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Summary:    Unlike other investigations that use discrete return (DR) light detection and ranging 

(LiDAR) data for the visualisation and investigation of physical structure, this research attempts to 

investigate data relationships found within the LiDAR point cloud in order to infer the condition of 

the subject of interest, which for the purposes of this investigation are tree canopies. During DR 

LiDAR data capture, a laser pulse is emitted from the scanner and information about the subject is 

captured at only at specific points known as laser returns (r). Subsequently, not all of the laser 

waveform is recorded, meaning that although a general impression of the subject is captured in a point 

cloud, there will be areas of the subject between each data point that remain unrepresented in the 

dataset. This paper outlines preliminary research into attempting to discover what range of LiDAR 

metrics, and resulting data relationships, are the most suitable to identify the significance of the 

structural condition of tree canopies from a tree health perspective. This research contributes to a 

wider investigation of automated tree health assessment and the early identification of structural 

failure in trees using remote sensing techniques.   
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Introduction 

Light detection and ranging (LiDAR) is commonly used as a primary survey method for high spatial 

resolution investigations that assess the characteristics and 3-D structure of vegetation, in particular of 

forest stands and individual tree canopies (Lim, Treitza et al. 2003, Falkowski, Evans et al. 2009). 

LiDAR has also been used in the estimation of structural parameters of trees and other vegetation and 

to enable the characterisation of the forested landscape at a wide range of scales (Falkowski, Evans et 

al. 2009, van Leeuwen and Nieuwenhuis 2010). Data is often captured from an aerial laser scanning 

(ALS) platform or from either static or mobile terrestrial laser scanning (TLS) platforms. The 

captured data can subsequently be classified as either discrete return (DR) small-footprint LiDAR 

which records the elevation of a specified number of peaks in the return waveform, or full waveform 

(FW) LiDAR which records the returning LiDAR waveform in its entirety (Jones and Vaughn 2010). 

The FW approach provides much greater information about the subject that has been scanned, 

however, FW also requires significantly greater energy requirements and data storage, particularly 

when used in large scale investigations (Jones and Vaughn 2010). The practical limitations of FW 
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LiDAR, amongst other considerations, contribute to the DR system being more frequently used for 

investigations at the landscape scale.  

A limitation of DR LiDAR is that not all of the potential information during a scan is retained in the 

data capture process, wherein pre-defined laser returns (typically ranging 1-4 from a single pulse) are 

the points at which data is captured. The data created during the DR scanning process is a series of 

individual points which, when combined, create the point cloud. These data points are geo-located 

with XYZ coordinates, and other attributes including return number and waveform intensity (see 

Figure 1). As the DR data points only have a small footprint area relative to the operational height of 

the ALS, there are areas of the subject that are not scanned or get represented in the subsequent point 

cloud, even when the scan is at a very high resolution. Therefore supplementary analysis of the DR 

LiDAR data must be undertaken in order to gain greater insights about the condition of the subject.  

 

Figure 1  A visualisation of a discrete return (DR) light detection and ranging (LiDAR) point cloud of a woodland tree 

canopy. The images represent the same woodland area seen from both front view (A) and side view (B) 

perspectives. The image colouration shows the data classified by return number (i) and laser intensity (ii). 

Previous research suggests that there is the potential to identify the structural attributes of individual 

tree canopies by using specific combinations of LiDAR metrics, thus enabling the classification of 

canopy structures (Falkowski, Evans et al. 2009). It has also been found that the structure of a 

standing tree and its interaction with other tree canopies around it presents a complex set of variables 

requiring correct identification to ensure that any subsequent canopy classification is undertaken 

accurately (Kato, Moskal et al. 2009). Accordingly for the purposes of this research, combinations of 
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LiDAR metrics will be investigated in order to ascertain what level of observations can be inferred 

about the subject tree canopies structures, following capture in a DR LiDAR point cloud.  

Research Aim  

The aim of this research is to investigate the potential significance of data relationships within a DR 

LiDAR point cloud of tree canopies and, which combinations of LiDAR metrics could be used to 

indicate where individual trees may have compromised structures with the potential for failure, in an 

attempt to improve tree risk assessment procedures.  

