Fibroblast growth factor signal transduction

A novel therapeutic target for multiple sclerosis

Chris Linington
Developing an effective treatment for multiple sclerosis

Dogma: Chronic inflammatory demyelinating disease driven by a T cell dependent adaptive response originating in the periphery

Reality: Current treatments suppress T cell mediated inflammation in brain but not halt accumulation of disability (Aleumimab, Tysabri)

Why: Disability due to axonal injury/loss caused by inflammatory demyelinating response sequestered in central nervous system

Hypothesis: This inflammatory activity is maintained by T cell independent responses originating within the CNS itself

Strategy – requires getting away from established models and returning to patients

- Identify candidates - analysis of MS lesions/CSF/serum
- Mechanistic studies in vitro
- Validate in vivo – develop new models
- Phase 1 clinical trials – repurposing existing drugs
FGF9 expression is up regulated in MS lesions

FGF9 Immunohistochemistry
- Control white matter: negative
- Active lesions: +++
- NAWM: +
- Glial scar tissue: negative

Fold change: 1.22 2.7 22
FGF9 inhibits (re)myelination in vitro

- Oligodendrocyte cell bodies swollen
- Accumulation of MBP & PLP immunoreactivity
- Formation of membranous extensions

Images acquired after ten days exposure (100ng/ml; DIV 18 to 28)
Inhibition of myelination is associated with a pro-inflammatory signature

1752 transcripts upregulated
1510 transcripts downregulated

24 hours
Induction of CCL2 is predominantly astrocytic

HA, hyaluronic acid – surrogate marker for increased activity of hyaluronic acid synthase 2 (Has2 Fold Change > 4)
Induction of TIMP sensitive proteases contribute to inhibition of myelination by FGF9
FGF9 initiates a multifactorial astrocyte-dependent response

- FGF9 – direct mitogenic effect
- Inhibits differentiation

Oligodendrocyte progenitors → Premyelinating oligodendrocyte

- LIF, IL-11, others
- “TIMP” sensitive proteases

- Inhibition

- Pro-inflammatory (?) Innate immune response
What happens in vivo?

- As yet we have no EAE variant that reproduces disease associated changes in FGF9 expression observed in patients
- Binds to the extracellular matrix, short range effect, not detected in CSF

Inject adeno-associated viral vectors encoding FGF9 or EGFP to induce persistent focal expression in astrocytes

Analyse from 10 days till up to 9 months

Christine Stadelmann, Claudia Wrzos, Göttingen
FGF9 expression is retained for at least 9 months
AAV-FGF9 induces a persistent astrocytic response
AVV-FGF9 induces “inflammatory” demyelination

Myelin loss/pallor observed at lesion site 30 days post-injection and becomes progressively more pronounced over time.
Summary

• FGF9 expression increased in MS tissues
 Active lesions > NAWM >> control white matter > glial scar

• In vitro FGF9 inhibits (re)myelination, stimulates OPC proliferation
 modulates multiple functional pathways

• In vivo persistent glial expression of FGF9 induces demyelination and
 inflammation in the adult rat CNS

• FGF9 mediated signal transduction – a novel therapeutic target
 to suppress disease progression in MS?

The unknowns:

• Why induced in MS lesions? Hypoxia?

• At what point are the effects of FGF9 still reversible?

• What is the best therapeutic strategy – selective FGFR inhibitors?
Acknowledgements

University of Glasgow

Maren Lindner
Dan McElroy
Katja Thuemmler

Medical University of Vienna
Center for Brain Research

Prof Hans Lassmann

Department of Neuropathology
Medical University Gottingen

Prof Christine Stadelmann

Departement Biomedizin Basel

Prof Nicole Schaeren-Wiemers

Max Planck Institute of Neurobiology

Edgar Meinl

Multiple Sclerosis Society

The Hertie Foundation

RS Macdonald Charitable Trust

ProCore bio med Ltd.