, f+(t+1)

]
zt ⇐⇒(

y−t, yt, f+(t+1) [θ| (y−t, yt)]
)
Ri (θ)

(
y−t, zt, f+(t+1) [θ| (y−t, zt)]

)
,

(4)

for every yt, zt ∈ Y t (y−t).

Let us denote byR
[
θ|y−t, f+(t+1)

]
the profile of period-tmarginal orderings at θ|y−t, f+(t+1)

for t 6= 1, T and byD
[
Θ|y−t, f+(t+1)

]
the period-t domain of marginal orderings atΘ|y−t, f+(t+1),

that is:

D
[
Θ|y−t, f+(t+1)

]
≡
{
R
[
θ|y−t, f+(t+1)

]
|θ ∈ Θ

}
. (5)

Therefore, as for the first part of the condition, the second part can be stated as follows:

(ii) The preference domain D
[
Θ|y−t, f+(t+1)

]
is not empty, and there is a period-t function

ϕt : D
[
Θ|y−t, f+(t+1)

]
→ Y t (y−t) such that:

ϕt
(
R
[
θ|y−t, f+(t+1)

])
= f t

[
θ|y−t

]
, for every θ ∈ Θ. (6)

Reasoning like that used in the preceding paragraphs, the period-1 marginal ordering of

individual i in state θ at the outcome path prescribed by the social process f+2, that is, at

θ|f+2, denoted by Ri [θ|f+2], is equal to:

y1Ri

[
θ|f+2

]
z1 ⇐⇒

(
y1, f+2

[
θ|y1

])
Ri (θ)

(
z1, f+2

[
θ|z1

])
, for every y1, z1 ∈ Y 1. (7)

Denoting the profile of period-1 marginal orderings at θ|f+2 by R [θ|f+2] and defining the

period-1 domain of marginal orderings at Θ|f+2 by:

D
[
Θ|f+2

]
≡
{
R
[
θ|f+2

]
|θ ∈ Θ

}
, (8)
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the third part of sequential decomposability can be stated as follows:

(iii) The preference domain D [Θ|f+2] is not empty, and there is a period-1 function ϕ1 :

D [Θ|f+2]→ Y 1 such that:

ϕ1
(
R
[
θ|f+2

])
= f 1 [θ] , for every θ ∈ Θ. (9)

In summary, if the SCF f is sequentially implementable, then the following condition

must be satisfied:

Definition 2 The SCF f : Θ → X is sequentially decomposable if there is a collection of

outcome spaces {Y−t}t∈T \{1}, there is a period-1 outcome space Y 1 = Y−2 and there is a

collection of period-t outcome spaces
{
{Y t (y−t)}y−t∈Y−t

}
t∈T \{1}

such that f 1 [Θ] ⊆ Y 1 and

f t [Θ|y−t] ⊆ Y t (y−t) for every t 6= 1; that for every t 6= 1:

y−t ∈ Y−t ⇐⇒ yτ ∈ Y τ
(
y−τ
)
for every 2 ≤ τ ≤ t;

that (i) is satisfied for every y−T ∈ Y−T ; that (ii) is satisfied for every y−t ∈ Y−t with

t 6= 1, T ; and that (iii) is satisfied.

Our first main result can thus be stated as follows:

Theorem 1 If I ≥ 2 and the SCF f : Θ → F is sequentially implementable, then it is

sequentially decomposable.

Proof. See Appendix.

3.2 Sequential Maskin monotonicity

A condition that is central to the Nash implementation thanks to Maskin (1999) is an

invariance condition, now widely referred to as Maskin monotonicity. This condition says

that if an outcome x is socially optimal at the state θ and this x does not strictly fall in

preference for anyone when the state is changed to θ′, then x must remain a socially optimal

outcome at θ′. An equivalent statement of Maskin monotonicity follows the reasoning that
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if x is socially optimal at θ but not socially optimal at θ′, then the outcome x must have

fallen strictly in someone’s ordering at the state θ′ in order to break the Nash equilibrium via

some deviation. Therefore, there must exist some (outcome-)preference reversal if a Nash

equilibrium strategy profile at θ is to be broken at θ′. Let us formalize that condition as

follows: For any state θ and any individual i and any outcome x ∈ X, the weak lower contour

set of Ri (θ) at x is defined by L (x,Ri (θ)) ≡ {y ∈ X|xRi (θ) y}. Therefore:

Definition 3 The SCF F : Θ→ X is Maskin monotonic provided that for all x ∈ X and

all θ̄, θ ∈ Θ, if L(f
(
θ̄
)
, Ri

(
θ̄
)
) ⊆ L(f

(
θ̄
)
, Ri

(
θ̄
)
) for every i ∈ I, then f

(
θ̄
)

= f (θ).

We basically require an adaptation of Maskin monotonicity to each "apparently static"

implementation problem. In other words, sequential Maskin monotonicity requires that every

period-t marginal social choice function ϕt that results from the decomposition of the SCF

is Maskin monotonic. Therefore, the condition of sequential Maskin monotonicity can be

stated as follows:

Definition 4 The sequentially decomposable SCF f : Θ → F is sequentially Maskin

monotonic provided that: (i) the period-T function ϕT over D
[
Θ|y−T

]
is Maskin monotonic

for every y−T ∈ Y−T ; (ii) for every t 6= 1, T , the period-t function ϕt over D
[
Θ|y−t, f+(t+1)

]
is Maskin monotonic for every y−t ∈ Y−t; (iii) the period-1 function ϕ1 over D [Θ|f+2] is

Maskin monotonic.

Our second main result is that only sequentially Maskin monotonic SCFs are sequentially

implementable.

Theorem 2 If I ≥ 2 and the SCF f : Θ → F is sequentially implementable, then it is

sequentially Maskin monotonic.

Proof. See Appendix.

3.3 The characterization theorem

In the abstract Arrovian domain, the condition of no veto-power says that if an outcome

is at the top of the preferences of all agents but possibly one, then it should be chosen
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irrespective of the preferences of the remaining agent: that agent cannot veto it. The

condition of no veto-power implies two well-known conditions: unanimity and weak no veto-

power. The property of unanimity can be stated as follows for an abstract outcome space

X:

Definition 5 The SCF F : Θ→ X satisfies unanimity provided that for all θ ∈ Θ and all

x ∈ X if xRi (θ) y for all i ∈ I and all y ∈ X, then x = F (θ). A SCF that satisfies this

property is said to be a unanimous SCF.

In other words, it states that if an outcome is at the top of the preferences of all

individuals, then that outcome should be selected by the SCF.

As a part of suffi ciency, we require an adaptation of the above definition to each period-t

implementation problem. In other words, sequential unanimity requires that each of period-t

marginal social function ϕt defined over period-t domain of marginal orderings is unanimous.

Thus, the condition can be stated as follows:

Definition 6 A sequentially decomposable SCF f : Θ → F satisfies sequential unanimity

provided that the following requirements hold: (i) the period-T function ϕT over D
[
Θ|y−T

]
is unanimous for every y−T ∈ Y−T ; (ii) for every t 6= 1, T , the period-t function ϕt over

D
[
Θ|y−t, f+(t+1)

]
is unanimous for every y−t ∈ Y−t; (iii) the period-1 function ϕ1 over

D [Θ|f+2] is unanimous.

Furthermore, the condition of no veto-power implies the condition of weak no veto-

power, which states that if an outcome x is socially optimal at the state θ̄ and if the state

changes from θ̄ to θ in a way that under the new state an outcome y that was no better than

x at Ri

(
θ̄
)
for some agent i is weakly preferred to all outcomes in the weak lower contour

set of R̄i (θ) at x according to the ordering Ri (θ) and this y is maximal for every other agent

j in the set X according to Rj (θ), then this y should be socially optimal at θ. Formally, for

an abstract outcome space X:

Definition 7 A SCF F : Θ → X satisfies weak no veto-power provided that for every

θ̄, θ ∈ Θ if y ∈ L
(
f
(
θ̄
)
, Ri

(
θ̄
))
⊆ L (y,Ri (θ)) for some i ∈ I and X ⊆ L (y,Rj (θ)) for

every j ∈ I\ {i}, then f (θ) = y.

16



As a part of suffi ciency, we require the following adaptation of the weak no veto-power

condition:

Definition 8 A sequentially decomposable SCF f : Θ → F satisfies sequential weak no

veto-power provided that the following requirements hold: (i) the period-T function ϕT over

D
[
Θ|y−T

]
satisfies weak no veto-power for every y−T ∈ Y−T ; (ii) for every t 6= 1, T , the

period-t function ϕt over D
[
Θ|y−t, f+(t+1)

]
satisfies weak no veto-power for every y−t ∈ Y−t;

(iii) the period-1 function ϕ1 over D [Θ|f+2] satisfies weak no veto-power.

Our characterization of sequentially implementable SCFs can thus be stated as follows:

Theorem 3 If I ≥ 3 and the SCF f : Θ→ X is sequentially decomposable and sequentially

Maskin monotonic and if the SCF satisfies sequential weak no veto-power as well as sequential

unanimity, then it is sequentially implementable.

Proof. See Appendix.

4. Implications

4.1 Sequential trading

In this section, we investigate sequentially implementable trading rules in a borrowing-

lending model with no liquidity constraints, in which agents can transfer wealth between

periods by making only one-period-ahead borrowing/lending arrangements. We consider the

competitive equilibrium as the natural solution concept for our model, and we investigate

whether or not it is sequentially implementable. We assume that markets are complete, and

so Arrow-Debreu equilibrium and Radner equilibrium are equivalent for our model (on the

equilibrium path).

For the sake of convenience, we assume that there are only three consumption periods

(CPs), and so two trading periods (TPs), and that there is one perfectly divisible commodity

in each CP. In TP1 agents transfer consumption between CP1 and CP2, and in TP2 they

transfer consumption between CP2 and CP3. Let qt be the TPt spot price.
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Each agent i is endowed with an amount ωti of the commodity in CPt. The total

endowment of the commodity in CPt is denoted by ωt. Agent i’s consumption set is R3
+,

and her consumption in CPt is denoted by cti. In state θ, this agent has preference ordering

Ri (θ) over consumption sequences in her consumption set. Endowments are given once and

for all, and therefore an economy is described by a state θ.

The domain assumption is that at each economy θ ∈ Θ agent i’s preference ordering

Ri (θ) is represented by an additively separable utility function

Ui(θ, c
1
i , c

2
i , c

3
i ) = v1

i (θ, c
1
i ) + v2

i (θ, c
2
i ) + v3

i (θ, c
3
i ).

We focus on the set

H =

{
z ∈ RI |

∑
i∈I

zi = 0

}
,

which is the set of closed net trades. Thus, the set of closed net trade vectors for TPt can

be defined by

Zt = H t ×H t+1, for t = 1, 2.

A TPt net trade allocation is thus a vector zt = (ztt, ztt+1) in Zt, where the ith element ztti

of ztt denotes agent i’s net trade of consumption in CPt, and where the ith element ztt+1
i of

ztt+1 denotes agent i’s net trade of consumption in CP(t+ 1).

