Political Economics of Fiscal Consolidations and External Sovereign Accidents*

Carolina Achury,a

Christos Koulovatianos,b,c,∗

John Tsoukalasd

May 5, 2016

a HSBC, Research Division
b Department of Economics and CREA, University of Luxembourg
c Center for Financial Studies (CFS), Goethe University Frankfurt
d Adam Smith Business School, University of Glasgow

* Corresponding author: Department of Economics, University of Luxembourg, 162A avenue de la Faïencerie, Campus Limpertsberg, BRA 3.05, L-1511, Luxembourg, Email: christos.koulovatianos@uni.lu, Tel.: +352-46-66-44-6356, Fax: +352-46-66-44-6341.

This study has benefitted from insightful conversations with Costas Azariadis, Yannis Ioannides, Jian Li, Volker Wieland, Fabrizio Zilibotti, and numerous other colleagues and conference/seminar participants in various places. We are indebted to CREA and the Nottingham School of Economics for financial support and to the Center for Financial Studies (CFS) for their hospitality and financial support.
Abstract

As the recent chain of EU sovereign crises has demonstrated, after an unexpected massive rise to the debt GDP ratio, several EU countries manage to proceed with fiscal consolidation quickly and effectively, while other countries, notably Greece, proceed slowly, fuelling “Graccident” and “Grexit” scenarios, even after generous rescue packages, involving debt haircuts and monitoring from official bodies. Here we recursively formulate a game among rent-seeking groups and propose that high debt-GDP ratios lead to predictable miscoordination among rent-seeking groups, unsustainable debt dynamics, and open the path to political accidents that foretell “Graccident” scenarios. Our analysis and application helps in understanding the politico-economic sustainability of sovereign rescues, emphasizing the need for fiscal targets and possible debt haircuts. We provide a calibrated example that quantifies the threshold debt-GDP ratio at 137%, remarkably close to the target set for private sector involvement in the case of Greece.

Keywords: sovereign debt, rent seeking, international lending, tragedy of the commons, EU crisis, Grexit, Graccident

JEL classification: H63, F34, F36, G01, E44, E43, D72
1. Introduction

The Maastricht treaty has been explicit about two fiscal requirements in order to justify participation in the Eurozone: (i) that the fiscal deficit-GDP ratio never exceeds 3%, and (ii) that the fiscal debt-GDP ratio never exceeds 60%. Here we investigate whether such fiscal rules go beyond narrow-minded economic accounting. Specifically, we examine whether quotas on fiscal debt-GDP ratios guarantee the political feasibility of fiscal prudence once a country is already member of a monetary union.

The two main ingredients of our politico-economic theory are, (i) the degree of corruption in form of rent seeking, and (ii) the political separatism and political instability that may be generated by excessive debt-GDP ratios. Focusing on countries with severe corruption problems, with rent-seeking groups being connected to political parties, we seek conditions that determine whether unexpected large shocks to fiscal debt can trigger a political process of accidental bankruptcy and exclusion from sovereign markets.

Our focus on corruption can be empirically motivated by Figure 1. Figure 1 suggests that corruption and fiscal profligacy correlate strongly across Eurozone countries, and corruption is particularly acute in the EU periphery. The correlation displayed in Figure 1 admits two interrelated interpretations that we examine in this paper. First, the interplay between politics and corruption may be central to explaining the divergence of fiscal imbalances between the EU core and EU periphery countries. Second, fiscal imbalances may reinforce channels through which corrupt politics lead to excessive government debt, i.e., corruption may lead to more corruption and eventually to an unsustainable level of government debt.

1 The correlation coefficient between fiscal surplus/deficit-GDP ratios and the corruption perception index is 73%. Grechyna (2012) reports similar correlation results to this depicted by Figure 1, referring to OECD countries. Figure 1 partly reflects the sovereign “debt shocks” in EU countries, presented by Mendoza et al. (2014, Figure 1). Using a crude interpretation of the correlation in Figure 1, with levels of corruption comparable to Spain, Greece’s budget deficit over the period 2005-2009 would have averaged as little as 2.5% of GDP rather than 6.5%.
Our focus on the role of political separatism after a sovereign crisis has been motivated by observing political instability incidents during the European debt crisis. Institutions behind rescue packages, and notably the IMF, emphasized the need for political cooperation and consensus among political parties in order to implement necessary fiscal-consolidation for exiting the sovereign crisis.

The channel we explore is whether outstanding debt-GDP ratios affect practices of well-organized rent-seeking groups within partisan politics that seek fiscal rents. In particular, we investigate whether debt-GDP ratios provide incentives to rent-seeking groups to cooperate (or not) in order to comply with fiscal-prudence practices. One goal of our analysis is to understand more about the policy prescription for sovereign-crisis problems that involve politics more heavily than usual. As in the Lehman-Brothers financial crisis, which had not been pre-calculated by markets, we theoretically examine political events after an unanticipated shock on fiscal debt. Specifically, we provide a model for understanding safety zones for debt-to-GDP ratios. Depending on the size of the unanticipated fiscal shock and on fiscal exposure, a country can either, (i) sustain a sudden rise of debt-GDP ratio, bearing welfare

2 Southern European countries and Ireland received financial assistance from the “Troika” institutions (European Commission, European Central Bank and the IMF) in an effort to stabilise investment markets and to bring political consensus on fiscal consolidation. In some cases rescue packages were followed by more rather than less political instability, while fears about the future of these countries in the European Union have not subsided. Greece is perhaps the most vivid example of political instability. Since 2010, Greece has held five elections forming four (one coalition and three single party) short-lived governments and one interim technocrat government leading to the May 2012 election. The last double election held in January 2015 and September 2015 has again highlighted the deep political separatism and unwillingness of the major political parties to cooperate in a coalition government that would help in sharing the political cost of continued fiscal consolidation. Portugal is another example when just after the October 2015 election the socialist partner withdrew the support from the coalition government.

3 Appendix A demonstrates this emphasis of the IMF. In Appendix A we list excerpts from IMF country reports which refer to Eurozone countries that either received rescue packages or faced excessively high 10-year government bond spreads during the sovereign crisis and were forced out of the bond markets.

4 For example, Greece’s commitment to the common currency gives a stronger role to politics, requiring from politicians of different parties to collaborate on strong reforms and on internal devaluation policies in order to avoid disorderly default (the so-called “Graccident”) and sudden exit from the Eurozone (the so-called “Grexit”, discussed extensively by Sinn, 2015) as well as to restore Greece’s competitive edge (see Ioannides and Pissarides (2015)).
implications only, as debt can be rolled over, but with higher cost of servicing it, or, (ii) have a political accident with long-term effects, leading the country to accidental bankruptcy and to exclusion from international financial markets, to more corruption, and to higher fiscal burdens due to corruption.

1.1 Illustrating the mechanics of the model

At the heart of our analysis is a dynamic game played by rent-seeking groups. This game is embedded in an open economy with the following features: (i) rent-seeking groups jointly influence debt dynamics, government spending, and taxes through (non)cooperation decisions, while extracting rents from the fiscal budget and, (ii) interest rates are determined in international markets where foreign creditors buy government debt.

<table>
<thead>
<tr>
<th>Rent seeker 1</th>
<th>Rent seeker 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rent</td>
<td>C</td>
</tr>
<tr>
<td>C</td>
<td>(V_1^C, V_2^C)</td>
</tr>
<tr>
<td>NC</td>
<td>(V_1^{NC}, V_2^{NC})</td>
</tr>
</tbody>
</table>

Table 1

Consider the static snapshot (displayed in Table 1) of the game between two rent seeking groups. The game specifies payoff values $V_i^C, V_i^{NC}, i = 1, 2$, from the strategies cooperation “C” and noncooperation “NC” respectively. There are two possibilities for the equilibrium of the game. If $V_i^C < V_i^{NC}, i \in \{1, 2\}$, then there are three Nash equilibria, (NC, NC), (C, NC) and (NC, C), i.e., if noncooperation is more rewarding for both rent seekers, then

5 Our setup extends the formulation suggested by Persson (1998), who studies political competition among rent-seeking groups which consume within-group club goods. This setup is related to the political economy of rent-seeking (special-interest) groups, pioneered by Schattschneider (1935), Tullock (1959), Olson (1965), Weingast, Shepsle, and Johnsen (1981), Becker (1983, 1985), and Taylor (1987).
noncooperation and separatism is a sure outcome. If, instead, \(V_i^C > V_i^{NC} \), \(i \in \{1, 2\} \), then there are two Nash equilibria, namely, \((C, C)\) and \((NC, NC)\), i.e., if cooperation is more rewarding for both rent seekers, then cooperation becomes a possible outcome.

A key role in shaping the inequality above is played by a threshold value of the initial outstanding debt-GDP ratio. Above that debt-GDP-ratio threshold, servicing the debt becomes too costly. Rent-seeking groups foresee the consequences of noncooperation and separatism: permanent non-cooperation in turn implies that no creditor is willing to lend money to the country in question, with the latter resorting to financial autarky forever after. Despite the costs of this outcome, rent-seekers still have less to lose by not accessing markets and not sharing rents, compared to sharing rents and servicing the high debt.

A tragedy of the commons problem, as explained in Persson and Tabellini (2000, pp. 163-164), is responsible for this market-isolation result. Without permanent cooperation of rent-seeking groups, there is excessive debt issuing, a type of endogenous fiscal impatience. This impatience causes a mismatch between creditors and a government, the former requiring excessively high interest rates that make debt servicing infeasible.

Nevertheless, such a market exclusion outcome can be avoided if creditors and the groups can both sign a binding commitment. Such a commitment exchanges debt relief for permanent cooperation, with the size of the debt relief given by the distance between the outstanding and threshold debt-to-GDP ratio. Fiscal consolidations can thus be more rewarding and hence politically feasible if they are accompanied by some form of debt relief. A key contribution of our study is the endogenous derivation of the threshold debt-GDP ratio that encourages cooperation and can thus support the political sustainability of fiscal consolidations. We think that deriving this debt-GDP-ratio threshold requires forward-lookingness, so we provide a recursive formulation with potential applicability to existing dynamic stochastic
Our recursive formulation contributes an analytically solved deterministic model which falls in Lagumoff’s (2009, p. 577) specific class of politicoeconomic games. These games are a collection of, (i) economic primitives, (ii) political rules, and (iii) initial conditions. The political rules we study are Markovian decisions of rent-seeking groups to cooperate (or not) on fiscal prudence, while the key initial condition that matters in our analysis is the initial debt-GDP ratio. Our analysis is able to shed light on issues related to the recent sovereign crisis in the Eurozone, specifically on the desirability and politically feasibility of bailouts and fiscal consolidations, which is the core application in this paper.

1.2 Application

Perhaps unsurprisingly, the Greek experience is the best example of all the model’s mechanics at work. Hence the focus and motivation of the model application are the debt rescues that began with the first Greek bailout in May 2010 (followed by Portugal, Ireland) and two further Greek bailout deals in 2012 and 2015. A quantitative exercise indicates that the threshold debt-GDP ratio that encourages cooperation and can thus be thought as the politically sustainable level is 137%. The model implies that a one-off extrinsic-uncertainty “sunspot” event hitting fiscal debt and taking debt-GDP ratio above this threshold, puts the country in question in a danger zone of a political accident. The political accident is

6 In an influential paper, Battaglini and Coate (2008) introduce political competition over pork-barrel spending in a tax smoothing model and study the effect of debt on the composition of spending. While our model is similar in spirit to theirs (i.e. redistribution using debt and taxes as instruments) there are two differences. First, Battaglini and Coate (2008) adopt the legislative bargaining approach while we use a dynamic common pool resource approach. Second, a key difference is that we endogenize the interest rate on debt, which is assumed to be constant in Battaglini and Coate (2008). Consequently, the effect of interest rates on the dynamics of debt is a key channel, that affects the political decisions in our framework.

7 Our model focuses on a setup in which there is a common currency between a domestic economy and foreign creditors, which is directly applied to the Eurozone case. Yet, our model could be modified to including a currency, in order to study the possibility of a currency crisis, potentially combined with a sovereign default as well.
a disorderly default, due to that rent-seeking groups foresee the cost of servicing the debt exceeding the benefits from extracting cooperative rents under a policy of fiscal prudence.\(^8\)

Greece flirted with a disorderly default (a “Graccident”) twice. The first episode took place for much of the second half of 2011 and early 2012, leading eventually in March/April 2012 to a debt swap with the private sector (the so called “PSI”), writing off approximately 53\% of bonds held by private creditors. The second event occurred in June-July 2015 when the newly elected left-wing Greek government missed scheduled payments to the IMF, while negotiating with EU partners the conditions of a new consolidation program. Even though we view 137\% as an indicative threshold, the outstanding Greek debt-GDP ratio was substantially higher in both episodes, reaching 163\% in 2012 and 177\% by mid 2015.

Default in the model can be best thought of as accidental default, i.e., the outcome of a political separatism that results when the debt-GDP ratio is in a danger zone as explained above. The default concept is thus different from a strategic-default choice by a government in power as is most commonly encountered in the sovereign-debt literature.\(^9\) Our model is best designed to study EU countries who are tightly connected through institutions, such as the ECB, the Euro-parliament, Eurogroup, European commission and even NATO agreements and where most of the EU debt is held by financial institutions within the union. A strategic default choice, implies an exit from the union and is thus incompatible with the institutional constraints adopted by member countries.\(^10\)

Pappa et al. (2015) estimate, using a New Keynesian model, the fiscal multiplier in

\(^{8}\) Extrinsic, or in the language of King (2016), radical uncertainty implies, neither the creditors, nor rent seeking groups are able to see or expect one-off events (akin to “sunspots”) that hit the debt-GDP ratio.

\(^{10}\) However we do not rule out that default threats may have played a role in the negotiations leading to the third bailout deal reached by EU partners and Greece in July 2015.
the presence of corruption and tax evasion in EU periphery countries and show that fiscal consolidations are more costly in terms of output losses and welfare. Their empirical results thus corroborate our analysis since they suggest that the presence of corruption makes the debt burden in relation to GDP heavier for the economy undergoing the fiscal consolidation.

Insights on the determinants of such debt-GDP-ratio threshold levels help in understanding the design of bailout rescue packages. A binding commitment for a debt haircut tries to exclude an equilibrium in which rent-seeking groups would want to swing to noncooperation even for one period. Securing that debt-GDP ratios stay below such threshold levels may contribute to the politicoeconomic sustainability of debt. We also find that international agreements (among foreign governments or by the IMF) to roll over fiscal debt using lower pre-agreed interest rates, increase the debt-GDP-ratio threshold levels that support cooperation. For instance, the 137% debt-GDP threshold discussed above rises to 160% if the interest rate falls from 2.5% to 2%. Indeed, one feature of bailout plans in the Eurozone is the tool of lowering interest rates. Our analysis thus suggests lower interest rates foster political cooperation among rent-seeking groups. They make rescue packages politically feasible (and socially desirable) even at high outstanding debt-GDP ratios since they imply lower taxes and higher public consumption increasing welfare for the general public. Our model’s mechanics are compatible with these features, which perhaps explain the stated rationale behind bailouts: the need to make the servicing costs of debt socially and politically bearable.

\[11\] In our Online Appendix we provide evidence on observations motivating us to suggest that corruption and rent-seeking, as endemic problems in Eurozone periphery countries, play a central role as both causes and effects within the vicious circle of the Eurozone sovereign crisis.
2. Model

2.1 The domestic economy

The domestic economy is populated by a large number of identical infinitely-lived agents of total mass equal to 1.

