

Explaining and Characterising MHC Diversity

Thorsten Stefan
Institute of Biodiversity,
Animal Health and
Comparative Medicine

Louise Matthews
Colette Mair
Joaquin Prada J. de C.
Richard Reeve
Mike Stear

The Major Histocompatibility Complex (MHC)

 Genes encoding the MHC are most polymorphic loci in vertebrates

→ > 1000 alleles at class II HLA-DRB1 locus in humans

→ BUT: Some species exhibit low diversity levels

The Major Histocompatibility Complex (MHC)

- MHC molecules play critical role in disease resistance of vertebrates
- Codominance in MHC genes
- Heterozygote advantage maintaining MHC diversity?

Can Heterozygote Advantage Explain MHC Diversity?

- This has been controversial
 - Immunology: heterozygotes will recognise a wider variety of parasite molecules
 - heterozygote advantage primary driving force maintaining MHC diversity
 - Population Genetics: (traditional) heterozygote advantage cannot maintain large numbers of alleles unless all alleles confer very similar fitness

A Special Form of Heterozygote Advantage The Divergent Allele Advantage (DAA) Hypothesis

(Wakeland et al., 1990)

- MHC alleles with highly divergent sequences cover unique segments of the void
- selection will favour highly divergent alleles

Divergent Allele Advantage in a Model of MHC Evolution

allele A (intrinsic merit $w_A = 0.5$) allele B (intrinsic merit $w_B = 0.4$)

$$f_{AB} = 0.5 + 2\delta$$

Divergent Allele Advantage in a Model of MHC Evolution

Simulations

- stochastic simulations over40 million years(evolution of *bovidae*)
- starting with a single allele
 (all bovid species carry same inversion)

Parameters

- μ: mutation rate
- m: population size
- σ: variation in intrinsic merits
- δ: het. advantage

Results

Number of alleles for a well-mixed and structured pop.

(well-mixed population in red, structured population in grey)

Results <u>Distribution of intrinsic merits of alleles</u>

Results Comparisons to observed values

Results Comparisons to observed values – Diversity profiles

Extension – Metapopulation Dynamics

- Population is structured into subpopulations
 - migrations between the subpopulations
 - different frequencies and intensities of migration
 - different connectivity

Results Well-mixed and structured populations

Results Well-mixed and structured populations

Results

Using diversity profiles for model comparison

- Comparing naïve diversity to diversity that accounts for
 - differences in intrinsic merits between the alleles
 - differences in the amino acid sequences

- Models compared
 - divergent allele advantage
 - asymmetric overdominance

Results <u>Distribution of intrinsic merits of alleles</u>

Results

Model comparison – Diversity with intrinsic merit difference

Results

Model comparison – Diversity with sequence difference

Parameters

- μ: mutation rate
- m: population size
- σ: variation in intrinsic merits
- δ: het. advantage

Conclusions

- Divergent allele advantage is the fundamental driver of MHC diversity
 - allelic diversity
 - number of alleles
 - other diversity measures
 - trans-species evolution
 - allows for variation in intrinsic merits of alleles

Applications Divergent Allele Advantage Model

- Allele numbers in a population are less important than sequence diversity
 - a population with a large number of very similar alleles might be less fit than a population with a smaller number of very diverse alleles

Distribution of intrinsic merits of alleles

Applications Divergent Allele Advantage Model

- Relatively unfit alleles may exist in a population at considerable frequencies
 - population may carry a high genetic load (homozygotes, heterozygotes with similar alleles)
 - identifying poor alleles and genotypes would help develop individualised human medicine
 - selecting a set of highly divergent alleles, or optimising the allele frequencies could improve disease resistance in managed populations

Acknowledgements

- Nematode group
 - Louise Matthews
 - Colette Mair
 - Joaquin Prada J. de Cisneros
 - Richard Reeve
 - Mike J. Stear
- Johannes Buitkamp
- Funding from the EU
 - Marie Curie ITN programme

