Nanoparticle oxygen carriers and stroke – from diagnosis to treatment

I Mhairi Macrae

Institute of Neuroscience & Psychology
College of Medicine, Veterinary and Life Sciences
The importance of Penumbra in stroke: Diagnostic & Therapeutic target

Currently no practical & accurate diagnostic technique to identify viable tissue capable of recovery “Metabolic Penumbra”.

The penumbra has a finite life span

Over a matter of hours, tissue will either become incorporated into the infarct

or

if blood flow is restored may recover normal function

Stroke patients who show evidence of a penumbra are most likely to benefit from acute therapy (e.g. thrombolytic tPA or mechanical thrombectomy)
GOLD: an i.v oxygen carrier (Oxycyte) combined with normobaric hyperoxia provides:

a) DIAGNOSTIC: MRI contrast for metabolic brain imaging to identify penumbra

1. T2*OC: BOLD based; different magnetic properties of oxy- & deoxyhaemoglobin
2. Lactate Change: Dynamically images changes in tissue Lactate levels in response to Oxycyte+hyperoxia

a) THERAPEUTIC: Enhanced oxygen delivery to penumbra promotes recovery
Oxycyte: Improves Oxygen Delivery to Ischaemic Tissue Independent of RBCs

- Oxycyte carries 4x more O_2 than RBCs
- Nanoparticles, 35-45x smaller than RBC
- Metabolically inert
- Oxycyte is well tolerated with no genotoxicity
- Oxycyte has gained regulatory approval for clinical trials
- Recent Phase 2 Traumatic Brain Injury study

Red Blood Cells (RBCs) (7 microns)

Perfluorocarbons (PFCs) (0.2 microns)

(Cl_10F_{20}, Perfluoro (t-butylcyclohexane)

60% w/v, MW~500

Clot blocking
RBCs & O_2

Flow

O_2 O_2 O_2 O_2 O_2

PFC nanoparticles can penetrate microcirculation beyond clot delivering O_2 to tissue at risk
Complementary Diagnostic Value:

T2*OC & Lactate Change simultaneously Identify Penumbra

Mid cerebral artery occlusion in the rat

Scans from one rat following Oxycyte + hyperoxia

ADC map showing acute lesion

ASL map showing reduced CBF

T2* signal change (%) map identifying penumbra

Lactate Change

Penumbra

Aerobic Lactate Change map identifying penumbra
Brain damage associated with occlusive stroke occurs over ~ a 10 hour timeframe.

If left untreated, a patient will lose:

- 1.9 million neurones
- 13.8 billion synapses and
- 7 miles of axonal fibres

every minute

Oxycyte + Hyperoxia slows acute lesion growth

Diagnosis using GOLD reduces the penalty of time required for brain imaging by preventing further ischaemic brain damage.
Oxycyte: Therapeutic Benefit in Rodent Stroke Models

- Intraluminal filament rat model of middle cerebral artery occlusion (60 mins MCAO)
- Treatment started 10mins prior to reperfusion: Hyperoxia (50% O_2) maintained for 48hrs in ICU.
- Rats randomised to one of 4 groups. Infarct Size measure at 1 week using T2 MRI scan

Reduced Infarct Volume & improved neurological score with Oxycyte. + hyperoxia

Data removed as unpublished and could influence patent
Conclusions

- GOLD offers unique benefits through its simultaneous diagnostic and therapeutic application in acute ischaemic stroke.

- Diagnostically providing clinicians with a single stratified measure of tissue viability irrespective of time from stroke onset.

- Therapeutically supporting survival of penumbra by improving oxygen delivery using the perfluorocarbon-based oxygen carrier Oxycyte plus hyperoxia.

Oxycyte + Hyperoxia could represent a safe, easily administered theranostic in the Acute Ischaemic Stroke setting.
Recent reviews

Topical Review

Functional Role of Regulatory Lymphocytes in Stroke
Facts and Controversies

Arthur Liesz, MD; Xiaoming Hu, MD, PhD; Christoph Kleinschnitz, MD; Halina Oeffner, MD

Rational modulation of the innate immune system for neuroprotection in ischemic stroke

Diana Amantea, Giuseppe Miceli, Cristina Tassorelli, Maria I. Cartero, Iván Ballestros, Michelangelo Cerro, Maria A. Muro, Ignacio Lizasoain, and Gisella Bannister

Immuno

Immunology

Review Article

Inflammation in neurodegenerative diseases – an update

Review Article

Targeting neutrophils in ischemic stroke: translational insights from experimental studies

Glen C. Jickling, DaZhi Liu, Bradley P. Ander, Boryana Starmova, Xinhua Zhan and Frank R. Sharp
Areas for potential collaboration

• Neuroimmunology: a significant research area in stroke acute inflammatory response (IL1-RA), involvement of neutrophils, T cells, B cells, microglia & macrophages cytokines, delayed response linked to cognitive decline (B cells) post-stroke immunodepression, etc.

• Good facilities for in vivo research at WSI
• Expertise in vivo rodent models, management & welfare
• Good physiological monitoring and maintenance of rodents under GA
• MRI
• Specific expertise in cerebral blood flow
• Specific expertise in perfluorocarbon oxygen carriers & oxygen-based therapy
Acknowledgements

- Dr Graeme Deuchar
- Dr Celestine Santosh
- Dr David Brennan
- Professor Keith Muir
- Dr Chris McCabe
- Dr William Holmes

For further information see: http://www.aurumbiosciences.com/