2.1.1 Production

A single composite consumable good is produced under perfect competition, using labor as its only input through the linear technology,

\[y_t = z_t \cdot l_t , \]

in which \(y \) is units of output, \(l \) is labor hours, and \(z \) is productivity. Assume that there is no uncertainty and that productivity at time 0 is \(z_0 > 0 \), growing exogenously at rate \(\gamma \), i.e.,

\[z_t = (1 + \gamma)^t z_0 . \]

2.1.2 Non rent-seeking households

A representative non rent-seeking household (one among a large number of such households) draws utility from private consumption, \(c \), leisure, \(1 - l \), and also from the consumption of a public good, \(G \), maximizing the life-time utility function

\[\sum_{t=0}^{\infty} \beta^t \left[\ln (c_t) + \theta_l \ln (1 - l_t) + \theta_G \ln (G_t) \right] , \]

in which \(\beta \in (0, 1) \) is the utility discount factor, while \(\theta_l, \theta_G > 0 \) are the weights on leisure and public consumption, \(G \), in the utility function. Public consumption is financed via both income taxes and fiscal debt. Yet, for simplicity, we assume that agents in this economy cannot hold any government bonds, so fiscal debt is external in all periods. Finally, we assume that agents cannot have access to domestic government bonds in the future, and
that there is no storage technology. Under these assumptions, the budget constraint of an individual household is,
\[c_t = (1 - \tau_t) z_t l_t . \] (4)

The representative non-rent-seeking household maximizes its lifetime utility given by (3), subject to equation (4), by choosing the optimal stream of consumption and labor supply, \(\{(c_t, l_t)\}_{t=0}^{\infty} \), subject to any given stream of tax rates and public-good quantities, \(\{(G_t, \tau_t)\}_{t=0}^{\infty} \). Since the solution to this problem is based on intra-temporal conditions only, we obtain a simple formula, namely,
\[l_t = \frac{1}{1 + \theta_t} = L , \quad t = 0, 1, \ldots , \] (5)
with \(L \) being both the individual and the aggregate labor supply.\(^{12}\)

2.1.3 Rent-seeking groups and rent-seeking households

We introduce \(N \) rent-seeking groups in the domestic economy that may be heterogeneous in size. Total population in the economy has normalized size 1, and the population mass of each rent-seeking group is \(\mu_j, j \in \{1, ..., N\} \), with \(\sum_{j=1}^{N} \mu_j \leq 1 \). These groups have the power to expropriate resources from the fiscal budget. In each period \(t \in \{0, 1, \ldots \} \), a rent-seeking group \(j \in \{1, ..., N\} \) manages to extract a total rent of size \(\bar{C}^R_{j,t} \). Changing slightly the formulation of Persson (1998), \(\bar{C}^R_{j,t} \) is a composite club good subject to rivalry (public good within but with congestion). Examples of components of \(\bar{C}^R_{j,t} \) are civil-servant jobs for which devoted group members can put less effort at work, tax evasion for which the group supports a network of non-transparency which is exclusive for group members, preferential legal treatment, privileges regarding the management of real estate, fiscal over invoicing, or wasteful public infrastructure related to private benefits, etc. These goods, \(\bar{C}^R_{j,t} \), are equally

\(^{12}\)Under logarithmic utility the income and substitution effects of taxation on leisure cancel each other out, so labor supply does not respond to changes in marginal tax rates.
available to every member of rent-seeking group j (every member of the group is the same), but with each member taking advantage from a smaller club size.\footnote{On club goods see Mueller (2003, Chapter 9), and especially Sandler and Tschirhart (1997), and Roberts (1999, Section 6), in which club goods with congestion are studied.} In each rent-seeking group there is a large number of individuals, with each individual being unable to influence the group’s aggregate actions.\footnote{Nevertheless, club strategies are fully compatible with individual-member incentives. We assume that even if rent-seeking groups have to lobby, this is a costless collective action: it requires no individual effort or any other sacrifice.} Denoting by $C_{j,t}^R$ the individual member’s consumption of the club good $C_{j,t}^R$, the utility function of an individual rent seeker belonging to group j is,\footnote{For the formulation of the utility function see, for example, Sandler and Tschirhart (1997, eq. 1, p. 339).}

\[
\sum_{t=0}^{\infty} \beta^t \left[\ln(c_{j,t}) + \theta_l \ln(1 - l_{j,t}) + \theta_c \ln(G_t) + \theta_R \ln(C_{j,t}^R) \right], \tag{6}
\]

with $\theta_R > 0$, and her economic problem is maximizing (6) subject to the budget constraint

\[
c_{j,t} = (1 - \tau_t) z_{j,t}. \tag{7}
\]

Optimal choices for a rent seeker are given by,

\[
l_{j,t} = l_t = \frac{1}{1 + \theta_l} = L, \quad t = 0, 1, \ldots. \tag{8}
\]

Since labor supply is identical across rent seekers and non rent seekers, private consumption is also the same across rent seekers and non rent seekers, namely,

\[
c_{j,t} = c_t = (1 - \tau_t) z_t L. \tag{9}
\]

2.1.4 Aggregate production and fiscal budget

Combining L with (1) and (2) gives the competitive-equilibrium GDP level,

\[
Y_t = (1 + \gamma)^t z_0 L. \tag{10}
\]
For simplicity, we assume that the domestic government issues only one-period zero coupon bonds. So, in every period there is a need for full debt rollover to the next period. The government’s budget constraint is,

$$\frac{B_{t+1}}{1 + r_{t+1}} = B_t + G_t + \sum_{j=1}^{N} \omega_j C_{j,t}^R - \tau_t Y_t,$$

in which the weight \(\omega_j = N \mu_j / \sum_{i=1}^{N} \mu_i \), \(B_{t+1} \) is the value of newly issued bonds in period \(t \) that mature in period \(t+1 \), evaluated in terms of the consumable good in period \(t+1 \), and \(r_{t+1} \) is the interest rate which reflects the intrinsic return of a bond maturing in period \(t+1 \). Assuming that the one-period zero-coupon bond delivers one unit of the consumable good at maturity, \(B_t \) reflects the quantity of bonds maturing in period \(t \). The weights \(\omega_j \) in equation (11) play the role of an efficiency factor, transforming and mapping each dollar extracted by the fiscal budget into goods enjoyed by each member of group \(j \). Specifically, given that \(C_{j,t}^R \) is an individual member’s consumption of the total rents extracted by group \(j \), \(C_{j,t}^R \), the relationship between \(C_{j,t}^R \) and \(C_{j,t}^R \) is given by,

$$\bar{C}_{j,t}^R = \omega_j C_{j,t}^R \text{, for all } j \in \{1,\ldots,N\}, \ t \in \{0,1,\ldots\}.$$

The smaller the size of group \(j \), the smaller the weight \(\omega_j \), which means more special goods \(C_{j,t}^R \) for each member of \(j \). If all groups have the same size (\(\mu_i = \mu_j = \mu \) for all \(i, j \in \{1,\ldots,N\} \), the symmetric-equilibrium case), then \(\omega_j = 1 \) for all \(j \in \{1,\ldots,N\} \). So, by convention, the price per unit of \(C_{j,t}^R \) equals the consumer-basket price. In the case of heterogeneity in

16This assumption of issuing exclusively one-year zero-coupon bonds rules out concerns about strategic supply of bonds with different maturity. The short maturity time of bonds does not affect our qualitative results.

17For the formulation of weights \(\omega_j \) in the fiscal budget constraint (11), see, for example, Sandler and Tschirhart (1997, eq. 5, p. 341), which is based on the more general formulation of McGuire (1974), adapted for a continuum of agents within the group, and assuming a constant within-group congestion cost.

18We follow this convention as it is not straightforward to impose a market price on such special-interest club goods. Nevertheless, our equilibrium which emphasizes politicoeconomic inefficiencies, uncovers the effects and costs of providing such rents.
group size, weights ω_j affect the rent-seeking-strategy incentives that each group member promotes, by taking into account that in larger groups there is a smaller portion of goods enjoyed per group member.

2.1.5 Impact of tax rates on GDP performance versus impact of tax rates on welfare

The absence of any marginal tax rates in equation (10) demonstrates that our logarithmic-utility setup neutralizes the impact of taxes on GDP performance and rules out dynamic Laffer curves. While taxes do not affect GDP performance, they directly reduce consumption and utility (see equation (4)). So, taxes have a profound impact on welfare. Also, despite that taxes do not have the classic distortionary effects on GDP performance, our analysis does not rule out considerations about an economy’s ability to repay fiscal debt. As it will be clear later, international interest rates at which a country borrows externally, influence its ability to repay fiscal debt in the future. It is an analytical advantage that our model clearly distinguishes the impact of interest-rate pressure on the ability to repay from other factors affecting GDP performance.

2.1.6 Policy-setting mechanism: the biggest part of society influences policy all the time

The levels of fiscal spending, G_t, the tax rate, τ_t, and the level of debt one period ahead B_{t+1}, are the Nash equilibrium of a dynamic game among rent-seeking groups, which also determines $C_{j,t}^R$ in each period. We assume that

$$1 - \sum_{\text{non rent-seekers}}^{N} \mu_j < \min_{\text{smallest rent-seeking group}} \{\mu_j\}$$

so non rent-seekers cannot beat any rent-seeking group in a majority-voting equilibrium on these policy variables. For simplicity, we assume that all existing rent-seeking groups actively
and simultaneously influence policymaking in each period, while they determine their per-
member rent allocation \(\{ C_{Rj}^N \}_{j=1}^N \). The allocation of rents, \(\{ C_{Rj}^N \}_{j=1}^N \), is determined in a com-
petitive and decentralized way, through time-consistent Nash equilibrium. The tax rate and
the debt level are determined \textit{jointly through a simultaneous-move Nash equilibrium among
rent-seeking groups}, as in legislative bargaining models or as in dynamic games in which
different players jointly manage common-pool resources. Our Nash equilibrium concept syn-
chronizes actions by rent-seeking groups, simplifying recursive formulations, implying that
all tax/debt policies are time-consistent. The qualitative equivalence of asynchronous fiscal
profligacy to a commons problem with simultaneous moves is demonstrated by Persson and
Svensson (1989). Yet, such an extension should not alter our results.19

Persson and Tabellini (2000, Chapter 7), present a number of applications related to
the political mechanism behind the provision of club goods as rents, such as legislative
bargaining, lobbying, and electoral competition. Here we abstract from such an analysis
since EU core/periphery countries do not differ with respect to institutional arrangements
behind these political-economy extensions. As Figure 1 illustrates, the EU core/periphery
countries differ mostly with respect to the intensity of rent-seeking/corruption.

\subsection*{2.2 The external creditors}

We denote all external-creditor variables using a star. Creditors hold one-period zero-coupon
bonds from \(M \) different countries. Creditors can be interpreted as managers of financial

19 We do not model alternating political parties and associated rent-seeking groups in power, as this would
complicate the derivation of equilibrium without adding insights to the model. Having all rent-seeking groups
acting simultaneously conveys the mechanics of a commons problem adequately: a rent-seeking group tends
to expropriate extra rents before being crowded out by extra rents of other groups. On the one hand, each
group fully internalizes the benefits of its own per-member rent-seeking good, \(C_{Rj}^N \). On the other hand,
because financing is shared among groups, each group internalizes only one fraction of the social burden
caused by higher taxes and debt. Extensions of our model employing numerical techniques may explore the
role of alternating incumbent parties that are controled by rent-seeking groups. Such extensions are beyond
the scope of our analysis here, which is based on closed-form solutions.
institutions who act in the best interest of the shareholders. Given an initial portfolio of bonds from different countries, \(\{ B_{i,0}^* \}_{i=1}^M \), they select \(\left\{ \left(c_t^*, \{ B_{i,t}^* \}_{i=1}^M \right) \right\}_{t=0}^\infty \) in order to maximize the total life-time utility of (credit-institution) shareholders given by,

\[
\sum_{t=0}^\infty \beta^t \ln (c_t^*)
\]

subject to the budget constraint,

\[
\sum_{i=1}^M P_{i,t} B_{i,t+1}^* = \sum_{i=1}^M B_{i,t}^* - c_t^*,
\]

in which \(P_{i,t}^B = 1/(1 + r_{i,t+1}) \) is the price of a bond that matures in period \(t+1 \). Notice also that the rate of time preference, \((1 - \beta)/\beta\), in the utility function of creditors, (13), is equal to the rate of time preference of domestic households. For maximizing (13) subject to (14), a requirement for \(B_{i,t}^* > 0 \) for all \(i \in \{1, \ldots, M\} \) is,

\[
P_{i,t}^B = P_{j,t}^B = \frac{1}{1 + r_{t+1}}, \quad t = 0, 1, \ldots.
\]

The solution to the problem of maximizing (13) subject to (14) is,

\[
c_t^* = (1 - \beta) \bar{B}_t^*, \quad c_s^* = (1 - \beta) \beta^{s-t} \prod_{j=t+1}^{s} (1 + r_j) \bar{B}_s^*, \quad s = t+1, t+2, \ldots,
\]

which implies,

\[
B_{t+1}^* = \beta (1 + r_{t+1}) B_t^*, \quad \text{with} \quad B_t^* \equiv \sum_{i=1}^M B_{i,t}^*, \quad t = 0, 1, \ldots.
\]

Logarithmic preferences are responsible for this compact algebraic solution given by (16), which implies that demand for external debt depends only on the return of bonds issued in period \(t \) and maturing in period \(t+1 \), \(r_{t+1} \).20

20Without logarithmic utility, the typical decision rule determining the demand of bonds in period 1 is of the form \(B_{t+1}^* = h (\{ r_s \}_{s=t+1}^\infty, B_t^* \) \), i.e., it depends on all future interest rates, \(\{ r_s \}_{s=t+1}^\infty \). In the special case of logarithmic utility, \(h \) is of the more restricted form \(h (\{ r_s \}_{s=t+1}^\infty, B_t^*) = \hat{h} (r_{t+1}, B_t^*) = \beta (1 + r_{t+1}) B_t^* \).
2.3 Bond Demand by Creditors

Let a set of weights \(\{m_{i,t}\}_{i=1}^{M} \), such that,

\[
B_{i,t}^* = m_{i,t} \tilde{B}_t^* , \quad i = 1, ..., M , \quad \text{with} \quad \sum_{i=1}^{M} m_{i,t} = 1 . \tag{17}
\]

Combining (17) with (16) gives,

\[
B_{i,t+1}^* = \beta (1 + r_{t+1}) m_{i,t+1} B_{i,t}^* \tag{18}
\]

Equation (18) determines the demand for bonds by external creditors for each country in period \(t + 1 \), and \(\{m_{i,t+1}\}_{i=1}^{M} \), is determined by market-clearing conditions which depend on bond supply by each country.