Methodology 

The LiDAR point cloud data was captured via an ALS, undertaken by NERC ARSF, over woodland 

in the north west of England. The woodland contains trees in a wide range of complex structural 

conditions and spatial arrangement. High levels of resolution were achieved in the DR LiDAR 

through incorporating a large percentage swath width overlap of approximately 50% on each flight 

line, which resulted in a high point density. Following ALS data capture, a series of random sample 

plots were geolocated and their physical boundaries established on the ground within the woodland 

area. The sample plots were representative of many different combinations of locally provenant tree 

species and lower vegetation communities, typically representing national vegetation classification 

W11 (Quercus petraea – Betula pubescens – Oxalis acetosella woodland). The woodland also 

contained areas of varying woodland management practices and canopy cover types ranging from 

individual, open grown trees (maidens) up to areas of total canopy closure (up to 100%). To aid the 

scope of the investigation, the sampling scheme included plots that were representative of varying 

percentile levels of canopy cover e.g. 10%, 20% etc. 26 sample plots measuring 20 x 20 meters were 

established and a range of individual tree measurement variables were taken using traditional 

woodland management and arboricultural techniques, to enable validation of the LiDAR data set.  

Preliminary statistical analysis of the LiDAR data has been undertaken in order to identify the 

appropriate metrics that could be used to infer the structural condition of individual tree canopies. 

Primarily this has focussed on the significance of the laser return (r) as a potential indicator of 

structural condition (see Figure 2 and Figure 3). Subsequently a range of LiDAR metrics have been 

identified for further investigation, for example; average returns in the nth percentile, point cloud 

surface area measurement and the implication of data point clustering. Due to the early stages of this 

work, the investigation into the significance of these variables and identification of other relevant 

metrics is on-going.  
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Figure 2 i. – A healthy control tree (Tree A). ii. – Tree A in the larger data set before extraction. iii. – Tree A’s data point 
cloud showing 1

st
, 2

nd
 and 3

rd
 returns. iv. – 2

nd
 and 3

rd
 returns only. v. – 3

rd
 returns only. Tree A has a well 

distributed, high number of 1st and 2nd returns from the canopy, and a high number of 3rd returns from the 
ground. 

 

Figure 3 i. – A stressed or risk tree (Tree B). ii. – Tree B in the larger dataset before extraction. iii. – Tree B’s data point 
cloud showing 1st, 2nd and 3rd returns. iv. – 2nd and 3rd returns only. v. – 3rd returns only. Tree B has only a 
moderate distribution and frequency of 1

st
 returns from the canopy, and a low number of 2

nd
 returns from the 

canopy with a low number of 3
rd

 returns from the ground. 
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Results 

Following analysis of 238 individual trees; early findings indicate that there are statistical 

relationships that can be used to infer particular structural characteristics. Through undertaking a 

MANOVA analysis, both standardized and unstandardized regression weights as discriminant 

function co-efficients are returned for each of the independent variables, r 1-4.  

Table 1 Standardized and raw discriminant function coefficients as unstandardized 

regression weights for LiDAR return (r) variables. 

Variable Raw Standardized 

r1 -0.00429 -1.71796 

r2 0.00780 1.64426 

r3 -0.03895 -1.46073 

r4 0.42858 0.81466 

 

The positive trend, standardized value for r2 (1.64426), indicates that this variable has the greatest 

influence on the canonical variable as a discriminate function. Therefore the r2 values within the data 

are shown to have the greatest influence the independent variable, i.e. differences in structural 

condition. In order to satisfy that the statistical relationship between the dependant variable and the 

canonical variables is valid, a correlation was undertaken and is shown at Table 2 

Table 2 Correlations between the dependent (return number (r)) and canonical variables. 

Variable Correlation 

r1 0.87948 

r2 0.74750 

r3 0.68438 

r4 0.34560 

 

Table 2 shows that there is a positive correlation between the all of the return numbers and their 

canonical variable, with the combined r1-3 showing the greatest levels of correlation and r4, whilst 

still being positively correlated, exerts the least influence on observed condition. This suggests that 

from the observed analysis, r1-3 will be the most reliable data to be used in the development of 

metrics for the identification of the structural condition in trees, and that the frequency and 

distribution of r2 exerts the greatest influence.  

Discussion and Conclusion 

Following a review of similar research, it has been shown that creating a series of metrics, to aid the 

identification of structure types in trees is possible. At this early stage of investigation, only 

preparatory research and analysis has been carried out and there remains additional investigative work 

to be completed both in the field and laboratory. Early results suggest that there is notable influence of 
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the 2
nd

 return, r2, in indicating the structural condition of the subject trees. At this stage, it is 

envisaged that r2 will also have a prominent influence in deciding the validity of the metrics created 

during this investigation.  
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