The set of feasible net trade allocations over the two trading periods is denoted by Z

and defined by

Z =
{

(z1, z2) ∈ Z1 × Z2|ω1
i + z11

i ≥ 0, ω2
i + z12

i + z22
i ≥ 0, ω3

i + z23
i ≥ 0, ∀i ∈ I

}
.

The set of feasible TP1 net trade allocations is given by

Z̄1 = {z1 ∈ Z1|(z1, z2) ∈ Z for some z2 ∈ Z2},

while the set of TP2 net trade allocation, conditional on z1, is given by

Z̄2(z1) = {z2 ∈ Z2|(z1, z2) ∈ Z}, for all z1 ∈ Z̄1.
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This description of consumption sets, preferences, and feasible trade allocations over the two

trading periods is common with the canonical, Arrow-Debreu general equilibrium model.

In economy θ ∈ Θ, agent i’s preference ordering Ri (θ) over consumption sequences

induces a preference ordering <θ
i over the set of feasible net trade allocations Z in the

natural way: for all z, ẑ ∈ Z,

z <θ
i ẑ ⇐⇒ Ui(θ, ω

1
i + z11

i , ω
2
i + z12

i + z22
i , ω

3
i + z23

i ) ≥

Ui(θ, ω
1
i + ẑ11

i , ω
2
i + ẑ12

i + ẑ22
i , ω

3
i + ẑ23

i ).

Though the preference ordering Ri (θ) exhibits separability over consumption sequences,

the derived preference ordering over Z is typically non-separable since consumption in CP2

depends on net trades in both TP1 and TP2.

In contrast to the Arrow-Debreu setting, in sequential trading, trade takes place through

time and agents face a sequence of budget sets, one at each TP. Thus, a competitive net

trade equilibrium allocation for TP2 can be defined as follows:

Definition 9 For every economy θ ∈ Θ and every z1 ∈ Z̄1, the net trade allocation

f 2 [θ|z1] ∈ Z̄2 (z1) constitutes a TP2 competitive net trade allocation, conditional on z1,

if there is a TP2 spot price q2[θ|z1] such that for every agent i this allocation f 2 [θ|z1] solves

the following problem:

Max
z2∈Z̄2(z1)

Ui(θ, ω
1
i + z11

i , ω
2
i + z12

i + z22
i , ω

3
i + z23

i ), subject to z22
i + q2[θ|z1]z23

i ≤ 0. (10)

Let R1
i [θ, f

2] denote agent i’s TP1 marginal preference ordering over the set of feasible

TP1 net trade allocations and be defined by

x1R1
i [θ, f

2]y1 ⇐⇒ Ui(θ, ω
1
i + x11

i , ω
2
i + x12

i + f 22
i [θ|x1], ω3

i + f 23
i [θ|x1]) (11)

≥ Ui(θ, ω
1
i + y11

i , ω
2
i + y12

i + f 22
i [θ|y1], ω3

i + f 23
i [θ|y1]), for all x1, y1 ∈ Z̄1.
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In contrast to static pure exchange economies where each agent’s preferences are defined

over her own net trade vectors, in sequential trading, each individual must have preferences

over TP1 net trade allocations. This is due to the presence of intertemporal pecuniary

externalities. Indeed, an outcome of the trading rule in TP2 depends on the net trade

allocation assigned in TP1, because trading in TP1 affects the values of endowments in the

next trading period. Moreover, the marginal ordering R1
i [θ, f

2] may be non-convex. In order

for it to be a convex preference ordering, it is required that the TP2 function f 2 that maps

every economy, conditional on past trades, into a TP2 net trade allocation be a concave

function, but this requirement fails for any reasonable trading rule. As is known, although

convexity is no more than a suffi cient technical condition for things to work, it becomes

extremely diffi cult to establish any reasonable solution once it is violated.

We may proceed in two ways. First, we can still define a concept of competitive equilib-

rium following the tradition of dynamic general equilibrium theory. Thus, a TP1 competitive

net trade equilibrium allocation can be defined as follows:

Definition 10 For every economy θ ∈ Θ, a TP1 net trade allocation f 1 [θ] ∈ Z̄1 constitutes

a TP1 competitive net trade allocation if there is a TP1 spot price q1[θ] such that for every

agent i the net trade allocation profile (f 1 [θ] , f 2 [θ|f 1 [θ]]) solves the following problem:

Max
z∈Z

Ui(θ, ω
1
i + z11

i , ω
2
i + z12

i + z22
i , ω

3
i + z23

i )

subject to

(i) z11
i + q1[θ]z12

i ≤ 0

(ii) z22
i + q2[θ|z1]z23

i ≤ 0.

This is consistent with the existing dynamic general equilibrium framework, in the sense

that individuals take the price path as given. Note that it assumes that each individual

perceives that her saving choice does not affect either TP1 spot price q1[θ] or TP2 spot price

q2[θ|z1]. The path of consumptions given by this solution is equivalent to Arrow-Debreu and

Radner equilibrium. However, this solution is not sequentially implementable. We prove
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this by means of an example.

Claim 1 Let I ≥ 2. Then, the Radner solution, defined over Θ, does not satisfy sequential

decomposability.

Proof. Suppose that there are three individuals, i, j and k. Assume that agents’intertem-

poral endowments are as follows:

ωi = (ω1
i , 0, 0), ωj = (0, ω2

j , 0) and ωk = (0, 0, ω3
k),

where ω1
i , ω

2
j , ω

3
k > 1.

Each economy θ ∈ Θ = (0, 1] specifies a preference profile over consumption paths

represented by:

Ui(θ, c
1
i , c

2
i , c

3
i ) = c1

i + θ ln c3
i

Uj(θ, c
1
j , c

2
j , c

3
j) = ln c1

j + c2
j

Uk(θ, c
1
k, c

2
k, c

3
k) = ln c2

k + c3
k.

Then, the TP2 spot price equilibrium is given by:

q2[θ|x1] = x12
i , for all x1 ∈ Z̄1,

and the TP2 competitive net trade allocation is given by:

f 22
i [θ|x1] = −x12

i

f 23
i [θ|x1] = 1

f 22
j [θ|x1] = 0

f 23
j [θ|x1] = 0

f 22
k [θ|x1] = x12

i

f 23
k [θ|x1] = −1, for all x1 ∈ Z̄1.

The TP1 marginal orderings over Z̄1 induced by TP2 competitive net trade allocations
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are represented respectively by:

U1
i

(
θ, x1|f 2

)
= ω1

i + x11
i

U1
j

(
θ, x1|f 2

)
= ln x11

j + ω2
j + x12

j

U1
k

(
θ, x1|f 2

)
= ln x12

i + ω3
k − 1, for all x1 ∈ Z̄1, for all θ ∈ Θ.

For every economy θ ∈ Θ, the TP1 equilibrium spot price is:

q1[θ] = θ,

which results in the following TP2 equilibrium spot price:

q2[θ|f 1[θ]] = 1,

and in the following competitive equilibrium net trade allocations:

f 11
i [θ] = −θ

f 12
i [θ] = 1

f 22
i [θ|f 1[θ]] = −1

f 23
i [θ|f 1[θ]] = 1

f 11
j [θ] = θ

f 12
j [θ] = −1

f 22
j [θ|f 1[θ]] = 0

f 23
j [θ|f 1[θ]] = 0

f 11
k [θ] = 0

f 12
k [θ] = 0

f 22
k [θ|f 1[θ]] = 1

f 23
k [θ|f 1[θ]] = −1.

22



We have found that f 1[θ] 6= f 1[θ′] for all θ,θ′ ∈ Θ with θ 6= θ′, though TP1 reduced

utility profiles are identical across economies in Θ, in violation of part (iii) of sequential

decomposability.

The second way is to define a concept of intertemporal price equilibrium without com-

mitment, based on the idea of backward-induction, and to restrict attention to economies

where there are no intertemporal pecuniary externalities. The latter requirement can be

achieved by means of the following restriction.

Condition 1 For all θ ∈ Θ, the TP2 spot price q2[θ|x1] is constant in x1 ∈ Z̄1.

Note that when the above condition is met, a TP2 competitive net trade vector assigned

to individual i depends only on her own past saving/borrowing behavior. For this reason,

we write f 22
i [θ|z12

i ] and f 23
i [θ|z12

i ] for f 22
i [θ|z1] and f 23

i [θ|z1] respectively.

Here are examples of domains which satisfy Condition 1. In what follows, let us focus

on economies where the quantity ωti is strictly positive for every individual i and every

consumption period t = 1, 2, 3.

Assumption 1 (Θ1) Assume that aggregate endowment is constant over time; that is, ω1 =

ω2 = ω3. Also, assume that the individuals have identical discount factors, while they may

exhibit different elasticities of intertemporal substitution. That is, for every economy θ ∈ Θ1

it holds that ω1 = ω2 = ω3 and that there is (β1, β2) such that every i’s preference over

consumptions is represented in the form:

Ui(θ, c
1
i , c

2
i , c

3
i ) = vi(θ, c

1
i ) + β1vi(θ, c

2
i ) + β1β2vi(θ, c

3
i ),

where:

• the sub-utility vi(θ, ·) is twice continuously differentiable, strictly increasing and strictly

concave over R++.

• the limit of the first derivative of the sub-utility vi(θ, ·) is positive infinity as cti ap-

proaches 0; that is, limcti→0
∂vi(θ,c

t
i)

∂cti
=∞.
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• the limit of the first derivative of the sub-utility vi(θ, ·) is zero as cti approaches positive

infinity; that is, limcti→0
∂vi(θ,c

t
i)

∂cti
=∞.

• the sub-utility vi(θ, ·) satisfies the requirement that −
(
∂2vi(θ,c

t
i)

∂2cti
cti/

∂vi(θ,c
t
i)

∂cti

)
< 1 for all

cti ∈ R++.

For this domain, we obtain that the TP2 competitive spot price, net trade allocations

and consumption allocations prescribed for every θ ∈ Θ1 are:

q2
[
θ|z1

]
= β2

f 22
i

[
θ|z12

i

]
= − β2

1 + β2 ·
(
z12
i + ω2

i − ω3
i

)
f 23
i

[
θ|z12

i

]
=

1

1 + β2 ·
(
z12
i + ω2

i − ω3
i

)
c∗2i
[
θ|z1

]
= c∗3i

[
θ|z1

]
=
z12
i + ω2

i + β2ω3
i

1 + β2 , ∀i ∈ I and ∀z1 ∈ Z̄1.

Note that period-1 reduced utility on Z̄1 is represented by:

Ui
(
θ, z1|f 2

)
= vi

(
θ, ω1

i + z11
i

)
+β1

(
1 + β2

)
vi

(
θ,
z12
i + ω2

i + β2ω3
i

1 + β2

)
, ∀i ∈ I and ∀z1 ∈ Z̄1.

Assumption 2 (Θ2) In this domain we drop the assumption of constant aggregate endow-

ment over time, but we assume that individuals have identical CES preferences. That is,

for every θ ∈ Θ2 there is a triplet (β1, β2, ρ) such that every i’s preference ordering over

consumptions is represented in the form:

Ui(θ, c
1
i , c

2
i , c

3
i ) =

(c1
i )

1−ρ

1− ρ + β1 (c2
i )

1−ρ

1− ρ + β1β2 (c3
i )

1−ρ

1− ρ , with ρ > 0.