2.4 Bond Supply by the Domestic Economy Conditional Upon Cooperation Decisions

In Appendix B, Proposition 1.B, we derive political decisions according to a Markov-perfect non-cooperative equilibrium for a given stream of interest rates, \(\{r_s\}_{s=t+1}^{\infty} \), the choices of club rents, \(C_{j,t}^R \), and public policies \(B_{t+1}, G_t \), and \(\tau_t \). These decisions are conditional upon (non-)cooperation decisions, distinguished in two categories: (i) a case of cooperation among rent-seeking groups, which is captured by setting \(N = 1 \) in the formulas below, and (ii) a case of non-cooperation without partial coalitions among groups. The bond-supply equation from Proposition 1.B is,

\[
B_{t+1} = (1 + r_{t+1}) \left[\beta_N B_t + (1 - \beta_N) \frac{z_t \mathbb{W} \left(\{r_s\}_{s=t+1}^{\infty} \right)}{\text{Economy’s worth}} - Y_t \right] , \tag{19}
\]

That \(\hat{h}(r_{t+1}, B_t^*) \) is independent from any interest-rate changes in the continuation stream \(\{r_s\}_{s=t+2}^{\infty} \) does not mean that creditors with logarithmic preferences are not forward-looking any more. It is that income- and substitution effects on consumption/savings cancel each other out one-to-one, for all future transition paths under logarithmic utility. So, under (13), the effects of any continuation stream \(\{r_s\}_{s=t+2}^{\infty} \) only reflect the impact of the constant rate of time preference on current decisions, through the presence of the discount factor, \(\beta \), in \(\hat{h}(r_{t+1}, B_t^*) = \beta (1 + r_{t+1}) B_t^* \).
in which,

\[
\mathbb{W} (\{r_s\}_{s=t+1}^{\infty}) = \left[\prod_{s=t+1}^{\infty} \frac{1}{1 + \tilde{r}_s} + 1 + \sum_{s=t+1}^{\infty} \frac{1}{\prod_{j=t+1}^{s} (1 + \tilde{r}_j)} \right] \cdot L, \quad 1 + \tilde{r}_t \equiv \frac{1 + r_t}{1 + \gamma}, \tag{20}
\]

with,

\[
\beta_N = \frac{1}{1 + (N - 1) \frac{(1 - \beta) \theta_R}{\theta_G + \theta_R} \beta}. \tag{21}
\]

2.5 Determining interest rates in international markets

Combining equation (19) with (18) in order to equate \(B^*_{i,t} = B_t\) for all \(t\) (assume \(i\) is the domestic economy), leads to interest-rate determination in international equilibrium through the aid of equation (20). Equation (21) provides a crucial difference depending on whether rent-seeking groups cooperate or not. In case of cooperation, (21) implies that \(\beta_N|_{N=1} = \beta\). In case of no cooperation, \(\beta_N < \beta\), a case of collective impatience. This collective-impatience mechanism is crucial for understanding the tragedy-of-the-commons mechanism and this mechanism is a key element for understanding cooperation decisions.\(^{21}\)

The recursive-equilibrium concept for endogenizing these cooperation decisions follows in the next section.

2.6 Definition of Markov-perfect-cooperation-decision Nash equilibrium (MPCDNE)

Let the cooperation decision of rent-seeking group \(j \in \{1, ..., N\}\) be denoted by the indicator function

\[
\mathbb{I}_{j,t} = \begin{cases}
1 & \text{ if } j \text{ plays "cooperate" in period } t \\
0 & \text{ if } j \text{ plays "do not cooperate" in period } t
\end{cases}
\]

\(^{21}\)With endogenous cooperation decisions among rent-seeking groups, formula (18) which governs the dynamics of \(B_t\) is still valid: in an equilibrium with some periods of cooperation and some periods without cooperation, \(\beta_N\) in equation (18) becomes a convex combination of \(\beta\) and \(\beta_N\) from equation (21).
Let the rent-consumption strategies in periods of no cooperation be denoted by $C_{j}^{R,NC}$ for all $j \in \{1, ..., N\}$. Let
\[
S \equiv \\left\{ \left(C_{i}^{R,NC}, I_{i} \right) \right\}_{i=1}^{N},
\]
Define the Bellman equation related to determining the value of a cooperation decision in the current period,
\[
V^{C,j} (B, z \mid S) = \max_{(\tau, c_{j}^{R,NC}, B')}(\ln (z L) + \ln (1 - \tau) + \theta_{t} \ln (1 - L) + \theta_{R} \ln \left(\frac{C^{R,C}}{N} \right) + \theta_{G} \ln \left[\frac{B'}{1 + R (B, z \mid S)} - (B + C^{R,C} - \tau z L) \right] + \beta \left\{ \prod_{i=1}^{N} I_{i} (B', (1 + \gamma) z \mid S) V^{C,j} (B', (1 + \gamma) z \mid S) \right\}) ,
\]
where, $C^{R,C}$ denotes cooperative rents that are shared equally among all rent-seeking groups, $R (B, z \mid S)$ denotes the interest rate on debt, and a prime denotes the next period value of the corresponding variable. Further, the Bellman equation that determines the value of a noncooperation decision in the current period is,
\[
V^{NC,j} (B, z \mid S) = \max_{(\tau, c_{j}^{R,NC}, B')}(\ln (z L) + \ln (1 - \tau) + \theta_{t} \ln (1 - L) + \theta_{R} \ln \left(c_{j}^{R,NC} \right) + \theta_{G} \ln \left[\frac{B'}{1 + R (B, z \mid S)} - (B + c_{j}^{R,NC} + \sum_{i=1}^{N} c_{i}^{R,NC} (B, z \mid S) - \tau z L) \right] + \beta \left\{ \prod_{i=1}^{N} I_{i} (B', (1 + \gamma) z \mid S) V^{C,j} (B', (1 + \gamma) z \mid S) \right\}) ,
\]
where, $C^{R,NC}$ denotes cooperative rents that are shared equally among all rent-seeking groups, $R (B, z \mid S)$ denotes the interest rate on debt, and a prime denotes the next period value of the corresponding variable. Further, the Bellman equation that determines the value of a noncooperation decision in the current period is,
where, c^R_{j} denotes non-cooperative rents shared among members of group j.

Definition 1 focuses on global cooperation among N rent-seeking groups, excluding cooperating subcoalitions. In the application of this paper we focus on a symmetric equilibrium of the case with $N = 2$, i.e., subcoalitions are ruled out.

Definition 1 A Markov-Perfect-Cooperation-Decision Nash Equilibrium (MPCDNE) is a set of strategies, $\mathcal{S} = \left\{ \left(C^R_{i,t}, \Pi_i \right) \right\}_{i=1}^N$ of the form $C^R_{i,t} = C^R_{i} (B_t, z_t \mid \mathcal{S})$

\[\Pi_{i,t} = \Pi_i (B_t, z_t \mid \mathcal{S}) \]

with

\[
\Pi_i (B_t, z_t \mid \mathcal{S}) = \begin{cases}
1 & , \text{ if } V^C_j (B, z \mid \mathcal{S}) \geq V^{NC,j} (B, z \mid \mathcal{S}) \text{ and } \prod_{j=1}^{N} \Pi_j (B_t, z_t \mid \mathcal{S}) = 1 \\
0 & , \text{ if } V^C_j (B, z \mid \mathcal{S}) < V^{NC,j} (B, z \mid \mathcal{S}) \text{ and } \prod_{j=1}^{N} \Pi_j (B_t, z_t \mid \mathcal{S}) = 1 , \text{ or if } \prod_{j=1}^{N} \Pi_j (B_t, z_t \mid \mathcal{S}) = 0
\end{cases}
\]

and a set of policy decision rules (T, G, B) of the form,

\[
\tau_t = T (B_t, z_t \mid \mathcal{S}) = \prod_{i=1}^{N} \Pi_i (B_t, z_t \mid \mathcal{S}) T^C (B_t, z_t \mid \mathcal{S}) \\
+ \left[1 - \prod_{i=1}^{N} \Pi_i (B_t, z_t \mid \mathcal{S}) \right] T^{NC} (B_t, z_t \mid \mathcal{S}) ,
\]

\[
B_{t+1} = B (B_t, z_t \mid \mathcal{S}) = \prod_{i=1}^{N} \Pi_i (B_t, z_t \mid \mathcal{S}) B^C (B_t, z_t \mid \mathcal{S}) \\
+ \left[1 - \prod_{i=1}^{N} \Pi_i (B_t, z_t \mid \mathcal{S}) \right] B^{NC} (B_t, z_t \mid \mathcal{S}) ,
\]

\[
G_t = G (B_t, z_t \mid \mathcal{S}) = \prod_{i=1}^{N} \Pi_i (B_t, z_t \mid \mathcal{S}) G^C (B_t, z_t \mid \mathcal{S}) \\
+ \left[1 - \prod_{i=1}^{N} \Pi_i (B_t, z_t \mid \mathcal{S}) \right] G^{NC} (B_t, z_t \mid \mathcal{S}) ,
\]

\[18\]
a bond-demand strategy of creditors, $B^*_{t+1} = \mathbb{B}^* (B_t, z_t \mid S)$, such that \(\left(T^{NC}, \mathbb{B}^{NC}, C_j^{R, NC}, G^{NC} \right) \) guarantee that each and every rent seeking group \(j \in \{1, \ldots, N\} \) solves the Bellman equation given by (23), \((T^C, \mathbb{B}^C, C^{R,C}, G^C) \) solves the Bellman equation given by (22), creditors’ \(\mathbb{B}^* \) complies with equation (18), and with \(R(B_t, z_t \mid S) = r_{t+1} \) satisfying \(\mathbb{B}(B_t, z_t \mid S) = \mathbb{B}^* (B_t, z_t \mid S) \), for all \(t \in \{0, 1, \ldots\} \).

2.7 International Equilibrium Conditional Upon Cooperation Decisions

We study two international equilibria. A cooperation equilibrium with rent-seeking groups agreeing upon fiscal policy and sharing rents from the fiscal budget, and a non-cooperation equilibrium with rent-seeking groups fighting over fiscal rents and consequently over extract rents from that budget. The resulting fiscal policies (over debt, taxes and public goods) are very different in those two cases and so is the path of interest rates that clear the international debt market.

Cooperation. We examine the case in which \(N \geq 2 \) rent-seeking groups cooperate by forming a single government coalition comprised by all existing rent-seeking groups in the economy (universal coalition). Within this universal coalition, rent-seeking groups equally share a total amount of rents, \(C^R_t \), with each group member receiving \(\frac{C^R_t}{\sum_{j=1}^N \omega_j} = \frac{C^R_t}{N} \) in each period.\(^{22}\) We derive the supply of bonds decided by such a coalition and we equate it to the demand for bonds by external creditors in order to calculate international interest rates.

\(^{22}\)Notice that although rent-seeking groups may be heterogeneous in size (\(\mu_i \neq \mu_j \) for some \(i \neq j \)), under cooperation each rent-seeking group member will end up consuming the same per-capita amount from the broad-coalition club good.
The Bellman equation of rent-seeking group $j \in \{1, ..., N\}$ under cooperation is given by,

$$V_{C;j}^{C,j}(B_t, z_t) = \max_{(\tau_t, C_t^R, B_{t+1})} \left\{ \theta_t \ln (1 - L) + \ln (z_t) + \ln (1 - \tau_t)
ight. $$

$$+ \theta_G \ln \left[\frac{B_{t+1}}{1 + R_t^C(B_t, z_t)} - (B_t + C_t^R - \tau_t Y_t) \right] + \theta_R \ln \left(\frac{C_t^R}{N} \right)$$

$$+ \beta V_{C;j}^{C,j}(B_{t+1}, (1 + \gamma) z_t) \right\}, \quad (24)$$

in which the interest-rate rule, $r_{t+1} = R_t^C(B_t, z_t)$, is determined by equating supply and demand in the international market for bonds. Due to the symmetry of rent-seeking groups there is unanimity within the universal coalition. Definition 2, which is a special case of Definition 1, specifies international-market equilibrium under cooperation of rent-seeking groups.

Definition 2 An International Equilibrium under Cooperation (IEC) is a set of strategies, $C_t^{R,C}$ of the form $C_t^{R,C} = C_t^{R,C}(B_t, z_t)$ and a set of policy decision rules $\{T_t^C, G_t^C, B_t^C\}$ of the form $\tau_t = T_t^C(B_t, z_t)$, $G_t = G_t^C(B_t, z_t)$, and $B_{t+1} = B_{t+1}^C(B_t, z_t)$, a bond-demand strategy of creditors, $B_{t+1}^* = B_t^*(B_t, z_t)$, and an interest-rate rule, $R_t^C(B_t, z_t)$, such that $\{T_t^C, B_t^C, C_t^{R,C}, G_t^C\}$ guarantee that each and every rent seeking group $j \in \{1, ..., N\}$ maximizes (24), subject to rule $R_t^C(B_t, z_t)$, creditors’ B_t^* complies with equation (18), and with $R_t^C(B_t, z_t) = r_{t+1}$ satisfying $B_t^C(B_t, z_t) = B_t^*(B_t, z_t)$, for all $t \in \{0, 1, \ldots\}$.

Proposition 1 characterizes the rent-seeking political equilibrium under cooperation among rent-seeking groups (IEC).
Proposition 1 Assuming that all debtor countries follow an IEC path, for all $t \in \{0, 1, \ldots\}$, the IEC interest rates are constant, given by,

$$R^C(B_t, z_t) = r^{ss} = \frac{1 + \gamma}{\beta} - 1, \quad t = 0, 1, \ldots,$$

the debt-GDP ratio remains constant over time,

$$\frac{B_t}{Y_t} = \frac{B_t}{Y_t} \equiv b_t = \frac{B_0}{Y_0}, \quad t = 0, 1, \ldots$$

the public-consumption-to-GDP ratio, the rents-to-GDP ratio, and the tax rate, all remain constant over time, with,

$$\frac{C_t}{Y_t} = \frac{C_t}{Y_t} \equiv g_t = \frac{(1 - \beta) \theta_G}{1 + \theta_G + \theta_R} \left[\frac{1}{1 - \beta} - \frac{b_0}{\text{Fiscal debt/GDP}} \right], \quad t = 0, 1, \ldots$$

$$\frac{C^R_t}{Y_t} = \frac{\theta_R}{\theta_G} g^C_t, \quad \text{and} \quad \tau^G_t = \tau^C_t = \tau_t = 1 - \frac{1}{\theta_G} g_t^C, \quad t = 0, 1, \ldots.$$

Proof See Appendix B. \hspace{1cm} \Box

Non-cooperation. In the case of no cooperation the Bellman equation of rent-seeking group $j \in \{1, ..., N\}$ is given by,

$$V^{\text{NC},j}(B_t, z_t | \{C^R_{i,t}\}_{i=1}^N) = \max_{(\tau_t, C^R_{j,t}, B_{t+1})} \left\{ \theta_t \ln (1 - L) + \ln (z_t) + \ln (1 - \tau_t) \right\}$$

$$+ \theta_G \ln \left[\frac{B_{t+1}}{1 + R^{\text{NC}}(B_t, z_t)} - \left(B_t + \omega_j C^R_{j,t} + \sum_{i=1, \forall j}^N \omega_i C^R_{i,t} (B_t, z_t) - \tau_t Y_t \right) \right]$$

$$+ \theta_R \ln (C^R_{j,t}) + \beta V^{\text{NC},j} \left(B_{t+1}, (1 + \gamma) z_t | \{C^R_{i,t}\}_{i=1, \forall j}^N \right) \right\}$$ \hspace{1cm} (29)
in which \(r_{t+1} = R^{NC}(B_t, z_t) \) is the interest-rate rule. Definition 3 specifies international-market equilibrium under noncooperation of rent-seeking groups.

