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1. Introduction 
Images from satellites offer a unique means to monitor large areas of land, in relatively fine 

detail and at regular intervals. Current technology in remote sensing is routinely achieving a 

spatial resolution in the order of a few meters (or even below), coverage of hundreds of 

kilometres and daily revisits. Environmental changes such as deforestation, desertification 

and urbanization can be well identified with remote sensing (Ma et al., 2012; McRoberts and 

Walters, 2012; Turner et al., 2003). Increasingly, the analysis is concerned with the spatial 

pattern of the changed landscape (Hall et al., 1991; Herold et al., 2002; Seto and Fragkias, 

2005). Understanding patterns of change, and changes in patterns is relevant for various 

reasons: it helps identifying processes of landscape change and inferring about relationships 

between pattern and process (Turner, 1989). Moreover, landscape pattern is a factor in the 

functioning of ecological, socio-economic and physical systems.  

A key notion is the scale of the analysis (Lausch et al., 2013; Simova and Gdulova, 2012), 

which is traditionally understood to be determined by both the spatial extent of the study area 

and the resolution, or grain, of the observations. It is well-known, and generally desired, that 

the outcome of landscape analysis depends on the scale (Bar-Massada et al., 2012). For 

instance, the relevant measures of connectivity and fragmentation depend on the species for 

which they are evaluated. As spatial scale is hard-baked into the analysis, there is little 

flexibility for scale-sensitive analysis. In particular difficulties arise when cross-scale 

interactions are investigated (Peters et al., 2004; Willemen et al., 2012) as scale-specific 

results are tied to a specific geography and cannot readily be combined. 

This paper proposes an alternative approach to scale sensitive landscape pattern analysis. 

Here, scale is not primarily determined by grain and extent, but by the window size or 

wavelength that characterizes the analysis. This length defines a spatial kernel that associates 

each location in the study area with the area surrounding it. Analogous to kernel density 

estimation, this paper proposes that the (distance weighted) landscape pattern indices for the 

area surrounding a location estimate the landscape pattern for that location. This is a 

generalization of earlier approaches applying a wide range of indices within a moving 

window (Baker and Cai, 1992; Riitters et al., 1997) and more recent applications that derive 

local pattern indices from a variety of kernel density estimates (Willemen et al., 2012; Zurlini 

et al., 2007).  

This paper is the first to present a robust and efficient computational framework. Earlier 

methods have relied on a brute force scripting approach that is prohibitively computationally 

expensive, or restricted the scope by limiting the methods to manipulations on kernel density 

estimates that are efficiently implemented in GIS packages. The computational framework 

that this paper proposes is efficient by incorporating image processing techniques and robust 

by allowing a wide range of landscape indices, well beyond density estimates.  
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2. Methods 
The landscape pattern estimate at one location is a function of the landscape in the kernel 

surrounding it. The landscape elements that are considered are the three most common 

building blocks to landscape indices: pixels, edges and patches. Whereby edges are formed 

by the face of adjacent pixels, they are characterized by the pixel classes at either side, and 

patches are formed by groups of contiguous pixels that have a common class. Edges and 

patches may be partially inside the kernel. Moreover distance bands will be applied to weight 

the relative contribution of landscape elements within the window. Windows can be circular 

or square (Figure 1). Computationally the methods are generalizations of moving average 

filter methods used in image processing(Glasbey and Jones, 1997; McDonnell, 1981). The 

method starts with by calculating the estimate for the first pixel; after that it only accounts for 

incoming and outgoing elements to get the estimate for the next pixel, and so on. Square 

windows are even more efficient because they allow this differential approach to be used in 

the vertical as well as horizontal direction, meaning that only the four corners of the kernel 

need to be processed when moving from one pixel to the next. Figure 2 schematically 

represents the kernel computation schemes for the different kernel types (square/ circular, 

edges / pixels). Patch kernels make use of the pixel kernel, and include a pre-processing step 

that tabulates all patches and their pattern characteristics. 