When agents have identical CES preferences, we obtain that the TP2 competitive equi-

librium spot price, net trade allocations and consumption allocations prescribed for every
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θ ∈ Θ2 are:

q2
[
θ|z1

]
= β2

(
ω2

ω3

)ρ

f 22
i

[
θ|z12

i

]
= −

z12
i + ω2

i − ω3
i

(
ω2

ω3

)
1 + 1

β2

(
ω2

ω3

)1−ρ

f 23
i

[
θ|z12

i

]
=

ω3

ω2
·
z12
i + ω2

i − ω3
i

(
ω2

ω3

)
1 + β2

(
ω3

ω2

)1−ρ

c∗2i
[
θ|z1

]
=

z12
i + ω2

i + β2ω3
i

(
ω2

ω3

)ρ
1 + β2

(
ω3

ω2

)1−ρ

c∗3i
[
θ|z1

]
=

ω3

ω2
· c∗2i

[
θ|z1

]
, ∀i ∈ I and ∀z1 ∈ Z̄1.

Next, let us define a TP1 competitive equilibrium when Condition 1 is satisfied.

Definition 11 For every economy θ satisfying Condition 1, a TP1 net trade allocation

f̂ 1 [θ] ∈ Z̄1 constitutes a backward TP1 competitive net trade allocation if there is a TP1

spot price q1[θ] such that for every agent i the net trade allocation f̂ 1 [θ] solves the following

problem:

Max
z1∈Z̄1

Ui(θ, ω
1
i + z11

i , ω
2
i + z12

i + f 22
i

[
θ|z12

i

]
, ω3

i + f 22
i

[
θ|z12

i

]
), subject to z11

i + q1[θ]z12
i ≤ 0.

Using this definition, we obtain that the competitive equilibrium spot prices prescribed

for every economy θ ∈ Θ1 are:

q1 [θ] = β1 and q2
[
θ|f̂ 1 [θ]

]
= β2,

and so the competitive net trade allocations and the equilibrium consumption allocations
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are for every individual i ∈ I as follows:

f̂ 11
i [θ] = − β1

1 + β1 + β1β2 ·
(
ω1
i

(
1 + β2

)
− ω2

i − β2ω3
i

)
f̂ 12
i [θ] =

1

1 + β1 + β1β2 ·
(
ω1
i

(
1 + β2

)
− ω2

i − β2ω3
i

)
f 22
i

[
θ|f̂ 12

i [θ]
]

= − β2

1 + β2 ·
(
f̂ 12
i [θ] + ω2

i − ω3
i

)
f 23
i

[
θ|f̂ 12

i [θ]
]

=
1

1 + β2 ·
(
f̂ 12
i [θ] + ω2

i − ω3
i

)
c∗1i [θ] = c∗2i

[
θ|f̂ 12

i [θ]
]

= c∗3i

[
θ|f̂ 12

i [θ]
]

=
ω1
i + β1ω2

i + β1β2ω3
i

1 + β1 + β1β2 .

For economies in Θ2, we obtain that the equilibrium spot prices prescribed for every

θ ∈ Θ2 are:

q1 [θ] = β1

(
ω1

ω2

)ρ
and q2

[
θ|f̂ 1 [θ]

]
= β2

(
ω2

ω3

)ρ
.

Thus, the competitive net trade allocations are:

f̂ 11
i [θ] = −

ω1
i

(
β2
(
ω3

ω2

)1−ρ
+ 1

)
−
(
ω1

ω2

)(
ω2
i + β2ω3

i

(
ω2

ω3

)ρ)
1 + 1

β1

(
ω1

ω2

)1−ρ
+ β2

(
ω3

ω2

)1−ρ

f̂ 12
i [θ] =

ω2

ω1
·
ω1
i

(
β2
(
ω3

ω2

)1−ρ
+ 1

)
−
(
ω1

ω2

)(
ω2
i + β2ω3

i

(
ω2

ω3

)ρ)
1 + β1

(
ω2

ω1

)1−ρ
+ β1β2

(
ω3

ω1

)1−ρ

f 22
i

[
θ|f̂ 12

i [θ]
]

= −
f̂ 12
i [θ] + ω2

i − ω3
i

(
ω2

ω3

)
1 + 1

β2

(
ω2

ω3

)1−ρ

f 23
i

[
θ|f̂ 12

i [θ]
]

=
ω3

ω2
·
f̂ 12
i [θ] + ω2

i − ω3
i

(
ω2

ω3

)
1 + β2

(
ω3

ω2

)1−ρ ,
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while the corresponding equilibrium consumption allocations are:

c∗1i [θ] =
ω1
i + β1ω2

i

(
ω1

ω2

)ρ
+ β1β2ω3

i

(
ω1

ω3

)ρ
1 + β1

(
ω2

ω1

)1−ρ
+ β1β2

(
ω3

ω1

)1−ρ

c∗2i
[
θ|z∗1 [θ]

]
=

ω2

ω1
· c∗1i [θ]

c∗3i
[
θ|z∗1 [θ]

]
=

ω3

ω1
· c∗1i [θ] .

The backward competitive solution of an economy θ is a SCF f̄ =
(
f̄ 1 [·] , f̄ 2 [·|·]

)
associat-

ing the period-1 function f̄ 1 [θ] with the backward TP1 competitive net trade allocation f̂ 1 [θ],

that is, f̄ 1 [θ] = f̂ 1 [θ] ∈ Z̄1, and the period-2 function f̄ 2 [θ|·] with the TP2 competitive net

trade allocation for any TP1 net trade allocation in the set Z̄1, that is, f̄ 2 [θ|z1] = f 2 [θ|z1] for

every z1 ∈ Z̄1. Thanks to Condition 1, we can now state and prove the following permissive

results.

Claim 2 Assume that I ≥ 3. Suppose that the quantity ωti is strictly positive for every

individual i and every consumption period t = 1, 2, 3. Then, the backward competitive

solution f̄ is sequential implementable if it is defined either over Θ1 or over Θ2.

Proof. Let the premises hold. To show that f̄ is sequential implementable when it is defined

either over Θ1 or over Θ2, we need to show that this solution is sequentially decomposable

and sequential Maskin monotonic. Moreover, we need also to show this solution satisfies

sequential unanimity and sequential weak no veto-power.

First, let us show that f̄ satisfies sequential decomposability. To this end, let Y 1 =

Y−2 = Z̄1 and let Y 2 (z1) = Z̄2 (z1) for every z1 ∈ Z̄1. Then, the sets Y 1 = Y−2 and Y 2 (z1)

are not empty sets. Note that for k = 1, 2, it holds that f̄ 1
[
Θk
]
⊆ Z̄1 and f̄ 2

[
Θk|z1

]
⊆

Z̄2 (z1) for every z1 ∈ Z̄1.

Let us define the TP2 marginal ordering of individual i in state θ at z1 ∈ Z̄1, denoted

by Ri [θ|z1], as follows:

x2Ri

[
θ|z1

]
y2 ⇐⇒

Ui(θ, ω
1
i + z11

i , ω
2
i + z12

i + x22
i , ω

3
i + x23

i ) ≥ Ui(θ, ω
1
i + z11

i , ω
2
i + z12

i + y22
i , ω

3
i + y23

i ),

27



for every x2, y2 ∈ Y 2 (z1). We denote by R [θ|z1] the profile of TP2 marginal orderings at

θ|z1, by D [Θ1|z1] the TP2 domain of marginal orderings at Θ1|z1 and by D [Θ2|z1] the TP2

domain of marginal orderings at Θ2|z1. For every k = 1, 2, let us define the TP2 function

ϕ2 : D
[
Θk|z1

]
→ Y 2 (z1) as follows:

ϕ2
(
R
[
θ|z1

])
= f 2

[
θ|z1

]
, ∀θ ∈ Θk.

The TP1 marginal ordering of individual i in state θ, denoted by Ri

[
θ|f̄ 2

]
, is defined

as in (11). Let us denote by R
[
θ|f̄ 2

]
the profile of TP1 marginal orderings at θ|f̄ 2, by

D
[
Θ1|f̄ 2

]
the TP1 domain of marginal orderings atΘ1|f̄ 2, and byD

[
Θ2|f̄ 2

]
the TP1 domain

of marginal orderings at Θ2|f̄ 2. For every k = 1, 2, let us define the TP1 function ϕ1 :

D
[
Θk|f̄ 2

]
→ Y 1 as follows:

ϕ1
(
R
[
θ|f̄ 2

])
= f̂ 1 [θ] , ∀θ ∈ Θk.

By the above definitions and by the fact that competitive equilibrium exists in each TP, one

can check that the backward competitive solution f̄ satisfies sequential decomposability.

To see that f̄ also satisfies sequential Maskin monotonicity, it suffi ces to observe that

in each TP the competitive net trade allocation is unique and always an interior allocation,

that the TP1 Walrasian solution ϕ1 on D
[
Θk|f̄ 2

]
is Maskin monotonic for k = 1, 2, and that

the TP2 Walrasian solution ϕ2 on D
[
Θk|z1

]
is also Maskin monotonic for k = 1, 2.

Finally, to see that the backward competitive solution f̄ satisfies sequential unanimity

and sequential weak no veto-power it suffi ces to observe that they are vacuously satisfied

since individuals’marginal orderings are strictly monotonic in consumption.

When there are indeed pecuniary externalities, we do not have a general answer. Below

we provide an answer, although it is far from satisfactory.

Definition 12 (Target rule) Let x̂1 ∈ Z̄1 be a fixed TP1 net trade allocation. Given

an economy θ, the net trade profile in the first period h1[θ] ∈ Z̄1 is defined by

h1[θ] = x̂1
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if

Ui(θ, ω
1
i + x̂11

i , ω
2
i + x̂12

i + f 22
i [θ|x̂1], ω3

i + f 23
i [θ|x̂1])

≥ Ui(θ, ω
1
i , ω

2
i + f 22

i [θ|0], ω3
i + f 23

i [θ|0]), ∀i ∈ I,

otherwise, there is no trade in TP1, that is,

h1[θ] = 0.

The intertemporal target solution of an economy θ is a SCF g = (g1 [·] , g2 [·|·]) associating

the period-1 function g1 [θ] with the net trade allocation h1 [θ], that is, g1 [θ] = h1 [θ] ∈ Z̄1,

and the period-2 function g2 [θ|·] with the TP2 competitive net trade allocation for any TP1

net trade allocation in the set Z̄1, that is, g2 [θ|z1] = f 2 [θ|z1] for every z1 ∈ Z̄1.

Let SCF g be defined over the domain Θ3, which is such that for every economy θ ∈ Θ3

agent i’s preference odering Ri (θ) is represented by an additively separable utility function

Ui(θ, c
1
i , c

2
i , c

3
i ) = v1

i (θ, c
1
i ) + v2

i (θ, c
2
i ) + v3

i (θ, c
3
i ),

where:

• Period-t sub-utility vti(θ, ·) is twice continuously differentiable, strictly increasing and

strictly concave over R++.