Definition 3 An International Equilibrium under No Cooperation (IENC) is a set of strategies, \(\{C_{i,t}^{R,NC}\}_{i=1}^N \) of the form \(C_{i,t}^{R,NC} = C_{i,t}^{R,NC}(B_t, z_t) \) and a set of policy decision rules \(\{\tau_t^{NC}, G^{NC}, B^{NC}\} \) of the form \(\tau_t = \tau_t^{NC}(B_t, z_t) \), \(G_t = G^{NC}(B_t, z_t) \), and \(B_{t+1} = B_{t+1}^{NC}(B_t, z_t) \), a bond-demand strategy of creditors, \(B_{t+1}^* = B_{t+1}^*(B_t, z_t) \), and an interest-rate rule, \(R^{NC}(B_t, z_t) \), such that \(\{\tau_t^{NC}, B^{NC}, C^{R,NC}, G^{NC}\} \) guarantee that each and every rent seeking group \(j \in \{1, \ldots, N\} \) maximizes (29), subject to rule \(R^{NC}(B_t, z_t) \) and subject to strategies of other rent-seeking groups \(\{C_{i,t}^{R,NC}\}_{i=1}^N \), creditors’ \(B^* \) complies with equation (18), and with \(R^{NC}(B_t, z_t) = r_{t+1} \) satisfying \(B^{NC}(B_t, z_t) = B^*(B_t, z_t) \), for all \(t \in \{0, 1, \ldots\} \).

Proposition 2 conveys a crucial feature of our model.

Proposition 2 If \(N \geq 2 \), there is no IENC equilibrium with \(B_0 > 0 \), the only possibility for IENC existence is financial autarky, i.e., \(B_0 = 0 \). If, \(N \geq 2 \), and \(B_0 > 0 \), are the initial conditions, then the only possible IENC as a market outcome, is immediate exclusion from international credit markets without the opportunity to return if debt renegotiation is not allowed.

Proof See Appendix B. \(\square \)

Proposition 2 says that financial autarky is the only Markov equilibrium without cooperation. While the proof of Proposition 2 is extensive, the key behind this result is an endogenous impatience mechanism that we explain in detail below. Specifically, the endogenous discount factor \(\beta_N \), specified by equation (21) above, which implies \(\partial \beta_N / \partial N < 0 \), causes a
mismatch in the market-clearing equation of external debt. External creditors foresee that multiple rent-seeking groups have the tendency to issue debt excessively in all periods. So, external creditors understand that the domestic economy will be unable to repay the debt asymptotically and demand a sequence of high interest rates that oblige the domestic economy to provide its total worth to creditors asymptotically. So, if debt renegotiation is not allowed, the domestic economy is excluded from international credit markets.

2.8 Inspecting the tragedy of the commons mechanism

2.8.1 The ability to repay debt and incentives for fiscal prudence

Equations (19)-(20) convey the fiscal-burden mechanism which is a key incentive for fiscal prudence in this model. Next period’s optimal debt-GDP ratio decreases if future interest rates are foreseen to increase. Since \(\partial W \left(\{r_s\}_{s=t+1}^\infty \right) / \partial r_s < 0 \) for all \(s \geq t + 1 \), equation (19) implies that next period’s debt-GDP ratio falls, because of the foreseen increase in rolling over debt issued in the future. This increase in interest rates imposes a debt-servicing burden that reduces the ability to repay.

2.8.2 Postponed fiscal prudence: fiscal impatience due to a commons problem

Policy setting by multiple noncooperating rent-seeking groups has a profound effect on postponing fiscal prudence. Since \(W \left(\{r_s\}_{s=t+1}^\infty \right) \) is multiplied by the factor \((1 - \beta_N) \), in equation (19) and \(\partial (1 - \beta_N) / \partial N > 0 \) (see equation (21)), an increase in the number of rent-seeking groups strengthens the fiscal-prudence-postponement characteristic. Postponement of fiscal prudence stems from two opposing forces. On the one hand, rent-seeking groups want to conserve the fiscal budget, in order to be able to extract more in the future. So, they exhibit fiscal prudence by having the optimal next period’s debt-GDP ratio strategy depending pos-
itively on the term $\mathbb{W}\left(\{r_s\}_{s=t+1}^\infty\right)$. On the other hand, as the number of rent-seeking groups increases, fiscal debt is issued excessively today, a commons problem.

This commons problem is revealed by Proposition 1.B in Appendix B. For exogenous interest rates, $\{r_s\}_{s=t+1}^\infty$, with $\bar{C}^R_{j,t} = \mathbb{C}^R_i (B_t, z_t | \{r_s\}_{s=t+1}^\infty)$ being the per-capita level of club consumption by a member of rent-seeking group j, $\omega_j C^R_{j,t}$ is the total rents extracted by group j. So, aggregate economy-wide rents are,

$$\sum_{i=1}^N \omega_i \mathbb{C}^R_i (B_t, z_t | \{r_s\}_{s=t+1}^\infty) = \frac{N \cdot (1 - \beta) \theta_R}{1 + \theta_G + \theta_R + (N - 1)(1 - \beta) \theta_R} \cdot \frac{z_t \mathbb{W}(\{r_s\}_{s=t+1}^\infty) - B_t}{\Phi(N)}.$$

The fraction of economy’s net worth expropriated by all rent-seeking groups is increasing in the number of (symmetric) groups ($\Phi'(N) > 0$ in equation (30)). Aggregate rents increase in the number of rent-seeking groups because each noncooperating rent-seeking group expropriates additional rents before being crowded out by other groups. This effect, driven by $\Phi'(N) > 0$, leads to collective fiscal impatience across rent-seeking groups that do not cooperate, describing a classic commons problem, in a similar fashion to problems of resource conservation. This commons problem dominates, and leads to fiscal-prudence postponement.

3. The threshold debt-GDP ratio fostering cooperation and implications for sovereign rescue deals

The preceding analysis suggests that a positive debt level can be supported by an international equilibrium when rent-seeking groups cooperate forever. In this section we take the mechanics and intuition of the model and examine a bond renegotiation scheme that both creditors and rent-seeking groups may be willing to accept. According to that scheme, creditors are willing to offer a debt reduction in exchange for cooperation among rent seeking
groups, leading to fiscal discipline. Our focus is inspired by the rescue packages received by Greece at the early stages of the sovereign crisis, emphasizing the goal to avoid a disorderly default, because of fears of “domino effects” and possible runs on financial institutions and governments of other troubled countries, such as Portugal and Spain.

In a monetary union the ability of each member state to issue and repay external fiscal debt is crucial for the sustainability of a banking system in which foreign banks may play the role of external creditors (EU banks are major buyers of sovereign debt issued by other EU countries). While we do not model banks explicitly, we stress that an international agreement about either, (a) entrance into a monetary union, or (b) a rescue package for debt rollover of a member state, should guarantee that rent-seeking groups which tend to act separately, have incentives to cooperate forever. Here we focus on (b), a rescue package which aims at a particular agreement: that rent-seeking groups will commit to a non-default and that they will be cooperating forever, sharing their rents.

Our analysis below can be executed for any \(N \geq 2 \). We set \(N = 2 \) by convention throughout the rest of this section, focusing on Greece, in which rent-seeking groups have been traditionally tied with two major political parties, the “center/left-wing” versus “center/right-wing”. In addition, without loss of generality, we assume symmetry among groups, i.e., the two groups are of the same size.

3.1 Two rent-seeking groups and Markov-perfect-Nash-equilibrium selection

Even in the one-stage, normal-form game of cooperation decisions, presented by Table 1 in the Introduction, there are multiple Nash equilibria. If cooperation is less rewarding for both players \((V^C_i < V^{NC}_i, i \in \{1, 2\})\), then a cooperation outcome is impossible. The only way...
to make a cooperation outcome possible is to ensure that cooperation is more rewarding for both players ($V^C_i > V^{NC}_i$, $i \in \{1, 2\}$). A dynamic game with an infinite horizon and a free option to cooperate (or not) in each period can have multiple equilibria as well. In order to obtain clearer results whenever $V^C_i > V^{NC}_i$, $i \in \{1, 2\}$, we propose two equilibrium-selection assumptions. We call the first assumption a “willingness refinement”, and the second a “separatistic loyalty refinement”. These assumptions facilitate having a clearer definition of a debt-GDP ratio that determines whether $V^C_i > V^{NC}_i$, $i \in \{1, 2\}$.

3.1.1 The willingness refinement mirroring international commitments within a monetary union

Following Lagunoff (2009), we restrict our attention to a self-selected dynamic politicoeconomic mechanism of cooperation as explained by Definition 1. In Definition 1 the implicit assumption is that whenever $V^C_i \geq V^{NC}_i$, $i \in \{1, 2\}$, then group i always chooses to cooperate. We impose this equilibrium selection since a monetary union implies powerful institutional commitments which we do not wish to model explicitly in this paper. Other member states, which are not explicitly modeled here, would dislike fiscal imbalances and would be inclined to punish countries that default due to lack of cooperation among rent-seeking groups. Yet, other member states respect the unwillingness of a polity to comply with a cooperative equilibrium, as long as this unwillingness is driven by fundamentals (even if this polity is dominated by rent-seeking groups).

In the context of the Eurozone, a member state can exit the common currency after a mandate based on a referendum. For example, a left-wing Greek government, elected on January 2015, called such a referendum on June 26 2015, after a breakdown of negotiations on a new bailout deal with European partners. We believe that this rule, of allowing exit through a referendum, captures the idea that, in Definition 1, $V^C_i < V^{NC}_i$ for some $i \in \{1, 2\}$,
implies no cooperation (respecting unwillingness to cooperate), whereas $V^C_i \geq V^{NC}_i$, $i \in \{1, 2\}$, always implies cooperation (respecting Euro-area obligations based on utility-based willingness to cooperate, which may be democratically expressed through a referendum). Finally, another refinement of having multiple equilibria in the case of $V^C_i \geq V^{NC}_i$, $i \in \{1, 2\}$, would be to assume i.i.d. randomizations, e.g. π times cooperation and $1 - \pi$ times noncooperation. Such an analysis would still indicate a cutoff debt-GDP ratio level as a function of π.24

\subsection{The separatistic loyalty refinement}

Table 1 illustrates that the strategies according to which two rent-seeking groups either, (i) cooperate forever, or (ii) never cooperate and default, in which case they keep not cooperating forever under a balanced fiscal budget, are both Markov-perfect cooperation-decision Nash equilibria.25 As we explain in Section 3.3. below, a default in our model should be interpreted as a political accident, that leads to the “accidental” default outcome and does not relate to the concept of strategic default used in the classic sovereign debt literature. We believe, this interpretation is more appropriate for countries that are members of a monetary union, in which countries commit to behave in a manner that does not threaten the financial stability of the union.

Let’s start examining case (ii) above, i.e., default with no cooperation before and afterwards. Moving one period ahead after the full default, debt remains 0 forever (see Proposition 2), and the game is not a dynamic game anymore, but similar to the normal-form game of cooperation decisions, with the sole difference that GDP grows exogenously and sums of

24We think that such a formulation would be ideal for studying an extension to our model without a currency peg to the currency of external creditors (implied or forced by participation to a monetary union). This extension could provide a tool for predicting long-term exchange-rate trends based on country corruption indicators and outstanding debt-GDP ratios.

25A formal proof of this claim, that strategies (i) and (ii) are both Markov-perfect cooperation-decision equilibriums, appears in the proof of Proposition 3 in Appendix B.
discounted utilities over an infinite horizon are computed. After some algebra, we find that

\[V^{C,j}(B_t = 0, z_t) > V^{NC,j}(B_t = 0, z_t) \iff 1 + \alpha > 2^\alpha, \quad (31) \]

\(j \in \{1, 2\} \) in which,

\[\alpha \equiv \frac{\theta_R}{1 + \theta_G + \theta_R}. \quad (32) \]

By its definition, \(\alpha \in (0, 1) \), and it is straightforward to verify that \(1 + \alpha > 2^\alpha \) is a true statement for all \(\alpha \in (0, 1) \). So, \(V^{C,j}(0, z_t) > V^{NC,j}(0, z_t) \) for \(j \in \{1, 2\} \) and all \(t \in \{1, 2, \ldots\} \). As we have noticed above for the normal-form game, whenever cooperation is more rewarding for both players, there are two Nash equilibria, \((C, C)\) and \((NC, NC)\). So, by the unimprovability principle (cf. Kreps 1990, pp. 812-813), the strategies described by (ii) above, no cooperation in period 0, immediate default and no cooperation thereafter forever, is a Markov-perfect Nash equilibrium.

We propose a refinement: that after an accidental default the separatist \((NC, NC)\) holds forever. This refinement adheres to the intuition that after dramatic events, separatist sentiments prevail. One could also introduce an additively-separable penalty to any rent-seeking-group member for suggesting to cooperate with other groups afterwards, in order to reverse inequality (31), so that \(V^{C,j}(0, z_t) < V^{NC,j}(0, z_t) \) for \(j \in \{1, 2\} \) and all \(t \in \{1, 2, \ldots\} \). This penalty, which is conditional upon a prior incident of accidental default, justifies separatistic loyalty, and strengthens this intuitive equilibrium selection. With or without such a penalty, we recommend this refinement in order to facilitate the analytics for our application.

3.1.3 Debt-GDP threshold of separatism and accidental defaults

Having established that no cooperation and default is a Markov-perfect Nash equilibrium, allows us to study a sovereign-debt rescue initiative in a monetary union more formally. In
the spirit of the willingness refinement discussed above, other member states may consider no cooperation among rent-seeking groups and sovereign default as being the worst possible outcome in a period of banking fragility. The reason is that default by a sovereign state may be a big shock for banks holding external debt, both due to direct balance sheet losses and, perhaps more importantly, contagion effects within the union. Moreover, convincing rent-seeking groups to follow a strategy of cooperation forever, in order to avoid the problems of fiscal impatience and fiscal profligacy is the most desirable outcome from the perspective of the union’s sustainability. Proposition 3 establishes that this cooperation equilibrium is a Markov-perfect Nash equilibrium, and it identifies debt-to-GDP ratios that make its adoption and enforceability desirable by two rent-seeking groups.

Proposition 3 If \(N = 2 \), then the strategies according to which the two rent-seeking groups cooperate forever is a Markov-perfect cooperation-decision Nash equilibrium, which holds if:

\[
V^{C,j}(B_t, z_t) \geq V^{NC,j}(B_t = 0, z_t \mid \left\{\mathcal{C}_i^{R,NC}\right\}_{i=1}^{2 \neq j}) \Leftrightarrow b_t \leq \frac{1}{1 - \beta} \left(1 - \frac{2 \alpha}{1 + \alpha}\right) \equiv b,
\]

(33)

for all \(t \in \{0, 1, \ldots\} \), in which \(\alpha \) is given by (32).

Proof See Appendix B. \(\square \)

In Proposition 3 notice the converse of (33): if the debt-GDP ratio is higher than a threshold level, \(b \), then rent-seeking groups have higher utility by defaulting and not cooperating ever after. This is reasonable, because paying back the debt and cooperating entails a tradeoff: on the one hand, rent-seeking groups can divide the coalition rents by two, which leads to rewards in each period; on the other hand, they have to bear the cost of servicing
the debt. The higher the debt-GDP ratio the lower the cooperation benefits, so default and non-cooperation gives a higher payoff making default the unique Nash equilibrium.26 If b accidentally becomes higher than \bar{b}, due to an unforeseen shock, then an accidental disorderly default is unavoidable.