 

 

Figure 1. Circular and square kernels with distance bands. Grey levels indicate weight 

of distance band. 

The computational framework is implemented in a C++ library that makes use of template 

meta-programming to separate the generic kernel functionality, i.e. stepping the kernel over 

the raster dataset and tallying pixels, edges and patches as they fall in and out of view, from 

the specific implementation of landscape pattern indices. The kernel functionality has the 

behaviour of a simple iterator, visiting all pixels in the study area, row-by-row and column-

by-column, to readily allow integration in widely used map algebra / raster calculators.  
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Figure 2a. Schematic representation for circular pixel kernel operations 
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Figure 2b. Schematic representation for square pixel kernel operations 
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Figure 2c. Schematic representation for circular edge kernel operations 
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Figure 2d. Schematic representation for square edge kernel operations 
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To interact with the kernel functionality, each landscape index must implement the functions 

as listed in Table 1. We have implemented a number of widely used landscape pattern indices 

according to this format, including patch density (patch based), patch shape index (patch 

based), Shannon diversity (pixel/area based), most common class index (pixel/area based), 

edge density (edge based), interspersion (edge based). 

Table 1. Functions of the incremental landscape index concept 

 Function name Parameters Behaviour 

add_element element 

 

Update the internal state by including the effect 

of the value associated with one pixel or edge.   

subtract_element element Update the internal state removing the effect of 

the value associated with one pixel or edge. 

add_subtotal element_subtotal 
weight (optional) 

Update the internal state by including the effect 

of a pre-aggregated group of pixels or edges 

(i.e. merge).  The weight parameter is required 

for weighted distance bands only.  

subtract_subtotal element_subtotal 
weight (optional) 

Update the internal state by removing the effect 

of a pre-aggregated group of pixels or edges 

(i.e. unmerge).  The weight parameter is only 

required when weighted distance bands are 

used. 

extract (-) Derive the landscape index value from the 

internal state. 

3. Results 
The computational framework is tested on the CORINE land cover dataset of the UK and 

Ireland for 2000 and 2006. This data consists of 3388 * 4628 pixels (15.7 mega pixel) and 

has been reclassified to urban / non-urban for this application (Figure 3). These raster maps 

have been processed using the proposed framework to create the scale-specific maps of edge-

density and its change over time for the whole study area (Figure 4). The computation, based 

on square kernels, can be performed on a regular desktop computer (Intel Core i7-2600 CPU 

@ 3.40GHz) and takes about 1.5 minutes without making use of parallelization. 

 

Figure 3. Test dataset: Ireland and UK urban extent according to EU CORINE   
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Figure 4. Multi-scale analysis of edge density and change over time 
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4. Conclusion 
This paper proposes a methodology for kernel estimates of landscape pattern. It brings 

together widely accepted concepts of landscape indices and kernel density estimation. 

Because these are basic concepts in landscape ecology and quantitative geography we see a 

wide range of potential applications.  

The computational framework empowers spatial analysis in several ways: 

- The computational efficiency makes it possible to study large study areas in fine 

detail and with large kernel sizes. 

- Square / circular kernel and optional distance bands allow for flexibility in trade-offs 

between precision and computation time. 

- The complexity of the kernel operations is separated from the intrinsics of landscape 

indices. As a consequence, new landscape indices can be calculated using a minimum 

of code writing. For instance the edge density landscape index only required about 50 

lines of code 

- The method’s iteration approach visits all pixels in order, making it straightforward to 

combine multiple indices at multiple scales inside a map algebra / raster calculator 

without producing intermediate map layers. 

- The associated C++  code is a library in progress is intended for open source release 

and relies only on the Boost (www.boost.org) and GDAL (www.gdal.org) libraries. 

- Developed in C++ it can become part of high-performing software, whereas Python 

bindings will facilitate use in scripts.  
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