• The limit of the first derivative of period-t sub-utility vti(θ, ·) is positive infinity as cti
approaches 0; that is, limcti→0

∂vti(θ,c
t
i)

∂cti
=∞.

• The limit of the first derivative of period-t sub-utility vti(θ, ·) is zero as cti approaches

positive infinity; that is, limcti→0
∂vti(θ,c

t
i)

∂cti
=∞.

• Period-t sub-utility vti(θ, ·) satisfies the requirement that −
(
∂2vti(θ,c

t
i)

∂2cti
cti/

∂vti(θ,c
t
i)

∂cti

)
< 1

for all cti ∈ R++.

By setting Y 1 = Y−2 = Z̄1 and Y 2 (z1) = Z̄2 (z1) for every z1 ∈ Z̄1, by defining the
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TP2 function ϕ2 : D [Θ3|z1]→ Y 2 (z1) by

ϕ2
(
R
[
θ|z1

])
= f 2

[
θ|z1

]
, ∀θ ∈ Θ3,

and by defining the TP1 function ϕ1 : D [Θ3|g2]→ Y 1 by

ϕ1
(
R
[
θ|g2

])
= h1 [θ] , ∀θ ∈ Θ3,

one can check that the intertemporal target solution g, defined on Θ3, satisfies all condi-

tions of Theorem 3, and so it is sequentially implementable when there are three or more

individuals.

4.2 Sequential voting

In this section, we consider a bi-dimensional policy space where an odd number of

individuals vote sequentially on each dimension and where an ordering of the dimensions

is exogenously given. We assume that a majority vote is organized around each policy

dimension and that the outcome of the first majority vote is known to the voters at the

beginning of the second voting stage. This sequential resolution is common in political

economy models (see, e.g., Persson and Tabellini, 2000). We are interested in sequentially

implementing the simple majority solution, which selects the Condorcet winner in each voting

stage.

A policy choice is an ordered pair (x1, x2) ∈ X1×X2, where the policy space of dimension

d = 1, 2 is an open interval.3 Each voter i is described by a one-dimensional type θi. The

type space is the open interval
(
η, η̄
)
.

Definition 13 The voter i’s utility function U :
(
η, η̄
)
× X1 × X2 → R is a twice-

continuously differentiable satisfying:

(a) Strict concavity, that is:

∂2U(θi, x
1, x2)

∂2x1
< 0 and

∂2U(θi, x
1, x2)

∂2x2
< 0, for every

(
x1, x2

)
∈ X1 ×X2.

3The choice of a bi-dimensional policy space is motivated by convenience.
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(b) Marginal single-crossing property, that is:

∂2U(θi, x
1, x2)

∂θi∂x1
> 0 and

∂2U(θi, x
1, x2)

∂θi∂x2
> 0, for every

(
x1, x2

)
∈ X1×X2 and θi ∈

(
η, η̄
)
.

(c) Strategic complementarity, that is:

∂2U(θi, x
1, x2)

∂x1∂x2
≥ 0, for every

(
x1, x2

)
∈ X1 ×X2.

The marginal single-crossing property simply requires that the marginal utility of both

dimensions is increasing in the type of voter. This property can also be found in De Donder

et al. (2012).

We now introduce the definition of a Condorcet winner:

Definition 14 Suppose that individuals in I votes over the set of policies P. We say that

p ∈ P is a majority voting outcome, also known as a Condorcet winner (CW ), if there does

not exist any other distinct outcome p′ ∈ P that is strictly preferred by more than half of

voters to the outcome p.

For any integer k ≥ 2, the set of states Θ takes the structure of the Cartesian product

of allowable independent types for voters, that is, Θ ≡
(
η, η̄
)2k−1

, with θ as typical element.

It simplifies the argument, and causes no loss of generality, to assume that θ1 ≤ θ2 ≤ · · · ≤

θ2k−1. Therefore, the type θk is the median type, denoted by θmed, at state θ.

At the state θ, each voter is assumed to have an ordering preference relation Ri (θ) over

the policy space X1 ×X2 which is represented by U (θi, ·, ·).

Solving by backward induction when the state θ is the prevailing state, if x1 ∈ X1 is the

outcome of the first majority voting, then the stage-2 marginal ordering of voter i on X2 in

state θ at x1 is denoted by Ri [θ|x1] and is represented by U (θi, x
1, ·).

The profile of the stage-2 marginal orderings in state θ at x1 is denoted by R [θ|x1]. Let

D [Θ|x1] be the stage-2 domain of marginal ordering preferences induced by the set Θ as well

as by the outcome x1; that is:

D
[
Θ|x1

]
≡
{
R
[
θ|x1

]
|θ ∈ Θ

}
, for every x1 ∈ X1. (12)
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If x1 ∈ X1 is the outcome of the first majority voting, then the stage-2 majority voting

function f 2 : D [Θ|x1]→ X2 is defined as follows:

f 2
[
θ|x1

]
= CW

(
R
[
θ|x1

])
,

where CW (R [θ|x1]) denotes the Condorcet winner under the profile R [θ|x1]. It will be

shown below that this outcome is the most-preferred outcome of the median type.

Let us suppose that the stage-2 majority voting function is well-defined for every out-

come x1 ∈ X1. Then, in stage-1, the utility of a voter i at state θ for the outcome z1 ∈ X1

is:

U
(
θi, z

1, f 2
[
θ|z1

])
.

Then, the stage-1 marginal ordering of voter i on X1 in state θ at the majority voting

function f 2 [θ|·], denoted by Ri [θ|f 2], is given by:

y1Ri

[
θ|f 2

]
z1 ⇐⇒

(
y1, f 2

[
θ|y1

])
Ri (θ)

(
z1, f 2

[
θ|z1

])
, for every y1, z1 ∈ X1.

As usual, the profile of the stage-1 marginal orderings in state θ at the majority voting

function f 2 [θ|·] is denoted by R [θ|f 2]. Let D [Θ|f 2] be the stage-1 domain of marginal

ordering preferences induced by the set Θ as well as by the majority voting function f 2; that

is:

D
[
Θ|f 2

]
≡
{
R
[
θ|f 2

]
|θ ∈ Θ

}
. (13)

Thus, the stage-1 majority voting function f 1 : D [Θ|f 2]→ X1 is defined as follows:

f 1 [θ] = CW
(
R
[
θ|f 2

])
, for every θ ∈ Θ,

where CW (R [θ|f 2]) denotes the Condorcet winner under the profile R [θ|f 2].

Definition 15 The SCF f (·) = (f 1 [·] , f 2 [·|·]) on Θ is the majority voting solution if for

every θ ∈ Θ:

f 1 [θ] = CW
(
R
[
θ|f 2

])
and f 2

[
θ|x1

]
= CW

(
R
[
θ|x1

])
for every x1 ∈ X1.
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The following lemma shows that the majority voting solution is a single-valued function.

The intuition behind it is similar to that of Proposition 4 of De Donder et al. (2012) for the

case where there is a continuum of voters. Firstly, the assumption of strict concavity assures

the existence and unicity of the Condorcet winner in the second voting stage. This assump-

tion, combined with the assumption of strategic complementarity and with the marginal

single-crossing property, assures that the stage-1 marginal ordering of voter i on X1 in state

θ at the majority voting function f 2 [θ|·] is single-crossing. This guarantees the existence

and unicity of the Condorcet winner in the first voting stage.

Lemma 1 Suppose that the cardinality of I is 2k−1 with k ≥ 2. Suppose that voter i ∈ I’s

utility function Ui on Θ × X1 × X2 meets the requirements of Definition 13 and depends

only on her own type. Then, the majority voting SCF f (·) = (f 1 [·] , f 2 [·|·]) over Θ is a

single-valued function on each policy dimension.

Proof. See Appendix.

Thanks to the above lemma, we can now state and prove the main result of this section.

Claim 3 Suppose that the cardinality of I is 2k− 1 with k ≥ 2. Suppose that voter i ∈ I’s

utility function Ui on Θ × X1 × X2 meets the requirements of Definition 13 and depends

only on her own type. Then, the majority voting solution is sequentially implementable.

Proof. Let the premises hold. By Theorem 3, it suffi ces to show that the majority voting

solution is sequentially decomposable and sequentially Maskin monotonic and, moreover, it

satisfies sequential unanimity and sequential weak no veto-power.

Thus, T = {1, 2}. Let Y 1 = X1 and Y 2 (x1) = X2 for every x1 ∈ X1. Define D [Θ|x1]

as in (12) and define D [Θ|f 2] as in (13).

For every x1 ∈ X1, define the second stage function ϕ2 : D [Θ|x1]→ X2 by ϕ2 (R [θ|x1]) =

CW (R [θ|x1]) for every R [θ|x1] ∈ D [Θ|x1]. Moreover, define the first stage function ϕ1 :

D [Θ|f 2] → X1 by ϕ1 (R [θ|f 2]) = CW (R [θ|f 2]) for every R [θ|f 2] ∈ D [Θ|f 2]. These func-

tions are single-valued by Lemma 1. This shows that the majority voting solution is sequen-

tially decomposable.
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By definitions of the preceding paragraph and by the fact that in each period individuals

have single crossing preferences, one can see that the majority voting solution is sequentially

Maskin monotonic. Since unanimity and weak no veto-power are satisfied, we conclude that

the majority voting solution on Θ is sequentially implementable.

5. Conclusion

Summary. In a finite-horizon intertemporal setting, the paper has investigated SCFs that are

implementable in SPE when society needs to decide and enforce a socially optimal outcome

in each period without being able to commit to future ones.

A SCF maps each possible state of the environment into a dynamic process of social

decisions, which in each period results in a desired allocation of resources for that state on the

basis of past decisions. The paper focussed on the sequential implementation of this dynamic

process. A SCF is sequentially implementable if there exists a sequence of mechanisms (with

observed actions and with simultaneous moves) such that for each possible state of the

environment every SPE of games played sequentially by individuals in that state generates

the outcome prescribed by the SCF for that state, at every history.

We have identified two necessary conditions for sequential implementability, sequen-

tial decomposability and sequential Maskin monotonicity. The first condition states that a

sequential implementable SCF can be decomposed into a sequence of "apparently static"

marginal social choice functions, each of which is defined only over marginal preferences

induced over outcomes at hand. Each marginal preference is constructed in the manner

of backward-induction. This means that a period-t marginal preference over the current

component set depends on past decisions as well as on the socially optimal path that the

dynamic process will bring about in the future. The second condition states that every such

“apparently static”marginal social function needs to satisfies a remarkably strong invariance

condition for Nash implementation, now widely referred to as Maskin monotonicity (Maskin,

1999).

We have also shown that under two auxiliary conditions the two necessary conditions

are suffi cient, as well. The implementing mechanism we have constructed is simple. After
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each history, we run the canonical Maskin mechanism just to decide the current outcome,

in the "apparently static" manner. Participants report messages consisting of a preference

profile defined only over current outcomes, an outcome as well as a tie-breaking device.