3.2 Model insights and extensions

Our model is deterministic and this simplifying aspect contributes to obtaining analytical results. A way to interpret our model’s contribution is depicted by Figure 2. Figure 2 shows that the threshold debt-GDP ratio, \bar{b}, splits the space of initial conditions into two zones, a white one of cooperation and no default, and a black one, of noncooperation and accidental default (which is perhaps not far from the “Graccident” concept). The key simplifying assumption is that no shock is anticipated by creditors or any rent-seeking group. So, in a deterministic world, if initial conditions are in the white area of Figure 2, it is anticipated that $b_t = b_0$ for all t. However, an accidental default can occur if there is an unexpected shock (similar in spirit to the example employed by Kiyotaki and Moore (1997, p. 224)) to initial conditions, e.g. an unexpected jump in GDP, Y_0, which automatically makes $b_0 = B_0/Y_0$ to jump upwards.27

In our model, default is a Nash equilibrium in a deterministic framework after an unexpected shock, in the sense that the possibility of such a shock is not internalized by the creditors. For this reason, we do not include a default option in the action space of rent-seeking groups in the spirit of D’Erasmo and Mendoza (2015) in which a single player in a government may choose default strategically. Apparently this is a simplifying assumption that offers, however, useful insights for future extensions of our model. Such extensions

26However, the effect for society that does not participate in rent-seeking groups is quite negative: this part of society ends up paying higher taxes in order to finance increased rents due to non-cooperation.

27This is a form of extrinsic or “radical” uncertainty (see King, 2016) can be seen as a sunspot altering initial conditions, the sdebt stock in this case.
would be accommodated in our recursive framework, by incorporating anticipated shocks and would also require to include default in the strategy space of rent-seeking groups. In that case, however, corner solutions and mixed-strategy equilibria would not allow for analytical results and would require solving through numerical approaches. Our conjecture is that stochastic versions of our model would give “grey zones” of default, as depicted in Figure 2. Specifically, such grey zones would correspond to confidence intervals of default riskiness, since all variables are random in a stochastic model. We believe that this is an exciting agenda for future research, especially if it is extended beyond rational expectations, to learning about disaster risk, as in Koulovatianos and Wieland (2011).

3.3 Sovereign rescue packages

Monitoring the ability of a government to satisfy the conditions of a rescue package involves preventing and eliminating excessive rent seeking by groups that influence policymaking. This focus on controlling the behavior of partisan corruption is evident in IMF-report excerpts outlined in Appendix A. EU rescue packages imply monitoring of the domestic economy’s rent-seeking groups by other member states of the monetary union. However, as illustrated by Proposition 3, it is reasonable to try to make the rescue deal palatable to the rent-seeking groups in order to achieve political sustainability and robustness of the rescue-package deal. So, if b_t is larger than the threshold given by (33),

$$b = \left[1 - 2^\alpha / (1 + \alpha)\right] / (1 - \beta),$$

then the rescue-package deal may involve a sovereign-debt haircut of magnitude $100 \cdot (b_t - b)$ percentage points of the domestic economy’s GDP.

Another crucial aspect of rescue-package effectiveness, is the welfare change for the general public (non rent seekers). In our model, political outcomes, (G_t, τ_t, B_{t+1}), are determined solely by the Nash-equilibrium decisions of rent-seeking groups. Even after a default that eliminates the burden of servicing the fiscal debt, non-rent-seekers prefer that rent-
seeking groups cooperate. This happens because noncooperation implies higher total rents extracted in the form of higher τ, and welfare reduction through lower $g \equiv G/Y$. Proposition 4 shows that gains from cooperation are substantial for non-rent-seekers. Specifically, even if $b_t > b$, and an exogenous international agreement forces rent-seeking groups to cooperate without a haircut that reduces b_t to b, then non-rent-seekers would benefit even if they had to service the high debt $b_t > b$ thereafter.

Proposition 4 There exists a cutoff debt-GDP ratio,

$$\bar{b} = \frac{1}{1 - \beta (1 + \alpha)}$$

in which α is given by (32), with $\bar{b} > b$, such that, if g_b^C corresponds to cooperation among rent-seeking groups together with servicing \bar{b} forever, and if g_{default}^{NC} corresponds to full default and noncooperation forever, then,

(i) $\hat{b} \in (\bar{b}, \bar{b}) \Rightarrow g_b^C > g_{\text{default}}^{NC}$

(ii) $\hat{b} > \bar{b} \Rightarrow g_b^C < g_{\text{default}}^{NC}$

Proof See Appendix B. □

Proposition 4 states that attempts to convince rent-seeking groups to cooperate (see the relevant IMF-report excerpts in Appendix A) would be welcomed by the general non-rent-seeking public if the debt-GDP ratio is not too high. Non-rent-seeking households dislike excessive corruption that leads to fiscal profligacy, unless the outstanding debt GDP ratios is exceptionally high.

3.4 Calibration

Our goal in this section is to quantify the threshold debt-GDP ratio \bar{b}, that fosters cooperation. Our calibration focuses on matching data from the EU periphery countries, since they
have been at the center of the EU crisis. First, we match the average total-government-to-GDP spending which is approximately 45%. Second, we need to find the target value for the total-rents-GDP ratio at the threshold debt-GDP ratio b (denoted by C_R). To do this we use estimates regarding the size of the shadow economy as a share of GDP reported by Elgin and Oztunali (2012). We make a simple projection of these shadow-economy estimates, assuming that these shares are uniform across the private and the public sector. In other words, the share of rents in total government spending match the size of the shadow economy as a share of GDP.

<table>
<thead>
<tr>
<th>$C^{R,C}$ as % of government spending</th>
<th>threshold debt-GDP ratio b</th>
</tr>
</thead>
<tbody>
<tr>
<td>28% (EU periphery)</td>
<td>137%</td>
</tr>
</tbody>
</table>

Table 2

In Table 2 we report the threshold debt-GDP ratio, b, corresponding to the 28% rents-to-total-government spending ratio which is the average shadow economy share in EU-periphery countries. The assumed rate of time preference, $(1 - \beta) / \beta$, is 2.4%. The 137% cutoff level b provides higher utility to rent-seekers if they cooperate, compared to defaulting. Interestingly, a 137% debt-GDP ratio is in the ballpark of targets of the “private sector involvement (PSI)” haircut for Greece in the period 2011-2012. A key factor shaping the target debt-GDP ratio of Greece during the PSI negotiations was the political sustainability of fiscal prudence. According to the model prudence could be achieved by a coalition government, at

28 Data for G/Y are from the European Central Bank (ECB), Statistical data Warehouse, Government Finance data (Revenue, Expenditure and deficit/surplus), September 2013. We take the average over the period 1995 to 2012.

29 So, the rents-GDP ratio is 28% × 45% = 12.6% in this calibration. In Appendix B we explain how calibration is achieved in this model. Specifically, we prove that calibrating θ_R and θ_G in order to match target values for the government-consumption-GDP ratio and the total-rents-GDP ratio is independent from the values of β at the cutoff level b.

29 For an extensive review of the Greek sovereign crisis and an outline of PSI see Ardagna and Caselli (2014). For a study reporting the average haircut values between years 1970-2010, see Cruces and Trebesch (2012).
least by the two major political parties that used to alternate in power during the previous four decades, and in fact a broad based coalition government followed the PSI.

Figure 3 depicts a sensitivity analysis of our benchmark calibration. It shows the relationship between the rate of time preference, $\rho = (1 - \beta) / \beta$ and the cutoff level b. We emphasize that varying ρ means simultaneously changing the rate of time preference of both creditors and of all agents in the domestic economy. As Proposition 1 indicates, under cooperation, international interest rates remain constant, tracking closely the rate of time preference, ρ. Thus, a higher ρ implies higher cost of servicing outstanding debt, decreasing the tolerance to cooperation versus default. This is evident by Figure 3: at levels of ρ above 4%, the threshold debt-GDP ratio for cooperation versus default falls below 80%. On the contrary, more patient creditors and domestic agents (low ρ), increases the cooperation range, raising b above 160% of GDP for ρ less than 2%.

Figure 3 provides insights regarding the agreed interest rates of servicing debt under EU rescue packages (Ireland, Greece, Portugal). Since rescue packages involve long-term effective interest rates, lowering the cost of debt servicing may provide more political support in countries with corruption, by creating more incentives for rent-seeking groups to cooperate on fiscal prudence. The Greek PSI program, which involved both a reduction in interest rates and a haircut (see Ardagna and Caselli, 2014), has been followed by political consensus for at least some time (until the elections of January 2015), providing a good example of this insight. However, it appears that the effective debt reduction achieved by the PSI was not enough to break the non-cooperation culture in Greek politics and support a strong commitment to fiscal prudence. The fiscal position begun to deteriorate in the summer of 2014 after it became apparent that an election will be taking place in early 2015 and efforts to enforce the consolidation program were abandoned. The January 2015 election
was won by a populist anti-austerity left wing party (“Syriza”). Negotiations for a new rescue deal commenced. The new government begun resisting and in cases reversing earlier fiscal commitments, thus regressing on fiscal prudence, while bargaining over the terms of fiscal discipline in the new deal and insisting on additional debt reduction from EU partners. Negotiations have stalled several times and a referendum was called to take place in June 26 2015, asking the public to vote yes/no to a financial deal offered by EU partners. Greece, around the June/July 2015 flirted with the “Graccident”, after it became obvious that no financial assistance (with a promise for future debt reduction) would be extended by EU partners unless the deal on financial assistance was agreed and voted in favour by all political parties of the Greek parliament.

4. Conclusion

The EU sovereign debt crisis has painfully reminded that sustainability of debt-to-GDP ratios is of first order importance for the stability and future course of the monetary union. Rescue packages were introduced for EU periphery countries. One crucial element and a challenge behind these packages, stressed by official creditors, is the need for cooperation of political parties, in order to achieve fiscal prudence. But EU periphery politics are plagued by rent-seeking activities that overstretch fiscal budgets.

Our model studied the politics of coalition-making among rent-seeking groups, providing a key insight. Reaching a high level of external sovereign debt-GDP ratio takes an economy beyond the perils of mere economic accounting. Beyond some debt-GDP ratio threshold which depends on the influence of rent-seeking groups in policymaking, political resistance to cooperation among rent seekers and parties on prudent policies arises. International markets respond by charging high interest rates, worsening the debt dynamics and making
default immediately preferable (and unavoidable) by rent seekers. Rent seekers do not want to service a high outstanding debt, yet their noncooperation triggers the vicious circle of rapidly worsening terms of borrowing. For economies which are prone to corruption and rent-seeking phenomena, the risk of political turmoil makes the requirement of staying within a safety zone of low debt-GDP ratio tighter.

In our framework of dynamic policy setting, debt, public consumption, tax rates, and importantly, the free decision of rent-seeking groups to cooperate or not, are all determined recursively, and as functions of outstanding sovereign debt. These modeling features help us to understand what determines cutoff debt-GDP ratios which lead to political turmoil and default. The mechanism triggering a vicious circle of default is a commons problem that leads to a discrepancy between the rate of time preference of creditors and the collective rate of time preference of governments that have multiple noncooperating rent-seeking groups. While commons problems are difficult to resolve, our model points at the importance of keeping debt-GDP ratios low. The role of debt-GDP ratios should prevail in future extensions of our model (e.g., with uncertainty and productive capital) which should be easy to accommodate, given the recursive structure of the dynamic game we have suggested. Such extensions would contribute to a project of developing sovereign-default-risk indicators for countries as a function of their corruption fundamentals and debt-GDP ratios. These indicators can arguably be a valuable core input for public institutions (IMF, World Bank, Eurogroup) and private institutions that interact in sovereign debt markets.

Our model suggests that rescue packages may use short-term tools, such as debt haircuts, or provision of low interest rates in order to convince rent-seeking groups to cooperate and to service a debt that costs less. Yet, the long-term goal of rescue packages should be to
promote monitoring on reforms that are likely to eradicate rent-seeking groups.
<table>
<thead>
<tr>
<th>Year</th>
<th>Country</th>
<th>Report No.</th>
<th>Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td>IMF Country Report No. 12/57</td>
<td>“Staff welcomes the commitments from the political parties supporting the present coalition to continue with the objectives and policies of the new program” (IMF 2012a, p. 44)</td>
<td>2012 Article IV Consultation with Italy. Concluding Statement of the IMF Mission: “With broad political support, the authorities have embarked on an ambitious and wide-ranging agenda that has lifted Italy from the brink and is now seen as a model for fiscal stabilization and growth-enhancing reforms”. (IMF 2012e, p. 1)</td>
</tr>
<tr>
<td>2011</td>
<td>IMF Country Report No. 11/51</td>
<td>“Staff welcomes the creation of a national unity government in Greece and the endorsement of program objectives and policies by the three major political parties. The previous lack of broad political support for the program in Greece has emboldened vested interests and has thus contributed directly to the slowdown of reform implementation.” (IMF 2011f, p. 35)</td>
<td>IMF Country Report No. 11/173: “The authorities’ welcome commitment to reduce the fiscal deficit to close to zero by 2014 needs to be accompanied by action. [...] The large size of the envisaged fiscal retrenchment requires structural changes which must be designed well in advance. This calls for a strong political consensus and careful planning”. (IMF 2011c, p. 30)</td>
</tr>
<tr>
<td>2010</td>
<td>IMF Country Report No. 10/118</td>
<td>“The large multiyear fiscal and structural adjustment requires a decisive break from past behavior. Greece has run into fiscal problems before, which were often resolved only temporarily and by stop-gap measures. A decisive break now requires strong political will and public support. Mitigating factors include a strong mandate of the governing party and measures in the program to protect vulnerable groups.” (IMF 2010b, p. 21)</td>
<td>IMF Country Report No. 10/18: “Political support for reform may need broadening. The Socialist Party was re-elected in September 2009, but lost its overall majority. While there seems consensus among the main parties to comply with the SGP in general, pressure for further stimulus is strong”. (IMF 2010a, p. 9)</td>
</tr>
</tbody>
</table>

Appendix A – Explicit IMF reference to the need for cooperation among political parties on austerity measures
5. Appendix B – Proofs and formal definitions

5.1 Definitions and proofs of Section 2.4

As explained in the text, fiscal policy is set \((\tau_t, G_t, B_{t+1})\) residually by rent-seeking groups that co-determine \(C^R_{j,t}\) for all \(j \in \{1, \ldots, N\}\). In this section, \(\{C^R_{j,t}\}_{j=1}^N\) is determined non-cooperatively, with each group maximizing the group’s utility, subject to the rent-seeking behavior of other rent-seeking groups (we will introduce the possibility of cooperation in a later section). We focus on time-consistent (Markovian) policies and rent-extraction strategies. For an exogenous stream of international-market interest rates, \(\{r_s\}_{s=t+1}^\infty\), the Bellman equation of rent-seeking group \(j \in \{1, \ldots, N\}\) is given by,

\[
\hat{V}^j \left(B_t, z_t \mid \{C^R_i\}_{i=1}^N \right) \left(r_s \right)_{s=t+1}^\infty = \max_{(\tau_t, C^R_{j,t}, B_{t+1})} \left\{ \theta_t \ln (1 - L) + \ln(z_t) + \ln(1 - \tau_t) \right. \\
+ \theta_G \ln \left[\frac{B_{t+1} + \omega_j C^R_{j,t} + \sum_{i=1}^N \omega_i C^R_i \left(B_t, z_t \mid \{r_s\}_{s=t+1}^\infty \right) - \tau_t Y_t}{1 + \tau_t} \right] \\
+ \theta_R \ln \left(C^R_{j,t} \right) + \beta \hat{V}^j \left(B_{t+1}, (1 + \gamma) z_t \mid \{C^R_i\}_{i=1}^N \right) \left(r_s \right)_{s=t+2}^\infty, \tag{37}
\]

in which \(C^R_i \left(B_t, z_t \mid \{r_s\}_{s=t+1}^\infty \right)\) is the Markov-Perfect rent-extraction strategy of rent-seeking group \(i \in \{1, \ldots, N\}\).

Definition B.1 Given a stream of interest rates, \(\{r_s\}_{s=t+1}^\infty\), a (Markov-Perfect) Domestic Equilibrium under No Cooperation (DENC) is a set of strategies, \(\{C^R_i\}_{i=1}^N\) of the form \(C^R_{i,t} = C^R_i \left(B_t, z_t \mid \{r_s\}_{s=t+1}^\infty \right)\) and a set of policy decision rules \(\{T, B\}\) of the form \(\tau_t = T \left(B_t, z_t \mid \{r_s\}_{s=t+1}^\infty \right)\) and \(B_{t+1} = B \left(B_t, z_t \mid \{r_s\}_{s=t+1}^\infty \right)\), such that each and every rent seeking group \(j \in \{1, \ldots, N\}\) maximizes (37) subject to \(\{T, B\}\), and \(\{C^R_i\}_{i\neq j}\).
Proposition B.1 For all \(t \in \{0,1,\ldots\} \), given a stream of interest rates, \(\{r_s\}_{s=t+1}^{\infty} \), there exists a symmetric DENC given by,

\[
G_t = \frac{(1 - \beta) \theta_G}{Y_t} \left[z_t \frac{\mathbb{W}(\{r_s\}_{s=t+1}^{\infty})}{Y_t} - \frac{B_t}{Y_t} \right],
\]

while

\[
\tau_t = \mathbb{P}(B_t, z_t \mid \{r_s\}_{s=t+1}^{\infty}) = 1 - \frac{1}{\theta_G} \frac{G_t}{Y_t},
\]

and

\[
C_i^R(B_t, z_t \mid \{r_s\}_{s=t+1}^{\infty}) = \frac{1}{\omega_i} C_i(B_t, z_t \mid \{r_s\}_{s=t+1}^{\infty}) = \frac{(1 - \beta) \theta_R}{1 + \theta_G + \theta_R + (N - 1)(1 - \beta) \theta_R} \left[z_t \frac{\mathbb{W}(\{r_s\}_{s=t+1}^{\infty}) - B_t}{Y_t} \right],
\]

for all \(i \in \{1, \ldots, N\} \), while,

\[
\frac{B_{t+1}}{Y_{t+1}} = \mathbb{B}(B_t, z_t \mid \{r_s\}_{s=t+1}^{\infty}) = \frac{1 + r_{t+1}}{1 + \gamma} \left[\beta_N \frac{B_t}{Y_t} + (1 - \beta_N) \frac{z_t \mathbb{W}(\{r_s\}_{s=t+1}^{\infty}) - B_t}{Y_t} - 1 \right].
\]

Proof The first-order conditions of the Bellman-equation problem given by (37) lead to,

\[
G_t = \theta_G \cdot (1 - \tau_t) \cdot z_t \cdot L,
\]

\[
C_{j,t}^R = \frac{\theta_R}{\theta_G \cdot \omega_j} G_t = \frac{\theta_R}{\omega_j} \cdot (1 - \tau_t) \cdot z_t \cdot L,
\]

and

\[
\frac{\theta_R}{\omega_j (1 + r_{t+1})} C_{j,t}^R = -\beta \frac{\partial \mathbb{V}_j(B_{t+1}, z_{t+1} \mid \{C_i^R\}_{i=1}^{N}, \{r_s\}_{s=t+2}^{\infty})}{\partial B_{t+1}},
\]

together with the fiscal-budget constraint (11).
In order to identify the value function of the Bellman equation given by (37), its associated rent-seeking strategies, and the model’s decision rules, we make two guesses. We first take a guess on the functional form of the rent-seeking group consumption strategies, \(C_{i,t}^R = C_{i,t}^R(\{}r_s^\infty_{s=t+1}\} \). Specifically,

\[
C_{i,t}^R(\{}r_s^\infty_{s=t+1}\} = \xi_{R,i} \cdot (z_tW_{t+1} - B_t) , \text{ for all } i \in \{1, ..., N\} ,
\]

(45)

in which \(\xi_{R,i} \) is an undetermined coefficient, and,

\[
W_{t+1} \equiv \mathbb{W}(\{}r_s^\infty_{s=t+1}\} ,
\]

for notational simplicity, in which \(\mathbb{W}(\{}r_s^\infty_{s=t+1}\} \) is given by the expression in (20). It can be verified that the expression in (20) is the solution to the difference equation

\[
W_{t+1} = \frac{1 + \gamma}{1 + r_{t+1}} W_{t+2} + L , \quad t = 0, 1, ...
\]

(46)

which is a recursion fully characterizing \(W_{t+1} \) in the guess given by (45). The second guess is on the functional form of the value function of player \(j \in \{1, ..., N\} \), in Bellman equation (37). Specifically,

\[
\hat{V}^j(\{}r_s^\infty_{i=1}^N, r_s^\infty_{s=t+1}\} = \zeta_j + \psi_j \cdot \sum_{s=t}^{\infty} \beta^{s-t} \ln (1 + r_{s+1}) + \nu_j \cdot \ln (z_tW_{t+1} - B_t) ,
\]

(47)

in which \(\zeta_j, \psi_j, \text{ and } \nu_j \), are undetermined coefficients, \(j \in \{1, ..., N\} \).

We substitute our guesses (45) and (47) into the Bellman equation given by (37), in order to verify whether the functional forms given by (45) and (47) are indeed correct, and also in order to calculate the undetermined coefficients \(\zeta_j, \psi_j, \nu_j, \text{ and } \xi_{R,j} \). Before making this substitution, a simplifying step is to use a state-variable transformation, namely,

\[
x_t \equiv z_tW_{t+1} - B_t ,
\]
and to calculate the law of motion of \(x_t \), a function \(x_{t+1} = X(x_t) \), that is based on (11), the first-order conditions (42) through (47), and our guesses (45) and (47).

In order to find the law of motion \(x_{t+1} = X(x_t) \), we first combine (47) with (44) to obtain \(C^R_{j,t} = \theta_R x_{t+1} / [\omega_j \nu_j \beta (1 + r_{t+1})] \), and then we combine this result with (43), which leads to,

\[
(1 - \tau_t) \cdot z_t \cdot \mu_j = \frac{1}{\nu_j \beta (1 + r_{t+1})} x_{t+1} \cdot .
\]

Since (48) holds for all \(j \in \{1, \ldots, N\} \), we conclude that

\[
\nu_j = \nu, \text{ for all } j \in \{1, \ldots, N\} .
\]

From the fiscal-budget constraint (11) and the recursion given by (46) we obtain,

\[
\frac{z_{t+1} W_{t+2} - B_{t+1}}{x_{t+1}} = (1 + r_{t+1}) \left[\frac{z_t W_{t+1} - B_t}{x_t} - (1 - \tau_t) Y_t - G_t - \omega_j C^R_{j,t} - \sum_{i=1 \atop i \neq j}^N \omega_i C^R_{i,t}\right]
\]

which we combine with (42), (43), and (45), in order to get,

\[
x_{t+1} = (1 + r_{t+1}) \left[1 - \sum_{i=1 \atop i \neq j}^N \omega_i \xi_{R,i} \right] x_t - (1 + \theta_R + \theta_G) (1 - \tau_t) Y_t
\]

Since the choice of \(j \in \{1, \ldots, N\} \) is arbitrary, equation (50) implies,

\[
\sum_{i=1 \atop i \neq j}^N \omega_i \xi_{R,i} = \sum_{i=1 \atop i \neq k}^N \omega_i \xi_{R,i} , \text{ for all } j, k \in \{1, \ldots, N\} .
\]

The linear system implied by (51) has a unique solution according to which,

\[
\omega_i \xi_{R,i} = \xi_R , \text{ for all } i \in \{1, \ldots, N\} .
\]

Combining (50) with (52) gives,

\[
x_{t+1} = (1 + r_{t+1}) \left[1 - (N - 1) \xi_R \right] x_t - (1 + \theta_R + \theta_G) (1 - \tau_t) Y_t
\]

\[
(1 - \tau_t) \cdot z_t \cdot \mu_j = \frac{1}{\nu_j \beta (1 + r_{t+1})} x_{t+1} \cdot .
\]

Since (48) holds for all \(j \in \{1, \ldots, N\} \), we conclude that

\[
\nu_j = \nu, \text{ for all } j \in \{1, \ldots, N\} .
\]

From the fiscal-budget constraint (11) and the recursion given by (46) we obtain,

\[
\frac{z_{t+1} W_{t+2} - B_{t+1}}{x_{t+1}} = (1 + r_{t+1}) \left[\frac{z_t W_{t+1} - B_t}{x_t} - (1 - \tau_t) Y_t - G_t - \omega_j C^R_{j,t} - \sum_{i=1 \atop i \neq j}^N \omega_i C^R_{i,t}\right]
\]

which we combine with (42), (43), and (45), in order to get,

\[
x_{t+1} = (1 + r_{t+1}) \left[1 - \sum_{i=1 \atop i \neq j}^N \omega_i \xi_{R,i} \right] x_t - (1 + \theta_R + \theta_G) (1 - \tau_t) Y_t
\]

Since the choice of \(j \in \{1, \ldots, N\} \) is arbitrary, equation (50) implies,

\[
\sum_{i=1 \atop i \neq j}^N \omega_i \xi_{R,i} = \sum_{i=1 \atop i \neq k}^N \omega_i \xi_{R,i} , \text{ for all } j, k \in \{1, \ldots, N\} .
\]

The linear system implied by (51) has a unique solution according to which,

\[
\omega_i \xi_{R,i} = \xi_R , \text{ for all } i \in \{1, \ldots, N\} .
\]

Combining (50) with (52) gives,

\[
x_{t+1} = (1 + r_{t+1}) \left[1 - (N - 1) \xi_R \right] x_t - (1 + \theta_R + \theta_G) (1 - \tau_t) Y_t
\]
After combining (53) with (48) and (49), we obtain the law of motion \(x_{t+1} = X(x_t) \), namely,

\[
x_{t+1} = \frac{1 + r_{t+1}}{1 + \frac{1 + \theta_R + \theta_G}{\nu \beta}} \left[1 - (N - 1) \xi_R \right] x_t .
\]

(54)

With (54) at hand we return to calculating the undetermined coefficients \(\zeta_j, \psi_j, \nu, \) and \(\xi_R \). We substitute (47) into the Bellman equation given by (37) and get,

\[
\zeta_j + \psi_j \cdot \sum_{s=t}^{\infty} \beta^{s-t} \ln (1 + r_{s+1}) + \nu \cdot \ln (x_t) = \theta_l \ln (1 - L) + \ln (L)
\]

\[
+ \ln (1 - \tau_t) + \ln (z_t) + \theta_G \ln (G_t) + \theta_R \ln \left(C_{j,t}^R \right)
\]

\[
+ \beta \zeta_j + \beta \psi_j \cdot \sum_{s=t+1}^{\infty} \beta^{s-t-1} \ln (1 + r_{s+1}) + \beta \nu \ln (x_{t+1}) .
\]

(55)

After combining (42), (43), and (48) with (54), we obtain,

\[
\theta_l \ln (1 - L) + \ln (L) + \ln (1 - \tau_t) + \ln (z_t) + \theta_G \ln (G_t) + \theta_R \ln \left(C_{j,t}^R \right)
\]

\[
= \theta_l \ln (1 - L) - \theta_R \ln (\omega_j) + \theta_G \ln (\theta_G) + \theta_R \ln (\theta_R) - (1 + \theta_G + \theta_R) \left[\ln (\beta) + \ln (\nu) \right]
\]

\[
+ \ln \left(1 + \frac{1 + \theta_G + \theta_R}{\nu \beta} \right) + (1 + \theta_G + \theta_R) \{ \ln [1 - (N - 1) \xi_R] + \ln (x_t) \} .
\]

(56)

In addition, equation (54) implies,

\[
\beta \nu \ln (x_{t+1}) = \beta \nu \ln (1 + r_{t+1}) + \beta \nu \left\{ \ln [1 - (N - 1) \xi_R] + \ln (x_t) - \ln \left(1 + \frac{1 + \theta_G + \theta_R}{\nu \beta} \right) \right\} .
\]

(57)

Substituting (57), (43), and (56) into (55), leads to,

\[
(1 - \beta) \zeta_j = \theta_l \ln (1 - L) + \theta_G \ln (\theta_G) + \theta_R \ln (\theta_R) - (1 + \theta_G + \theta_R) \ln (\beta \nu)
\]

\[
+ (1 + \theta_G + \theta_R + \beta \nu) \left\{ \ln [1 - (N - 1) \xi_R] - \ln \left(1 + \frac{1 + \theta_G + \theta_R}{\nu \beta} \right) \right\} - \theta_R \ln (\omega_j)
\]

\[
+ (\beta \nu - \psi_j) \ln (1 + r_{t+1}) + [1 + \theta_G + \theta_R - \nu (1 - \beta)] \ln (x_t) .
\]

(58)
In order that the guessed functional forms given by (45) and (47) be indeed correct, equation (58) should not depend on its two variables, x_t and r_{t+1}. Due to this requirement of non-dependence of equation (58) on x_t and r_{t+1}, two immediate implications of (58) are,

$$\nu = \frac{1 + \theta_G + \theta_R}{1 - \beta},$$

(59)

and $\psi_j = \beta \nu$, so, based on (59), we obtain,

$$\psi_j = \psi = \frac{\beta \cdot (1 + \theta_G + \theta_R)}{1 - \beta}, \text{ for all } j \in \{1, \ldots, N\}.$$

(60)

Combining (48), (54), (42), and (59), we obtain,

$$G_t = \frac{(1 - \beta) \theta_G [1 - (N - 1) \xi_R]}{1 + \theta_G + \theta_R} x_t.$$

(61)

Equations (61) and (43) imply,

$$\omega_j C_{j,t}^R = \frac{(1 - \beta) \theta_R [1 - (N - 1) \xi_R]}{1 + \theta_G + \theta_R} x_t.$$

(62)

Our guess (45) concerning the exploitation strategy of group $j \in \{1, \ldots, N\}$ is $C_{j,t}^R = \xi_R x_t$. So, combining (45) with (62) and (52) identifies the undetermined coefficient ξ_R,

$$\xi_R = \frac{(1 - \beta) \theta_R}{1 + \theta_G + \theta_R + (N - 1)(1 - \beta) \theta_R},$$

(63)

which proves equation (40). Based on (63),

$$1 - (N - 1) \xi_R = \frac{1 + \theta_G + \theta_R}{1 + \theta_G + \theta_R + (N - 1)(1 - \beta) \theta_R}.$$

(64)

Combining (61) and (63) proves equation (38). In addition, the budget-constraint equation (41) is reconfirmed by substituting (61) and (62) into (11), and after noticing that,

$$\beta_N \equiv \beta [1 - (N - 1) \xi_R],$$
which proves formula (21). Equation (39) is proved directly from (42). Finally, after combining (58) with (59), (60), (63), and (64), we can identify the last undetermined coefficient, \(\zeta_j \), which is given by,

\[
\zeta_j = \frac{1}{1 - \beta} \left\{ -\theta_R \ln (\omega_j) + \theta_t \ln (1 - L) + \theta_G \ln (\theta_G) + \theta_R \ln (\theta_R) \\
+ (1 + \theta_G + \theta_R) \left[\frac{\beta}{1 - \beta} \ln (\beta) + \ln (1 - \beta) + \frac{\beta}{1 - \beta} \ln (1 + \theta_G + \theta_R) \right] \\
- \frac{1 + \theta_G + \theta_R}{1 - \beta} \ln [1 + \theta_G + \theta_R + (N - 1) (1 - \beta) \theta_R] \right\}, \quad (65)
\]

completing the proof.