The last decades have seen impressive advances in the theory of implementation. One

conclusion is that the use of refinements in implementation leads to permissive results. This

is so because implementation in refinements of Nash equilibrium (Moore and Repullo, 1988;

Abreu and Sen, 1990; Palfrey and Srivastava, 1991; Jackson, 1992) allow us to circumvent

the limitations imposed by Maskin monotonicity. As Sjöström (1994) pointed out, ‘With

enough ingenuity the planner can implement “anything”’(p. 503). In contrast to this, we

have found that sequential rationality, when used in a context where society is unable to

make binding agreements about future outcomes, does not allow the planner to escape the

limitations imposed by Maskin monotonicity. Furthermore, we have also shown (in Claim

1) that the condition of sequential decomposability imposes non-trivial restrictions on the

class of social dynamic processes that are sequentially implementable.

Indeed, we have applied our analysis to two prominent dynamic problems, voting over

time and sequential trading. In the voting application, we have shown that on the do-

main satisfying the single-crossing property the simple majority solution, which selects the

Condorcet winner in each voting stage (after every history), is sequentially implementable.

In a borrowing-lending model with no liquidity constraints, in which individuals trade

in spot markets and transfer wealth between any two periods by borrowing and lending, we

have noted that intertemporal pecuniary externalities arise because trades in the current

period change the spot price of the next period, which, in turn, affects its associated equi-

librium allocation. The quantitative implication of this is that every individual’s marginal

preference ordering concerns not only her own consumption/saving behavior but also the

consumption/saving behavior of all other individuals. In this set-up, we have shown that,

under such pecuniary externalities, the standard dynamic competitive equilibrium solution is

not sequentially implementable. However, we have also identified preference domains —which

involve no pecuniary externalities — for which the no-commitment version of the dynamic

competitive equilibrium solution is definable and sequentially implementable. It remains an

open question how we should deal with intertemporal pecuniary externalities. We hope that
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this and other topics related to this paper will be investigated in future research.
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Appendix

Proof of Theorem 1

Proof of Theorem 1. Let the premises hold. Thus, there exists a sequential mechanism

Γ ≡ (I, H,A (H) , g) that sequentially implements the SCF f . Therefore, for every θ̄ ∈ Θ,

f 1
[
θ̄
]

= g1
(
SPE

(
Γ, θ̄
))
and

f t
[
θ̄|g−t

(
ht
)]

= gt
(
SPE

(
Γ
(
ht
)
, θ̄
))
for every ht ∈ H t and every t 6= 1.

Then, there is a strategy profile sθ̄ ∈ SPE
(
Γ, θ̄
)
of the sequential game

(
Γ, θ̄
)
such that:

sθ̄|ht is a Nash equilibrium of
(
Γ
(
ht
)
, θ̄
)
for every history ht ∈ H.

Moreover, by sequential implementability of f , it also follows that:

f+t
[
θ̄|g−t (h)

]
= g+t

(
sθ̄|h

)
, for every h ∈ H t with 2 ≤ t ≤ T . (14)

Fix any period t 6= 1. Let us define the set Y 1, the set Y−t and the set Y −t (g−t (h)) as
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follows:

Y 1 ≡
{
g1
(
a
(
h1
))
∈ X t|for some a

(
h1
)
∈ A

(
h1
)}
, (15)

Y−t ≡
{
g−t (h) ∈ X−t|for some h ∈ H t

}
, (16)

and for every g−t (h) ∈ Y−t:

Y t (g−t (h)) ≡ {gt (a (h)) ∈ X t (g−t (h)) |a (h) ∈ A (h) for some h ∈ H t} .
(17)

By their definitions as well as by the assumption that the sequential mechanism Γ implements

in SPE the SCF f , one can check that f t [Θ|g−t (h)] ⊆ Y t (g−t (h)) and that f 1 [Θ] ⊆ Y 1.

Moreover, given that Γ is a sequential mechanism, one can also check that for every

period t 6= 1:

g−t
(
ht
)
∈ Y−t ⇐⇒ gτ (aτ ) ∈ Y τ

(
g−τ

(
a1, · · · , aτ−1

))
for every τ such that 2 ≤ τ ≤ t− 1,

for every ht ≡ (a1, · · · , at−1) ∈ H t.

For every y−T ∈ Y−T , the period-T preference domain D
[
Θ|y−T

]
is nonempty, and this

follows from its definition in (2) and from the fact that Y −T
(
y−T

)
is not empty. Let the

period-T function

ϕT : D
[
Θ|g−T (h)

]
→ Y T

(
g−T (h)

)
be defined by:

ϕT
(
R
[
θ|g−T (h)

])
= gT (sθ (h)), for every history h ∈ HT and state θ ∈ Θ, (18)

where sθ ∈ SPE (Γ, θ).

Fix any period t 6= 1, T and any t-head outcome path y−t ≡ g−t (h) ∈ Y−t for some

h ∈ H t. Since the set Y t (g−t (h)) is not empty and since Γ succesively implements f , one

can see that the period-t domain of marginal orderings D
[
Θ|y−t, f+(t+1)

]
as defined in (5)

is not empty. Similarly, one can see that period-1 domain of marginal orderings D [(Θ|f+2)]

as defined in (8) is not empty.
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For every t 6= 1, T , let the period-t function

ϕt : D
[
Θ|g−t (h) , f+(t+1)

]
→ Y t

(
g−t (h)

)
be defined by:

ϕt
(
R
[
θ|g−t (h) , f+(t+1)

])
= gt(sθ (h)) for every h ∈ H t and every θ ∈ Θ. (19)

Let the period-1 function

ϕ1 : D
[
Θ|f+2

]
→ Y 1

be defined by:

ϕ1
(
R
[
θ|f+2

])
= g1(sθ

(
h1
)
), for every θ ∈ Θ. (20)

To complete the proof, we need to show that the period-t function ϕt is a function for

every t ∈ T . The following claim establishes it for the case where t 6= 1, T . The same

arguments, suitably modified, can be used to show that ϕ1 and ϕT are functions.

Claim 4 If the SCF f overΘ is sequentially implementable andR
[
θ|y−t, f+(t+1)

]
= R

[
θ′|y−t, f+(t+1)

]
for some y−t ∈ Y−t with t 6= 1 and some θ, θ′ ∈ Θ, then f t [θ|y−t] = f t [θ′|y−t].

Proof. Suppose that y−t = g−t (h) for some h ∈ H t and that R
[
θ|y−t, f+(t+1)

]
=

R
[
θ′|y−t, f+(t+1)

]
for some θ, θ′ ∈ Θ.

Since sθ ∈ SPE (Γ, θ) and since, moreover, R
[
θ|y−t, f+(t+1)

]
= R

[
θ′|y−t, f+(t+1)

]
, we

have that:

sθ (h) ∈ NE
(
Γ (h) , R

[
θ|y−t, f+(t+1)

])
∩NE

(
Γ (h) , R

[
θ′|y−t, f+(t+1)

])
,

and so, for every i ∈ I and ai (h) ∈ Ai (h), it holds that:

sθ (h)Ri

[
θ′|y−t, f+(t+1)

] (
ai (h) , sθ−i (h)

)
.

From the definition of Ri

[
θ′|y−t, f+(t+1)

]
and from (14), it follows that for every i ∈ I
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and ai (h) ∈ Ai (h) it holds that:

(
g−t (h) , gt

(
sθ (h)

)
, g+(t+1)

(
sθ
′ |
(
h, sθ (h)

)))
Ri (θ

′) (21)(
g−t (h) , gt

(
ai (h) , sθ−i (h)

)
, g+(t+1)

(
sθ
′|
(
h,
(
ai (h) , sθ−i (h)

))))
.

Let si|h ≡ (sτi )τ≥t denote the individual i’s strategy according to which this i plays

sti = sθi (h) after the history h and she conforms to the strategy sθ
′
i thereafter; that is,

st̄i =
(
sθ
′
i

)t̄
for every t̄ > t. Note that s|h′ is a Nash equilibrium of (Γ (h′) , θ′) for every

history h′ ∈ H| (h, a (h)) since sθ
′
is a strategy profile in SPE (Γ, θ′). Thus, to have that

the strategy profile s|h is a SPE strategy profile of (Γ (h) , θ′), we need to show that s|h is a

Nash equilibrium of (Γ (h) , θ′).

Since the action profile s (h) is a Nash equilibrium of
(
Γ (h) , R

[
θ′|g−t (h) , f+(t+1)

])
,

it follows that (21) holds for every i ∈ I and every ai (h) ∈ Ai (h). Thus, no individual

i can gain by deviating from the action si (h) and thereafter conforming to si. Since the

one deviation property (see, e.g., Osborne and Rubinstein, 1994; Lemma 98.2) holds for a

finite-horizon multi-period game with observed actions and simultaneous moves, it follows

that the strategy profile s|h is a SPE of (Γ (h) , θ′). This means that gt (SPE (Γ (h) , θ)) =

gt (SPE (Γ (h) , θ′)). Since the sequential mechanism Γ implements the SCF f in SPE, we

have that f t [θ′|g−t (h)] = f t [θ|g−t (h)].

The statement follows by the above arguments.

Proof of Theorem 2

Proof of Theorem 2. Let the premises hold. Thus, there exists a sequential mechanism

Γ ≡ (I, H,A (H) , g) that sequentially implements the SCF f . Therefore, for every θ̄ ∈ Θ,

f 1
[
θ̄
]

= g1
(
SPE

(
Γ, θ̄
))
and

f t
[
θ̄|g−t

(
ht
)]

= gt
(
SPE

(
Γ
(
ht
)
, θ̄
))
for every ht ∈ H t and every t 6= 1.

Consider any state θ̄. Then, there is a strategy profile sθ̄ ∈ SPE
(
Γ, θ̄
)
of the sequential
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game
(
Γ, θ̄
)
such that:

sθ̄|ht is a Nash equilibrium of
(
Γ
(
ht
)
, θ̄
)
for every history ht ∈ H.

Moreover, by sequential implementability of f , it also follows that:

f+t
[
θ̄|g−t (h)

]
= g+t

(
sθ̄|h

)
, for every h ∈ H t with 2 ≤ t ≤ T .

Since the SCF f is sequentially decomposable, define the set Y 1, the set Y−t and the

set Y t (g−t (ht)) as in (15), (16) and (17) of the proof of Theorem 1, respectively.

Fix any g−T (h) ∈ Y−T with h ∈ HT and suppose that for every i ∈ I and every

a (h) ∈ A (h), it holds that:

ϕT
(
R
[
θ|g−T (h)

])
Ri

[
θ|g−T (h)

]
gT (a (h)) =⇒

ϕT
(
R
[
θ|g−T (h)

])
Ri

[
θ′|g−T (h)

]
gT (a (h)) ,

(22)

for some R
[
θ|g−T (h)

]
and R

[
θ′|g−T (h)

]
in D

[
Θ|g−T (h)

]
.

Since the sequential mechanism Γ implements the SCF f in SPE, we have that:

ϕT
(
R
[
θ|g−T (h)

])
= gT (sθ (h)) = fT

[
θ|g−T (h)

]
,

and that action profile sθ (h) is a Nash equilibrium of
(
Γ (h) , R

[
θ|g−T (h)

])
.