5.2 Proof of Proposition 1

Since all other debtor countries are on an IEC path, the statement of this proposition states that all debt-GDP ratios will be constant, which we will re-confirm by proving the proposition. Equations (17) implies that \(m_{t+1} = m_t \) for all \(t \), so (18) becomes,

\[
B_{t+1}^* = \beta (1 + r_{t+1}) B_{t,t+1}^*. \quad (66)
\]

Interest-rate levels are determined by equating demand and supply of government bonds in international markets. In particular, the demand for bonds one period ahead, \(B_{t+1}^* \), is given by equation (66). Bond supply is obtained by combining the optimal level of government spending with the fiscal-budget constraint. From equations (41) and (21) for \(N = 1 \) we know that the supply of bonds in period \(t + 1 \) is given by,

\[
B_{t+1} = \beta (1 + r_{t+1}) B_t + (1 + r_{t+1}) \left[(1 - \beta) \ z_t \ W \left(\{ r_s \}_{s=t+1}^\infty \right) - Y_t \right]. \quad (67)
\]
After applying the equilibrium condition $B_{t+1} = B^*_t$, and assuming also that $B_t = B^*_t$ (no default in any period), equations (67) and (66) imply,

$$\mathcal{W} \left(\{r_s\}_{s=t+1}^{\infty} \right) = \frac{L}{1 - \beta}, \quad t = 0, 1, \ldots.$$ \hfill (68)

Previously we have mentioned an easily verifiable result, that the sequence $\{W_{t+1}\}_{t=0}^{\infty}$ corresponding to equation (20) satisfies the recursion given by (46). Specifically, the formula given by (20) is the solution to (46). After substituting (68) into (46), we obtain the level of interest rate r^{ss} given by (25), and the implication that $r_{t+1} = r^{ss}$ for all $t \in \{0, 1, \ldots\}$.

Equations (26), (27), and (28) are derived immediately after substituting $r_{t+1} = r^{ss}$ for all $t \in \{0, 1, \ldots\}$ into (41), (38), (39), and (40). In all cases we take into account that, under cooperation, $\beta_N = \beta$. Under cooperation, all formulas are considered as if $N = 1$ with the sole exception that the aggregate rents of the coalition are equally shared among rent-seeking groups, with each rent-seeking group member receiving $C^{R,C}(B_t, z_t) / N$.

\section*{5.3 Proof of Proposition 2}

Equating demand for bonds (equation (66)) and supply of bonds (equation (41)), together with (10), leads to,

$$(\beta - \beta_N) b_t = (1 - \beta_N) \left[\frac{W_{t+1}}{L} - \frac{1}{1 - \beta_N} \right].$$ \hfill (69)

From (46) it is,

$$\frac{W_{t+2}}{L} = \frac{1 + r_{t+1}}{1 + \gamma} \left(\frac{W_{t+1}}{L} - 1 \right).$$ \hfill (70)

After considering equation (69) one period ahead and after substituting (70) into it, we obtain,

$$(\beta - \beta_N) b_{t+1} = (1 - \beta_N) \frac{1 + r_{t+1}}{1 + \gamma} \left(\frac{W_{t+1}}{L} - 1 \right) - 1.$$ \hfill (71)
After some algebra, equation (69) gives,

\[
\frac{W_{t+1}}{L} - 1 = \frac{1}{1 - \beta_N} [(\beta - \beta_N) b_t + \beta_N]. \tag{72}
\]

Substituting (72) into (71) gives,

\[
(\beta - \beta_N) b_{t+1} = \frac{1 + r_{t+1}}{1 + \gamma} [(\beta - \beta_N) b_t + \beta_N] - 1. \tag{73}
\]

Equation (41) can be expressed as,

\[
b_{t+1} = \frac{\beta (1 + r_{t+1})}{1 + \gamma} b_t, \quad \text{for all } t \in \{0, 1, \ldots\}. \tag{74}
\]

Substituting (74) into (73) gives two useful equations, a linear first-order difference equation in variable \(1/b_t\),

\[
\frac{1}{b_{t+1}} = \frac{\beta N}{\beta} \cdot \frac{1}{b_t} + (1 - \beta) \left(\frac{1 - \beta_N}{\beta} \right), \tag{75}
\]

and an equilibrium condition that links up \(b_t\) directly with \(r_t\),

\[
[(1 - \beta) (\beta - \beta_N) b_t + \beta_N] \frac{1 + r_{t+1}}{1 + \gamma} = 1. \tag{76}
\]

The solution to (75) is,

\[
\frac{1}{b_t} - (1 - \beta) = \left(\frac{\beta_N}{\beta} \right)^t \left[\frac{1}{b_0} - (1 - \beta) \right]. \tag{77}
\]

Combining (76) and (77) leads to,

\[
\frac{1}{1 + \tilde{r}^*_t = \left(\frac{\beta_N}{\beta} \right)^t \left(\frac{1 - \beta}{\beta} \cdot \frac{1}{b_0} - 1 \right) + \beta_N}, \quad t = 0, 1, \ldots, \tag{78}
\]

in which \(\{\tilde{r}^*_s\}_{s=1}^{\infty}\) is the sequence of international-equilibrium interest rates.

With equation (78) at hand we can identify which \(b_0\) is possible or admissible, through equating supply and demand for bonds in period 0. Recall from equation (20) that,

\[
\frac{W_1}{L} = \frac{W}{L} \left(\{\tilde{r}^*_s\}_{s=1}^{\infty} \right) = \prod_{s=1}^{\infty} \frac{1}{1 + \tilde{r}_s} + 1 + \sum_{s=1}^{\infty} \frac{1}{\prod_{j=1}^{s} (1 + \tilde{r}_j)}. \tag{79}
\]
A direct implication of equation (78) is that \(\lim_{t \to \infty} \tilde{r}_t^* = (1 - \beta) / \beta \), and consequently,

\[
\prod_{s=1}^{\infty} \frac{1}{1 + \tilde{r}_s^*} = 0 ,
\]

which is the first term of the right-hand side of (79). In particular, after incorporating (80) and (78) into (79) we obtain,

\[
W(\{\tilde{r}_s^*\}_{s=1}^{\infty}) = \frac{1}{1 - \beta_N} + \sum_{s=1}^{\infty} \prod_{j=1}^{s} \frac{\beta - \beta_N}{1 + \left(\frac{\beta_N}{\beta}\right)^{j-1} \left(1 - \frac{1}{1 - \beta} \cdot \frac{1}{b_0} - 1\right)} \equiv F(b_0) .
\]

In order to understand whether an equilibrium with default is possible in the case of \(N \geq 2 \), we examine which values of \(b_0 \) are possible after equating supply with demand for bonds in period 0. This market-clearing condition is obtained by substituting (81) into equation (69), after setting \(t = 0 \) for the latter, which gives, \((\beta - \beta_N) b_0 = (1 - \beta_N) F(b_0) - 1\), or,

\[
H(b_0) \equiv \frac{\beta - \beta_N b_0 + \frac{1}{1 - \beta_N}}{1 - \beta_N} = F(b_0) .
\]

In order to find solutions of (82) that reflect bond-market clearing in period 0, it is helpful to understand some properties of function \(F(b_0) \). Let

\[
f(b_0, j) \equiv \frac{\beta - \beta_N}{1 + \left(\frac{\beta_N}{\beta}\right)^{j-1} \left(1 - \frac{1}{1 - \beta} \cdot \frac{1}{b_0} - 1\right)} .
\]

From (83) and (81),

\[
F(b_0) = \frac{1}{1 - \beta_N} + \sum_{s=1}^{\infty} \prod_{j=1}^{s} f(b_0, j) > 0 , \text{ for all } b_0 \in \left[0, \frac{1}{1 - \beta}\right] .
\]

Since, for all \(b_0 \in [0, 1/(1 - \beta)] \),

\[
f_{b_0}(b_0, j) = \frac{\frac{\beta - \beta_N}{1 - \beta} \left(\frac{\beta_N}{\beta}\right)^{j-1}}{\left[1 - \left(\frac{\beta_N}{\beta}\right)^{j-1}\right] b_0 + \frac{1}{1 - \beta} \left(\frac{\beta_N}{\beta}\right)^{j-1}} > 0 ,
\]

47
an implication of (84) and (85) is,

$$F'(b_0) = f_{b_0}(b_0, 1) + \sum_{s=2}^{\infty} \sum_{j=1}^{s} f_{b_0}(b_0, j) \prod_{l=1 \atop l \neq j}^{s} f(b_0, l) > 0.$$ \hspace{1cm} (86)

In addition,

$$F(0) = \frac{1}{1 - \beta_N} = H(0),$$ \hspace{1cm} (87)

since $f(0, j) = 0$ for all $j \in \{1, 2, \ldots\}$,

$$F'(0) = (1 - \beta) (\beta - \beta_N) < \frac{\beta - \beta_N}{1 - \beta_N} = H'(0),$$ \hspace{1cm} (88)

and

$$F\left(\frac{1}{1 - \beta}\right) = \frac{1}{1 - \beta_N} + \frac{\beta - \beta_N}{1 - (\beta - \beta_N)} < \frac{1}{1 - \beta} = H\left(\frac{1}{1 - \beta}\right).$$ \hspace{1cm} (89)

Equations (86), (87), (88), and (89) show that, as b_0 spans the interval $[0, 1/(1 - \beta)]$, (i) function $F(b_0)$ starts from taking the value $1/(1 - \beta_N)$, and satisfying the market-clearing condition at $b_0 = 0$, (ii) it continues in the neighborhood of $b_0 = 0$ with slope which is lower than the constant slope of $H(b_0)$, ($F'(0) < H'(0)$), meaning that $F(b_0)$ goes below function $H(b_0)$ in the neighborhood of $b_0 = 0$, (iii) $F(b_0)$ continues as a strictly increasing function all the way up to $1/(1 - \beta)$, and (iv) then at $1/(1 - \beta)$, $F(1/(1 - \beta)) < H(1/(1 - \beta))$.

Investigating concavity/convexity properties of $F(b_0)$ is a cumbersome task with, perhaps ambiguous results. Properties (i)-(iv) regarding the behavior of $F(b_0)$, reveal that, if $F(b_0)$ was either globally concave or globally convex on the interval $[0, 1/(1 - \beta)]$, then it would be immediately proved that $b_0 = 0$ (full default) would be the only value satisfying the market-clearing condition $F(b_0) = H(b_0)$. Since we do not have such a result at hand, we prove that no solutions other than default are possible, proceeding by contradiction.

Suppose that there exists some $\bar{b}_0 \in (0, 1/(1 - \beta))$, such that,

$$F\left(\bar{b}_0\right) = H\left(\bar{b}_0\right).$$ \hspace{1cm} (90)
From (75) we know that,
\[\tilde{b}_1 = \frac{1}{\beta_N \frac{1}{b_0} + \xi} = \frac{\tilde{b}_0}{\alpha}, \tag{91} \]
in which \(\xi \equiv (\beta - \beta_N) (1 - \beta) / \beta \) and \(\alpha \equiv \beta_N / \beta + \xi \tilde{b}_0 \). Since \(\tilde{b}_1 \) is on the equilibrium path, it should also satisfy,
\[F(\tilde{b}_1) = H(\tilde{b}_1), \tag{92} \]
From (82) and (91) it is,
\[H(\tilde{b}_1) = \frac{1}{\alpha} \frac{\beta - \beta_N}{1 - \beta_N} \tilde{b}_0 + \frac{1}{1 - \beta_N}, \]
and by substituting (91) into this last expression again, we obtain
\[H(\tilde{b}_1) - \frac{1}{1 - \beta_N} = \frac{1}{\alpha} \left[H(\tilde{b}_0) - \frac{1}{1 - \beta_N} \right] = \frac{1}{\alpha} \left[F(\tilde{b}_0) - \frac{1}{1 - \beta_N} \right] = F(\tilde{b}_1) - \frac{1}{1 - \beta_N}, \tag{93} \]
an implication of (90) and (92). From (81) it is,
\[F(\tilde{b}_1) - \frac{1}{1 - \beta_N} = \sum_{s=1}^{\infty} \prod_{j=1}^{s} \frac{\beta - \beta_N}{1 + \left(\frac{\beta_N}{\beta} \right)^{j-1} \left(\frac{1}{1 - \beta} \cdot \frac{1}{b_0} - 1 \right)}, \]
and (93) implies,
\[\sum_{s=1}^{\infty} \prod_{j=1}^{s} \frac{\beta - \beta_N}{1 + \left(\frac{\beta_N}{\beta} \right)^{j-1} \left(\frac{1}{1 - \beta} \cdot \frac{1}{b_0} - 1 \right)} = \frac{1}{\alpha} \sum_{s=1}^{\infty} \prod_{j=1}^{s} \frac{\beta - \beta_N}{1 + \left(\frac{\beta_N}{\beta} \right)^{j-1} \left(\frac{1}{1 - \beta} \cdot \frac{1}{b_0} - 1 \right)}. \tag{94} \]
Subtracting the right-hand-side of (94) from the left-hand side and rearranging terms,
\[\sum_{s=1}^{\infty} (\beta - \beta_N)^s \frac{\alpha - 1}{\alpha} \prod_{j=1}^{s} \left[\frac{1}{1 + \left(\frac{\beta_N}{\beta} \right)^{j-1} \left(\frac{1}{1 - \beta} \cdot \frac{1}{b_0} - 1 \right)} - \frac{1}{1 + \left(\frac{\beta_N}{\beta} \right)^{j-1} \left(\frac{1}{1 - \beta} \cdot \frac{1}{b_0} - 1 \right)} \right] = 0, \]
or,
\[\frac{\alpha - 1}{\alpha} \sum_{s=1}^{\infty} (\beta - \beta_N)^s (1 - \alpha)^s \times \]
\[
\times \prod_{j=1}^{s} \left[1 + \left(\frac{\beta_N}{\beta} \right)^{j-1} \left(\alpha \frac{1}{1-\beta} \cdot \frac{1}{b_0} - 1 \right) \right] \left[1 + \left(\frac{\beta_N}{\beta} \right)^{j-1} \left(\frac{1}{1-\beta} \cdot \frac{1}{b_0} - 1 \right) \right] = 0. \tag{95}
\]

From (91) we know that
\[
\alpha = \frac{\tilde{b}_0}{b_1}, \tag{96}
\]
and from (74) it is,
\[
\frac{\tilde{b}_0}{b_1} = \frac{1}{\beta} \frac{1}{1 + \tilde{r}_1}. \tag{97}
\]

Yet, it is verifiable from (78) that for all \(\tilde{b}_0 < 1 / (1 - \beta) \),
\[
\tilde{r}_1 > \tilde{r}^{ss} \iff \frac{1}{\beta} \frac{1}{1 + \tilde{r}_1} < \frac{1}{\beta} \frac{1}{1 + \tilde{r}^{ss}} = 1. \tag{98}
\]

Combining (98) with (97) and (96) implies,
\[
0 < \alpha < 1. \tag{99}
\]

Inequality (99) implies that the left-hand side of (95) is the product of a negative term, \((\alpha - 1) / \alpha\), and an infinite summation of strictly positive terms, contradicting (95). Since the choice of \(\tilde{b}_0 \in (0, 1 / (1 - \beta)) \) was arbitrary, the possibility that \(N \geq 2 \) and positive outstanding fiscal debt is ruled out.