From the definitions of Ri

[
θ|g−T (h)

]
and Ri

[
θ′|g−T (h)

]
given in (1), we have that:

gT (sθ (h))Ri

[
θ|g−T (h)

]
gT (a (h)) ⇐⇒(

g−T (h) , gT (sθ (h))
)
Ri (θ)

(
g−T (h) , gT (a (h))

)
,

(23)

and that:

gT (sθ (h))Ri

[
θ′|g−T (h)

]
gT (a (h)) ⇐⇒(

g−T (h) , gT (sθ (h))
)
Ri (θ

′)
(
g−T (h) , gT (a (h))

)
.

(24)
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If there exist i ∈ I and ai (h) ∈ Ai (h) such that:

gT
(
ai (h) , sθ−i (h)

)
Pi
[
θ′|g−T (h)

]
gT (sθ (h)),

it follows from (22)-(24) that:

gT
(
ai (h) , sθ−i (θ) (h)

)
Pi
[
θ|g−T (h)

]
gT (sθ (h)),

which contradicts the fact that the action profile sθ (h) is a Nash equilibrium of
(
Γ
(
hT
)
, R
[
θ|g−T (h)

])
.

Thus, this action profile sθ (h) is also a Nash equilibrium of
(
Γ (h) , R

[
θ′|g−T (h)

])
. Also,

note that this profile sθ (h) is also a Nash equilibrium of (Γ (h) , θ′).

Since the period-T SCF fT is a function and since the action profile sθ (h) is a Nash

equilibrium of (Γ (h) , θ′), it needs to be the case that gT
(
sθ (h)

)
= fT

(
θ′|g−T (h)

)
. It follows

from the fact that the SCF f is sequentially decomposable that gT
(
sθ (h)

)
= ϕT

(
R
[
θ′|g−T (h)

])
,

as was to be proved.

Fix any t 6= 1, T and consider any g−t (h) ∈ Y−t with h ∈ H t. Furthermore, consider any

profile R
[
θ|g−t (h) , f+(t+1)

]
and any profile R

[
θ′|g−t (h) , f+(t+1)

]
in D

[
Θ|g−t (h) , f+(t+1)

]
.

Suppose that for every i ∈ I and every a (h) ∈ A (h):

ϕt
(
R
[
θ|g−t (h) , f+(t+1)

])
Ri

[
θ|g−t (h) , f+(t+1)

]
gt (a (h)) =⇒

ϕt
(
R
[
θ|g−t (h) , f+(t+1)

])
Ri

[
θ′|g−t (h) , f+(t+1)

]
gt (a (h)) .

(25)

Since the sequential mechanism Γ implements the SCF f in SPE, we have that:

ϕt
(
R
[
θ|g−t (h) , f+(t+1)

])
= f t

[
θ|g−t (h)

]
= gt

(
sθ (h)

)
.

Moreover, from the definitions of Ri

[
θ|g−t (h) , f+(t+1)

]
and Ri

[
θ′|g−t (h) , f+(t+1)

]
given in

(4) and from the fact that Γ sequentially implements the SCF f , one can see that the action

profile sθ (h) is a Nash equilibrium of
(
Γ, R

[
θ|g−t (h) , f+(t+1)

])
, that:

gt
(
sθ (h)

)
Ri

[
θ|g−t (h) , f+(t+1)

]
gt (a (h)) ⇐⇒(

g−t (h) , g+t
(
sθ|h

))
Ri (θ)

(
g−t (h) , gt (a (h)) , g+(t+1)

(
sθ| (h, a (h))

))
,

(26)
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and that:

gt
(
sθ (h)

)
Ri

[
θ′|g−t (h) , f+(t+1)

]
gt (a (h)) ⇐⇒(

g−t (h) , gt
(
sθ (h)

)
, g+(t+1)

(
sθ
′|
(
h, sθ (h)

)))
Ri (θ)

(
g−t (h) , gt (a (h)) , g+(t+1)

(
sθ
′ | (h, a (h))

))
.

(27)

If there exist i ∈ I and ai (h) ∈ Ai (h) such that:

gt
(
ai (h) , sθ−i (h)

)
Pi

[
θ′|g−t (h) , g+(t+1)

(
sθ
′| (h, ·)

)]
gt(sθ (h)),

it follows from (25)-(27) that:

gt
(
ai (h) , sθ−i (h)

)
Pi
[
θ|g−t (h) , g+(t+1)

(
sθ| (h, ·)

)]
gt(sθ (h)),

which contradicts the fact that sθ (h) is a Nash equilibrium of
(
Γ (h) , R

[
θ|g−t (h) , f+(t+1)

])
.

Thus, the action profile sθ (h) is also a Nash equilibrium of
(
Γ (h) , R

[
θ′|g−t (h) , f+(t+1)

])
.

Let si|h ≡ (sτi )τ≥t denote the individual i’s strategy according to which this i plays

sti = sθi (h) after the history h and she conforms to the strategy sθ
′
i thereafter; that is,

st̄i =
(
sθ
′
i

)t̄
for every t̄ > t. Note that s|h′ is a Nash equilibrium of (Γ (h′) , θ′) for every

history h′ ∈ H| (h, a (h)) since sθ
′
is a strategy profile in SPE (Γ, θ′). Thus, to have that

the strategy profile s|h is a SPE strategy profile of (Γ (h) , θ′), we need to show that s|h is a

Nash equilibrium of (Γ (h) , θ′).

Since the action profile s (h) is a Nash equilibrium of
(
Γ (h) , R

[
θ′|g−t (h) , f+(t+1)

])
, it

follows from (27) that for every i ∈ I and every ai (h) ∈ Ai (h):

(
g−t (h) , g+t (s)

)
Ri (θ

′)
(
g−t (h) , gt (ai (h) , s−i (h)) , g+(t+1) (s| (h, (ai (h) , s−i (h))))

)
.

Thus, no individual i can gain by deviating from the action profile s (h) and thereafter

conforming to si, and so the strategy profile s|h is a SPE of (Γ (h) , θ′).

Since the sequential mechanism Γ implements the SCF f in SPE, we have that f t [θ′|g−t (h)] =

gt (SPE (Γ (h) , θ′)). Moreover, given that the period-t social function f t is a function and

that the strategy profile s|h is a SPE of (Γ (h) , θ′), it also follows that f t [θ′|g−t (h)] =

gt (s (h)). Since f is sequentially decomposable, we have gt (s (h)) = ϕt
(
R
[
θ′|g−t (h) , f+(t+1)

])
,
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as was to be shown.

Consider some R [θ|f+2] and some R [θ′|f+2] in D [Θ|f+2]. Suppose that for every i ∈ I

and every a (h1) ∈ A (h1):

ϕ1
(
R
[
θ|f+2

])
Ri

[
θ|f+2

]
g1
(
a
(
h1
))

=⇒ ϕ1
(
R
[
θ|f+2

])
Ri

[
θ′|f+2

]
g1
(
a
(
h1
))
. (28)

Since f is sequentially decomposable, we have that

ϕ1
(
R
[
θ|f+2

])
= f 1 [θ] = g1

(
sθ
(
h1
))
.

Moreover, it also follows from the definitions of Ri [θ|f+2] and Ri [θ
′|f+2] given in (7) and

from the fact that Γ sequentially implements the SCF f that the action profile sθ (h1) is a

Nash equilibrium of (Γ, R [θ|f+2]), that:

ϕ1 (R [θ|f+2])Ri [θ|f+2] g1 (a (h1)) ⇐⇒(
g1
(
sθ (h1)

)
, g+2

(
sθ|sθ (h1)

))
Ri (θ)

(
g1 (a (h1)) , g+2

(
sθ|a (h1)

))
,
(29)

and that:

ϕ1 (R [θ|f+2])Ri [θ
′|f+2] g1 (a (h1)) ⇐⇒(
g1
(
sθ (h1)

)
, g+2

(
sθ
′ |sθ (h1)

))
Ri (θ

′)
(
g1 (a (h1)) , g+2

(
sθ
′|a (h1)

))
.
(30)

Suppose that

g1
(
ai
(
h1
)
, sθ−i

(
h1
))
Pi
(
θ′|f+2

)
g1
(
sθ
(
h1
))

for some i ∈ I and some ai (h1) ∈ Ai (h1). Thus, it follows from (28)-(30) that:

g1
(
ai (h

1) , sθ−i (h
1)
)
Pi (θ|f+2) g1

(
sθ (h1)

)
⇐⇒(

g1
(
ai (h

1) , sθ−i (h
1)
)
, g+2

(
sθ|
(
ai (h

1) , sθ−i (h
1)
)))

Pi (θ)
(
g1
(
sθ (h1)

)
, g+2

(
sθ|sθ (h1)

))
,

which contradicts the fact that action profile sθ (h1) is a Nash equilibrium of (Γ, R [θ|f+2]).

Therefore, the profile sθ (h1) is also a Nash equilibrium of (Γ, R [θ′|f+2]).

As we did previously, let si ≡ (sτi )τ≥1 denote the individual i’s strategy according to
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which this i plays s1
i ≡ sθi (h1) at the start of the game and thereafter she conforms to the

strategy sθ
′
i ; that is, s

t
i ≡

(
sθ
′
i

)t
for every t ≥ 2.

Note that s|h′ is a Nash equilibrium of (Γ (h′) , θ′) for every nontrivial history h ∈ H

since sθ
′
is a strategy profile in SPE (Γ, θ′). Thus, to have that the strategy profile s is a

SPE of (Γ, θ′), we need to show that s is also a Nash equilibrium of (Γ, θ′).

Since the action profile s (h1) is a Nash equilibrium of (Γ (h1) , R [θ′|f+2]), it follows from

(27) that for every i ∈ I and every ai (h1) ∈ Ai (h1):

(g (s))Ri (θ
′)
(
g1
(
ai
(
h1
)
, s−i

(
h1
))
, g+2

(
s|
(
ai
(
h1
)
, s−i

(
h1
))))

.

Thus, no individual i can gain by deviating from si (h
1) and thereafter conforming to si, and

so the strategy profile s is a SPE of (Γ (h) , θ′).

Since the sequential mechanism Γ implements the SCF f in SPE, we have that f 1 [θ′] =

g1 (SPE (Γ, θ′)). Moreover, given that the period-1 social function f 1 is a function and that

the strategy profile s is a SPE of (Γ, θ′), it also follows that f 1 [θ′] = g1 (s (h1)). Since f is

sequentially decomposable, we have g1 (s (h1)) = ϕ1 (R [θ′|f+2]), as was to be shown.

Proof of Theorem 3

Proof of Theorem 3. The proof is based on the construction of a sequential mechanism

Γ, where each period-t mechanism is a canonical mechanism.

Period-1 mechanism:

Individual i’s period-1 action space is defined by:

Ai
(
H1
)
≡ D

[
Θ|f+2

]
× Y 1 ×Z+,

where Z+ is the set of nonnegative integers and H1 is the null set. Thus, a period-1 action

of individual i consists of an element of the set Y 1, an element of the period-1 domain of

marginal preferences induced by the set Θ at the socially optimal 2-tail outcome paths f+2,

and a nonnegative integer. A typical period-1 action played by individual i is denoted by
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ai (h
1) ≡

((
R
[
θ̄|f+2

])i
, (x1)

i
, (z)i

)
.

Period-1 action space of individuals is the product space:

A
(
H1
)
≡
∏
i∈I

Ai
(
H1
)
,

with a (h1) as a typical period-1 action profile.

The period-t outcome function g1 is defined by the following three rules:

Rule 1: If ai (h1) ≡
(
R
[
θ̄|f+2

]
, x1, 0

)
for every i ∈ I and x1 = ϕ1

(
R
[
θ̄|f+2

])
, then

g1 (a (h)) = x1.

Rule 2: If n − 1 individuals play aj (h1) ≡
(
R
[
θ̄|f+2

]
, x1, 0

)
with x1 = ϕ1

(
R
[
θ̄|f+2

])
but

individual i plays ai (h1) ≡
((
R
[
θ̄|f+2

])i
, (x1)

i
, (z)i

)
6= aj (h1), then we can have two cases:

1. If x1Ri

[
θ̄|f+2

]
(x1)

i, then g1 (a (h1)) = (x1)
i.

2. If (x1)
i
Pi
[
θ̄|f+2

]
x1, then g1 (a (h1)) = x1.

Rule 3: Otherwise, an integer game is played: identify the individual who plays the highest

integer (if there is a tie at the top, pick the individual with the lowest index among them.)

This individual is declared the winner of the game, and the alternative implemented is the

one she selects.

Period-t mechanism with t 6= 1, T :

Individual i’s period-t action space after history h ∈ H t such that g−t (h) ∈ Y−t is

defined by:

Ai (h) ≡ D
[
Θ|g−t (h) , f+(t+1)

]
× Y t

(
g−t (h)

)
×Z+,

where Z+ is the set of nonnegative integers. Thus, a period-t action of individual i after

history h ∈ H t consists of an element of the set Y t (g−t (h)), an element of the period-t

domain of marginal preferences induced by the set Θ at the t-head outcome path g−t (h)

and at the socially optimal t + 1-tail outcome paths f+(t+1), and a nonnegative integer. A
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typical period-t action played by individual i after history h ∈ H t is denoted by ai (h) ≡((
R
[
θ̄|g−t (h) , f+(t+1)

])i
, (xt)

i
, (z)i

)
.

Period-t action space of individuals after history h ∈ H t is the product space:

A (h) ≡
∏
i∈I

Ai (h) ,

with a (h) as a typical period-t action profile after history h ∈ H t.

The period-t outcome function gt is defined by the following three rules for every h ∈ H t

such that g−t (h) ∈ Y−t:

Rule 1: If ai (h) ≡
(
R
[
θ̄|g−t (h) , f+(t+1)

]
, xt, 0

)
for every i ∈ I and xt = ϕt

(
R
[
θ̄|g−t (h) , f+(t+1)

])
,

then gt (a (h)) = xt.

Rule 2: If n− 1 individuals play aj (h) ≡
(
R
[
θ̄|g−t (h) , f+(t+1)

]
, xt, 0

)
with

xt = ϕt
(
R
[
θ̄|g−t (h) , f+(t+1)

])
but individual i plays ai (h) ≡

((
R
[
θ̄|g−t (h) , f+(t+1)

])i
, (xt)

i
, (z)i

)
6= aj (h), then we can

have two cases:

1. If xtRi

[
θ̄|g−t (h) , f+(t+1)

]
(xt)

i, then gt (a (h)) = (xt)
i.

2. If (xt)
i
Pi
[
θ̄|g−t (h) , f+(t+1)

]
xt, then gt (a (h)) = xt.

Rule 3: Otherwise, an integer game is played: identify the individual who plays the highest

integer (if there is a tie at the top, pick the individual with the lowest index among them.)

This individual is declared the winner of the game, and the alternative implemented is the

one she selects.

Period-T mechanism:

Individual i’s period-T action space after history h ∈ HT such that g−T (h) ∈ Y−T is

defined by:

Ai (h) ≡ D
[
Θ|g−T (h)

]
× Y T

(
g−T (h)

)
×Z+,
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where Z+ is the set of nonnegative integers. Thus, a period-T action of individual i after

history h ∈ HT consists of an element of the set Y T
(
g−T (h)

)
, an element of the period-T

domain of marginal preferences induced by the set Θ and the T -head outcome path g−T (h),

and a nonnegative integer. A typical period-T action played by individual i after history

h ∈ HT is denoted by ai (h) ≡
((
R
[
θ̄|g−T (h)

])i
,
(
xT
)i
, (z)i

)
.

Period-T action space of individuals after history h ∈ HT is the product space:

A (h) ≡
∏
i∈I

Ai (h) ,

with a (h) as a typical period-T action profile after history h ∈ HT .

The period-T outcome function gT is defined by the following three rules for every

h ∈ HT such that g−T (h) ∈ Y−T :

Rule 1: If ai (h) ≡
(
R
[
θ̄|g−T (h)

]
, xT , 0

)
for every i ∈ I and xT = ϕT

(
R
[
θ̄|g−T (h)

])
, then

gT (a (h)) = xT .

Rule 2: If n−1 individuals play aj (h) ≡
(
R
[
θ̄|g−T (h)

]
, xT , 0

)
with xT = ϕT

(
R
[
θ̄|g−T (h)

])
but individual i plays ai (h) ≡

((
R
[
θ̄|g−T (h)

])i
,
(
xT
)i
, (z)i

)
6= aj (h), then we can have

two cases:

1. If xTRi

[
θ̄|g−T (h)

] (
xT
)i
, then gT (a (h)) =

(
xT
)i
.

2. If
(
xT
)i
Pi
[
θ̄|g−T (h)

]
xT , then gT (a (h)) = xT .

Rule 3: Otherwise, an integer game is played: identify the individual who plays the highest

integer (if there is a tie at the top, pick the individual with the lowest index among them.)

This individual is declared the winner of the game, and the alternative implemented is the

one she selects.

Let

H ≡
⋃
t∈T

H t
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be the set of all possible histories, let Ai ≡
⋃
h∈H

Ai (h) be the set of all actions for individual

i ∈ I, let A (H) be the set of all profiles of actions available to individuals, defined by

A (H) ≡
⋃
h∈H

A (h) ,

and let g ≡
(
g1, · · · , gT

)
be the sequence of outcome functions, one for each period t ∈ T .

Note that g satisfies the following properties: a) the outcome function g1 assigns to period-1

action profile a (h1) ∈ A (h1) a unique outcome in Y 1, and b) for every period t 6= 1 and every

nontrivial history ht ∈ H t, the outcome function gt assigns to each period-t action profile

a (ht) ∈ A (ht) a unique outcome in Y t (g−t (ht)). Thus, by construction, Γ ≡ (I, H,A (H) , g)

is a sequential mechanism.

We now prove that (a) for every θ ∈ Θ, there exists a SPE strategy sθ ∈ S of (Γ, θ)

such that g1
(
sθ (h1)

)
= f 1 [θ], f t [θ|g−t (ht)] = gt

(
sθ (ht)

)
for every nontrivial ht ∈ H t, and

(b) for every θ ∈ Θ and for every sθ ∈ SPE (Γ, θ), g1
(
sθ (h1)

)
= f 1 [θ] and f t [θ|g−t (ht)] =

gt
(
sθ (ht)

)
for every nontrivial ht ∈ H t. Thus, fix any state θ ∈ Θ.

Let us first prove (a). Since the SCF is sequentially decomposable, we have that f 1 [θ] =

ϕ1 (R [θ|f+2]), that f t [θ|g−t (h)] = ϕt
(
R
[
θ|g−t (h) , f+(t+1)

])
for every nontrivial h ∈ H t and

every t 6= 1, T and that fT
[
θ|g−T (h)

]
= ϕT

(
R
[
θ|g−T (h)

])
for every h ∈ HT .

Let us define individual i ∈ I’s strategy sθi : H → Ai by:

sθi
(
h1
)

=
(
R
[
θ|f+2

]
, ϕ1

(
R
[
θ|f+2

])
, 0
)
,

sθi (h) =
(
R
[
θ|g−t (h) , f+(t+1)

]
, ϕt
(
R
[
θ|g−t (h) , f+(t+1)

])
, 0
)
, for every h ∈ H t with t 6= 1, T ,

sθi (h) =
(
R
[
θ|g−T (h)

]
, ϕT

(
R
[
θ|g−t (h)

])
, 0
)
, for every h ∈ HT .

For every period t and history ht ∈ H t, to show that sθ|ht ≡
(
sθ1|ht, · · · , sθI |ht

)
is a

SPE of (Γ (ht) , θ) it suffi ces to show that no individual i can gain by deviating from sθi |ht

in a single period τ ≥ t and conforming to sθi |ht thereafter. To this end, first note that for

every history h ∈ H, the strategy profile sθ (h) falls into Rule 1. Thus, by construction and

the fact that the SCF is sequentially decomposable, one can check that g1
(
sθ (h1)

)
= f 1 [θ],
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f t [θ|g−t (ht)] = gt
(
sθ (ht)

)
for every ht ∈ H t and every t 6= 1.

Fix any period t and any history ht ∈ H t. Suppose that individual i deviates from

sθi |hτ with hτ ∈ H|ht by changing only the action sθi (hτ ) into ai (hτ ) ∈ Ai (h
τ ). Given

that no unilateral deviation from sθ (hτ ) can induce Rule 3, the outcome is thus determined

by Rule 2. But then, under this rule the outcome would only change to be the period-τ

outcome announced by this i in her deviation if this outcome is not better than the outcome

gτ
(
sθ (hτ )

)
according to the period-τ marginal ordering Ri [θ|f+2] if τ = 1, to the period-τ

marginal ordering Ri

[
θ|g−τ (hτ ) , f+(t+1)

]
if τ 6= 1, T , and to the period-τ marginal ordering

Ri [θ|g−τ (hτ )] if τ = T . By noting that Ri [θ|f+2] is the true period-1 marginal ordering of

individual i in state θ at the socially optimal 2-tail outcome paths f+2 [θ|·] if τ = 1, that

Ri

[
θ|g−τ (hτ ) , f+(τ+1)

]
is the true period-τ marginal ordering of individual i in state θ at

the head-path g−τ (hτ ) and the socially optimal τ -tail outcome paths f+(τ+1) [θ|·] if τ 6= 1, T

and that Ri [θ|g−τ (hτ )] is the true period-τ marginal ordering of individual i in state θ at the

head-path g−τ (hτ ) if τ = T , individual i will not benefit from such a deviation. Since the

choice of individual i as well as of the history hτ ∈ Hτ |ht are arbitrary, we conclude that the

strategy profile sθ|ht is a SPE of (Γ (ht) , θ). Hence, the proposed strategy profile sθ|h is a

SPE of (Γ (h) , θ) for every history h ∈ H, whose outcomes are such that g1
(
sθ (h1)

)
= f 1 [θ],

f t [θ|g−t (ht)] = gt
(
sθ (ht)

)
for every ht ∈ H t and every t 6= 1. This proves our goal (a) stated

above. The rest of the proof shows that our goal (b) holds, too.