Therefore, \(b_0 = 0 \) is the only admissible solution. To see that \(b_0 = 0 \) is admissible, notice that (74) implies \(b_t = 0 \) for all \(t \in \{0, 1, \ldots\} \), so \(F(b_t = 0) = H(b_t = 0) \) is always satisfied.

To sum up, if \(N \geq 2 \), domestic governments will default. After the default, all future governments will optimally cease the issuing of public deficit. This optimal behavior in our model is demonstrated by equation (74).

5.4 Proof of Proposition 3

In order to calculate \(V^{C,j}(B_t, z_t) \) we substitute the results stated previously into the Bellman equation given by (24), after taking into account that the total rents of the coalition are
divided by 2, which implies that we must subtract \(\theta_R \ln \left(\frac{2}{1 - \theta} \right) \). We have already achieved most of this calculation as we have obtained the expressions for \(\zeta, \psi, \) and \(\nu \) (c.f. equations (65), (60), and (59), which correspond to the value function given by (47)). From equation (25) in Proposition 1 we know that \(W_t/L = 1/(1 - \beta) \) for all \(t \in \{0, 1, \ldots\} \), so \(V^{C,j}(B_t, z_t) \) becomes,

\[
V^{C,j}(B_t, z_t) = \frac{1}{1 - \beta} \left\{ -\theta_R \ln \left(\frac{2}{1 - \theta} \right) + \theta_t \ln \left(1 - L \right) + \theta_G \ln \left(\theta_G \right) + \theta_R \ln \left(\theta_R \right) + (1 + \theta_G + \theta_R) \left[\frac{\beta \ln \left(1 + \gamma \right)}{1 - \beta} + \ln \left(1 - \beta \right) - \ln \left(1 + \theta_G + \theta_R \right) \right] \right. \\
\left. + \left(1 + \theta_G + \theta_R \right) \ln \left(\frac{z_t L}{1 - \beta} - B_t \right) \right\}. \quad (100)
\]

In order to calculate \(V^{NC,j}(B_t = 0, z_t | \left\{ \mathbb{C}_i^{R,NC} \right\}_{i=1}^{2} \) we find the static-equilibrium non-cooperative solution for \(N = 2 \), and calculate the discounted sum of lifetime utility of each group. So,

\[
V^{NC,j}(B_t = 0, z_t | \left\{ \mathbb{C}_i^{R,NC} \right\}_{i=1}^{2}) = \frac{1}{1 - \beta} \left\{ \theta_t \ln \left(1 - L \right) + \theta_G \ln \left(\theta_G \right) + \theta_R \ln \left(\theta_R \right) + (1 + \theta_G + \theta_R) \left[\ln \left(L \right) - \ln \left(1 + \theta_G + 2\theta_R \right) \right] \right. \\
\left. + \left(1 + \theta_G + \theta_R \right) \ln \left(\frac{z_t L}{1 - \beta} - B_t \right) \right\}. \quad (101)
\]

Comparing (100) with (101) leads to the cutoff debt-GDP ratio in (33).

In order to verify that the cases in which (i) the two rent-seeking groups never cooperate, (ii) the two rent-seeking groups cooperate forever, are both Markov-Perfect-Cooperation-Decision Nash Equilibrium (MPCDNE), notice that, by definition 1, (i) can be a MPCDNE, no matter what \(b_t \) might be. From Proposition 2 we know that if rent-seeking groups never cooperate, then \(b_t = 0 \) for all \(t \in \{0, 1, \ldots\} \), which still allows (i) to be an MPCDNE. To see that (ii) is also an MPCDNE, notice that, as long as (33) holds in period 0, then Proposition

51
3 (c.f. eq. 26) implies \(b_t = b_0 \), so (33) holds for all \(t \in \{0, 1, \ldots\} \). So, rent-seeking groups cooperating forever is an MPCDNE, as a direct consequence of Definition 1. \(\square \)

5.5 Proof of Proposition 4

In order to derive \(\bar{b} \), notice that

\[
g_{\text{default}}^{NC} = \frac{\theta_G}{1 + \theta_G + 2\theta_R} = \frac{\alpha \theta_G}{1 + \alpha \theta_R},
\]

(102)

and that (27) implies,

\[
g_b^C = \frac{\theta_G}{\theta_R} \alpha \left[1 - (1 - \beta) \hat{b} \right].
\]

(103)

Comparing (102) with (103) gives,

\[
g_b^C \geq g_{\text{default}}^{NC} \iff \hat{b} \leq \frac{1}{1 - \beta} \frac{\alpha}{1 + \alpha},
\]

proving (34), (35), and (36). To show that \(\bar{b} > \bar{b} \), use (34) and (33),

\[
\bar{b} > \bar{b} \iff 2^\alpha > 1,
\]

which is a true statement, proving the proposition. \(\square \)

5.6 Analytical results about calibration

Here we prove that calibrating \(\theta_R \) and \(\theta_G \) in order to match target values for the government-consumption-GDP ratio and the total-rents-GDP ratio is independent from the values of \(\beta \) at the cutoff level \(\bar{b} \). Let \(\underline{g} \) denote the government-consumption-GDP ratio \(G/Y \) at the cutoff debt-GDP \(\underline{b} \), and let \(\underline{c}_R \) denote the total-rents-GDP ratio at the cutoff debt-GDP \(\underline{b} \).

Substituting the formula given by (33) for \(\underline{b} \) into (27), we obtain,

\[
\underline{g} = \frac{\theta_G}{\theta_R} \alpha \left[1 - (1 - \beta) \underline{b} \right] = \frac{\theta_G}{\theta_R} \frac{\alpha 2^\alpha}{1 + \alpha},
\]

(104)
in which α is given by (32). Equation (28) implies,

\[
\frac{c_R}{g} = \frac{\theta_R}{\theta_G} \Rightarrow \theta_G = \theta_R \frac{g}{c_R}.
\]

(105)

Using (105), we can express (104) as a function of parameter θ_R alone, obtaining,

\[
g = \frac{\theta_R \frac{g}{c_R} 2^{1+\theta_R(1+\frac{g}{c_R})}}{1 + \theta_R(1 + \frac{g}{c_R}) 1 + \frac{\theta_R}{1+\theta_R(1+\frac{g}{c_R})}}.
\]

(106)

Using (106) together with target calibration values for g and c_R, we can find the specific value of parameter θ_R^* by solving the nonlinear equation

\[
f (\theta_R) = 0,
\]

in which

\[
f (\theta_R) \equiv \frac{\theta_R \frac{g}{c_R} 2^{1+\theta_R(1+\frac{g}{c_R})}}{1 + \theta_R(1 + \frac{g}{c_R}) 1 + \frac{\theta_R}{1+\theta_R(1+\frac{g}{c_R})}} - g.
\]

(107)

From (107) we can see that matching target calibration values for g and c_R is independent from values of β. Finally, from (105), $\theta_R^* = \theta_R^* g/c_R$. \qed
REFERENCES

International Monetary Fund (2011c): "Italy—Staff Report for the 2011 Article IV Consultation; Informational Annex; Public Information Notice; Statement by the Staff Representative; and Statement by the Executive Director for Italy." IMF Country Report No. 11/173, downloadable from: http://www.imf.org/external/pubs/ft/scr/2011/cr11173.pdf

International Monetary Fund (2012c): "Portugal: Fourth Review Under the Extended Arrangement and Request for a Waiver of Applicability of End-June Performance

Figure 1 Correlation between the fiscal-surplus/GDP ratio (in percentage points) and the Corruption-Perceptions Index (CPI) for Euro zone countries (t-statistics in parentheses). For Cyprus, Estonia, Malta, Slovakia and Slovenia averages are calculated since four years prior to joining the Euro zone. Sources: Eurostat, Transparency International.
Figure 2 The white and black regions defined by b in the deterministic version of the model in which changes in the debt-GDP ratios occur as once-and-for-all sunspot shocks. Stochastic versions of the model with anticipated shocks will introduce grey zones of default affected by politics.
Figure 3
Online Appendix

Supplementary Material

for

Political Economics of Fiscal Consolidations and External Sovereign Accidents

by

Carolina Achury, Christos Koulovatianos and John Tsoukalas

Corruption and External Sovereign Debt Inter-linkages in Eurozone Countries
Figure S.1 depicts the evolution of external sovereign debt in years 2003, 2006, and 2009, a year before the sovereign-debt crisis broke out in the Eurozone. Figure S.1 corroborates that, perhaps due to the currency union, Eurozone countries continued to issue external debt, as the Eurozone banking system facilitated the exchange of sovereign bonds among Eurozone commercial banks.

That commercial banks had incentives to buy sovereign bonds of periphery Eurozone countries is corroborated by Figure S.2. Figure S.2 depicts the evolution of 10-year sovereign-bond returns in Eurozone-periphery countries (Greece, Portugal, Italy, Spain, and Ireland) versus Germany, before the entrance to the Eurozone and after the start of the sovereign-debt crisis. All countries that had high interest-rate spreads compared to Germany before entrance to the Eurozone suffer chronically from corruption, according to the Corruption Perceptions Index survey. Table S.1 shows that Greece, Portugal, Italy, and Spain, have been scoring low according to the Corruption Perceptions Index survey throughout the years 1995-2010. The fact that the pre-Eurozone sovereign spreads of these countries vanished rapidly and persistently between years 2001-2008, indicates that Eurozone creditors (including commercial banks) in Eurozone-core countries, bought substantial amounts of sovereign debt. According to Figure S.1, the external debt of Greece, Portugal, Italy and Spain, rose sharply between years 2003-2009, and placed these countries among the top external-sovereign-debt issuers in the world (highest debt-GDP ratios). The key message from Figure S.2 is that countries with high corruption had high sovereign-debt spreads before entering the Eurozone and afterwards, during the sovereign-debt crisis. Ireland, which exhibits low corruption, had sovereign-debt problems only during the sovereign-debt crisis, most likely due to its post-Lehman-Brothers banking crisis, which was combined with a domestic real-estate price drop.

In brief, external sovereign debt of EU periphery countries grew rapidly in the 2000s (Figure S.1), speculating that commercial banks in Eurozone-core countries may have been the main buyer of periphery sovereign debt as indicated by dynamics of 10-year-bond returns before and after the introduction of the Euro (Figure S.2). Euro area commercial banks typically hold a diversified portfolio of government bonds of several union countries and thus can be severely affected by a default through losses on these bonds. Bolton and Jeanne (2011) provide information on Euro area commercial banks foreign debt exposures as of 2010.

The overarching element before the introduction of the Euro and after the sovereign crisis broke out, distinguishing core versus periphery countries in the Eurozone, is that the latter countries always had more corruption (Table S.1). Although our framework does not explicitly model banks, we use corruption and rent seeking as the main driver of developments after the crisis, and we provide insights concerning the political sustainability of bailout plans. First, we speculate that corruption and rent seeking was responsible for having high spreads in high-corruption EU countries before the introduction of the Euro (cheap bonds due to inflationary expectations). Second, we speculate that the low prices of sovereign bonds in high-corruption countries made these bonds attractive for arbitrage by banks in low-corruption Eurozone countries in the 2000s, increasing the external sovereign debt of high-corruption Eurozone countries dramatically. Third, since high-corruption countries held high external debt during the subprime crisis period, some consequences of sovereign default could be transmitted
abroad, making the possibility of default higher, and leading bond spreads to rise dramatically (see Figure S.2). Yet, the risk of financial contagion in the Eurozone may be high, motivating bailout-package initiatives. Such a rough outline of causes and effects of the sovereign crisis in the Eurozone is what motivated us to focus our model on the interplay between external debt and corruption in order to study the political sustainability of fiscal targets set by rescue packages.

References
Figure S.1 -- Source: European Central Bank and International Monetary Fund.

[Bar chart showing gross external debt general government sector for various countries, including Greece, Portugal, Belgium, Austria, Italy, Hungary, France, Ireland, Iceland, Spain, USA, UK, Sweden, Denmark, Canada, Ukraine, Japan, Brazil, Bulgaria, and Argentina, with data points for 2003, 2006, and 2009.]
Figure S.2 -- Source: European Central Bank and European Commission, secondary market yields of government bonds with maturities close to 10 years. Numbers appearing in parenthesis in front of every country’s name is the ranking according to the Corruption Perception Index 2010 from Transparency International (higher ranking means lower corruption).
Table S.1 -- Corruption Perception Index

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ireland</td>
<td>8.57 (10)</td>
<td>8.2 (14)</td>
<td>7.5 (18)</td>
<td>7.4 (19)</td>
<td>7.7 (16)</td>
<td>8.0 (14)</td>
</tr>
<tr>
<td>Germany</td>
<td>8.14 (11)</td>
<td>7.9 (15)</td>
<td>7.7 (16)</td>
<td>8.2 (16)</td>
<td>7.9 (14)</td>
<td>7.9 (15)</td>
</tr>
<tr>
<td>Spain</td>
<td>4.35 (24)</td>
<td>6.1 (23)</td>
<td>6.9 (23)</td>
<td>7.0 (23)</td>
<td>6.5 (28)</td>
<td>6.1 (30)</td>
</tr>
<tr>
<td>Portugal</td>
<td>5.56 (20)</td>
<td>6.5 (22)</td>
<td>6.6 (25)</td>
<td>6.5 (26)</td>
<td>6.1 (32)</td>
<td>6.0 (32)</td>
</tr>
<tr>
<td>Italy</td>
<td>2.99 (31)</td>
<td>4.6 (39)</td>
<td>5.3 (35)</td>
<td>5.0 (40)</td>
<td>4.8 (55)</td>
<td>3.9 (67)</td>
</tr>
<tr>
<td>Greece</td>
<td>4.04 (28)</td>
<td>4.9 (36)</td>
<td>4.3 (50)</td>
<td>4.3 (47)</td>
<td>4.7 (57)</td>
<td>3.5 (68)</td>
</tr>
<tr>
<td>Best-worst score</td>
<td>9.55-1.94</td>
<td>10-1.4</td>
<td>9.7-1.3</td>
<td>9.7-1.7</td>
<td>9.3-1.0</td>
<td>9.3-1.1</td>
</tr>
</tbody>
</table>

Source: Transparency International

Note: Higher score means lower corruption and numbers appearing in parentheses next to each score is the country's world-corruption ranking based on the score in each particular year.