To see this, assume that the strategy profile s is a SPE of (Γ, θ). Moreover, fix any history

h ∈ H. Thus, the strategy profile s|h is a SPE of (Γ (h) , θ). Assume, to the contrary, that

there is a period t ∈ T as well as a history ht ∈ H|h such that either f t [θ|g−t (ht)] 6= gt (s (ht))

if t 6= 1 or f 1 [θ] 6= g1 (s (h1)) if t = 1. Among all such histories, let hτ ∈ H|h be one of the

longest histories. Thus, it must be the case that f τ [θ|g−τ (hτ )] 6= gτ (s (hτ )) and, moreover,

that f τ̂
[
θ|g−τ̂

(
hτ̂
)]

= gτ̂
(
s
(
hτ̂
))
for every hτ̂ ∈ H| (hτ , sτ (hτ )) if τ 6= T . Note that for the

case where τ 6= T the sequential decomposability of the SCF f implies that:

gτ̂
(
s
(
hτ̂
))

= ϕτ̂
(
R
[
θ|g−τ̂

(
hτ̂
)
, f+(τ̂+1)

])
for every hτ̂ ∈ H| (hτ , sτ (hτ )) with τ̂ 6= T , and that:

gT
(
s
(
hT
))

= ϕT
(
R
[
θ|g−T

(
hT
)])

for every hT ∈ H| (hτ , sτ (hτ )) .
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Also, note that the true profile of period-τ marginal orderings at true state θ is:

R
[
θ|f+(τ+1)

]
if τ = 1,

R
[
θ|g−τ (hτ ) , f+(τ+1)

]
if τ 6= 1, T ,

R
[
θ|g−τ (hτ )

]
if τ = T .

Let us suppose that τ 6= 1, T . Then, the action profile s (hτ ) is a Nash equilibrium of(
Γ, R

[
θ|g−τ (hτ ) , f+(τ+1)

])
.

Suppose that s (hτ ) falls into Rule 1 of period-τ mechanism. Thus, gτ (s (hτ )) =

ϕτ
(
R
[
θ̄|g−τ (h) , f+(τ+1)

])
, and this outcome is an element of Y τ (g−τ (hτ )). Since f is se-

quentially decomposable, an immediate contradiction is obtained if gτ (s (hτ )) = ϕτ
(
R
[
θ|g−τ (h) , f+(τ+1)

])
.

Therefore, let us suppose that gτ (s (hτ )) 6= ϕτ
(
R
[
θ|g−τ (h) , f+(τ+1)

])
.

Since f is sequentially Maskin monotonic and since

ϕτ
(
R
[
θ|g−τ (hτ ) , f+(τ+1)

])
6= ϕτ

(
R
[
θ̄|g−τ (h) , f+(τ+1)

])
,

there exists an individual i and a period-τ outcome yτ ∈ Y τ (g−τ (hτ )) such that

ϕτ
(
R
[
θ̄|g−τ (hτ ) , f+(τ+1)

])
Riy

τ

and

yτPi
[
θ|g−τ (hτ ) , f+(τ+1)

]
ϕτ
(
R
[
θ̄|g−τ (hτ ) , f+(τ+1)

])
.

By changing si (hτ ) into ai (hτ ) =
(
R
[
θ|g−τ (hτ ) , f+(τ+1)

]
, yτ , 1

)
, individual i can induce

Rule 2 and obtain gτ (ai (h
τ ) , s−i (h

t)) = yτ , thereby contradicting the fact that the action

profile s (hτ ) is a Nash equilibrium of
(
Γ, R

[
θ|g−τ (hτ ) , f+(τ+1)

])
.

Suppose that s (hτ ) falls into Rule 2 of period-τ mechanism. Thus, for every individual

j 6= i, the period-τ outcome determined by this rule is maximal for this j in Y τ (g−τ (hτ ))

according to her period-τ marginal ordering Rj

[
θ|g−τ (hτ ) , f+(τ+1)

]
. Moreover, given that

the action profile s (hτ ) is a Nash equilibrium of
(
Γ, R

[
θ|g−τ (hτ ) , f+(τ+1)

])
, for individual

i it holds that the outcome gτ (s (ht)) is such that gτ (s (ht)) is an element of the weak lower
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contour set of Ri

[
θ̄|g−τ (hτ ) , f+(τ+1)

]
at ϕτ

(
R
[
θ̄|g−τ (hτ ) , f+(τ+1)

])
and that

gτ
(
s
(
ht
))
Ri

[
θ|g−τ (hτ ) , f+(τ+1)

]
xτ

for every xτ in the weak lower contour set ofRi

[
θ̄|g−τ (hτ ) , f+(τ+1)

]
at ϕτ

(
R
[
θ̄|g−τ (hτ ) , f+(τ+1)

])
.

Since the SCF f satisfies the sequentially weak no veto-power, this implies that

gτ (s (hτ )) = ϕτ
(
R
[
θ|g−τ (hτ ) , f+(τ+1)

])
.

The sequential decomposability of f implies that ϕτ
(
R
[
θ|g−τ (hτ ) , f+(τ+1)

])
= f τ [θ|g−τ (hτ )],

which is a contradiction.

Suppose that s (hτ ) falls into Rule 3 of period-τ mechanism. Thus, for every individ-

ual j, the period-τ outcome determined by this rule is maximal for this j in Y τ (g−τ (hτ ))

according to her period-τ marginal ordering Rj

[
θ|g−τ (hτ ) , f+(τ+1)

]
. Since the SCF f satis-

fies the sequentially unanimity, we have that gτ (s (hτ )) = ϕτ
(
R
[
θ|g−τ (hτ ) , f+(τ+1)

])
. The

sequential decomposability of f implies that ϕτ
(
R
[
θ|g−τ (hτ ) , f+(τ+1)

])
= f τ [θ|g−τ (hτ )],

which is a contradiction.

We conclude the proof by mentioning that, suitably modified, the above proof provided

for the case where τ 6= 1, T applies to the case where τ = 1 as well as to the case where

τ = T .

Proof of Lemma 1

Proof of Lemma 1. Let the premises hold. Fix any x1 ∈ X1 and any θ ∈ Θ. Let x2 [η|x1]

be the solution to:
∂U(η, x1, x2)

∂x2
= 0.

By the implicit function theorem, we have that:

∂x2 [η|x1]

∂η
= −

∂2U(η,x1,x2[η|x1])
∂2x2

∂2U(η,x1,x2[η|x1])
∂η∂x2

> 0.
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Therefore, the peak for the median type η = θmed is always the peak in the second voting

stage for each x1 ∈ X1. Write x2 [θmed|x1] for the peak of the median type in the second

voting stage conditional on x1.

Since it holds that:
∂U (θmed, x

1, x2 [θmed|x1])

∂x2
= 0,

from the implicit function theorem we obtain that:

∂x2 [θmed|x1]

∂x1
= −

∂2U(θmed,x1,x2[θmed|x1])
∂x1∂x2

∂2U(θmed,x1,x2[θmed|x1])
∂2x2

≥ 0.

Let us show that x2 [θmed|x1] is the Condorcet winner under R [θ|x1] for every x1 ∈ X1.

For every allowable type η ∈
(
η, η̄
)
and policy (x1, x2), let:

Φ(η, x1, x2) = U
(
η, x1, x2

[
θmed|x1

])
− U(η, x1, x2).

Then, for every x2 < x2 [θmed, x
1], we have that:

Φ(θmed, x
1, x2) =

∫ x2[θmed|x1]

x2

∂U(θmed, x
1, z2)

∂z2
dz2.

Furthermore, for every η > θmed, it holds that:

Φ(η, x1, x2)− Φ(θmed, x
1, x2) =

∫ η

θk

∫ x2[θmed|x1]

x2

∂2U(α, x1, z2)

∂α∂z2
dz2dα > 0.

Since

Φ(θmed, x
1, x2) = U(θmed, x

1, x2
[
θmed|x1

]
)− U(θmed, x

1, x2) ≥ 0,

it follows that:

Φ(η, x1, x2) > 0,

which, in turn, guarantees that:

U(η, x1, x2
[
θmed|x1

]
) > U(η, x1, x2).
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Therefore, for every voter j = k + 1, · · · , 2k − 1, it holds that:

U(θj, x
1, x2

[
θmed|x1

]
) > U(θj, x

1, x2).

Likewise, for every x2 > x2 [θmed|x1], one can show that for every voter j = 1, · · · , k− 1

it holds that:

U(θj, x
1, x2

[
θmed|x1

]
) > U(θj, x

1, x2).

Therefore, x2 [θmed|x1] is a Condorcet winner under R [θ|x1], that is, CW (R [θ|x1]) =

x2 [θmed|x1], and so the majority voting function f 2 [·|·] is a single-valued function for every

θ ∈ Θ and every x1 ∈ X1.

Let x [θmed] = (x1 [θmed] , x
2 [θmed]) be the global peak for the median type θmed. Next,

we show that x1 [θmed] is the Condorcet winner under R [θ|f 2].

Solving backward, given that the majority voting function f 2 [θ|x1] = x2 [θmed|x1] for

every x1 ∈ X1, we have that the reduced utility of type η is:

V (η, x1) = U(η, x1, x2
[
θmed|x1

]
).

Then, we have that:

∂V (η, x1)

∂x1
=
∂U(η, x1, x2 [θmed|x1])

∂x1
+
∂U(η, x1, x2 [θmed|x1])

∂x2

∂x2 [θmed|x1]

∂x1
,

and so, by Definition 13, it follows that:

∂2V (η, x1)

∂η∂x1
=
∂2U(η, x1, x2 [θmed|x1])

∂η∂x1
+
∂2U(η, x1, x2 [θmed|x1])

∂η∂x2

∂x2 [θmed|x1]

∂x1
> 0.

Then, for every x1 ∈ X1, let:

Π(η, x1) = V (η, x1 [θmed])− V (η, x1)
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Next, take any x1 < x1 [θmed]. Then, it holds that:

Π(θmed, x
1) =

∫ x1[θmed]

x1

∂V (θmed, z
1)

∂z1
dz1.

Moreover, for every η > θmed, it also holds that:

Π(η, x1)− Π(θmed, x
1) =

∫ η

θmed

∫ x1[θmed]

x1

∂2V (α, z1)

∂α∂z1
dz1dα > 0.

Since

Π(θmed, x
1) = V (θmed, x

1 [θmed])− V (θmed, x
1) ≥ 0,

we have that:

Π(η, x1) > 0,

which, in turn, guarantees that:

V (η, x1 [θmed]) > V (η, x1).

Therefore, for every voter j = k + 1, · · · , 2k − 1, we have that:

V (θj, x
1 [θmed]) > V (θj, x

1).

Likewise, for every x1 > x1 [θmed] one can also show that:

V (θj, x
1 [θmed]) > V (θj, x

1), for every voter j = 1, · · · , k − 1.

We conclude that x1 [θmed] is a Condorcet winner underR [θ|f 2], that is, CW (R [θ|f 2]) =

x1 [θmed], and so the majority voting function f 1 [·] is a single-valued function for every θ ∈ Θ.
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