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Abstract

In models with a representative infinitely lived household, modern versions of tax

smoothing imply that the steady-state of government debt should follow a random

walk. This is unlikely to be the case in OLG economies, where, the equilibrium

interest rate may differ from the policy-maker’s rate of time preference such that

it may be optimal to reduce debt today to reduce distortionary taxation in the

future. Moreover, the level of the capital stock (and therefore output and, possibly,

consumption) in these economies is likely to be sub-optimally low, and reducing

government debt will ‘crowd in’ additional capital. Using an elaborate version of

the model of perpetual youth developed by Blanchard (1985) and Yaari (1965),

we derive the optimal steady state level of government assets. We show how and

why this level of government assets falls short of the level of debt that achieves the

optimal capital stock and the level that eliminates income taxes.

JEL Codes: E21, E32, E63
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1 Introduction

The problems caused by excessive levels of public debt do not need enumerating. As

governments around the world try to bring deficits under control, and subsequently to

reduce levels of debt in relation to GDP, a natural question to ask is how far debt

levels should be reduced, and how quickly, once any immediate crisis resulting from

large default risk premia has diminished. In other words, what should be the ultimate

target for the debt to GDP ratio, and how quickly should we get there? Until now,

∗Our thanks to Charles Brendom, Alfred Greiner, Tom Holden, Eric Leeper, Patrick Minford, Balazs
Parkanyi, Matteo Salto, Mike Wickens, and participants in seminars in Brussels, Cardiff and Oxford for
helpful comments, but all responsibility remains ours. Leith and Wren-Lewis and grateful for financial
support from the ESRC (Award No. RES-062-23-1436).
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most analysis of this question has been undertaken using models in which consumers

in effect live forever, by appropriately internalising the utility of their children. This

tends to have the implication that the optimal level of debt depends upon the initial

level of debt as policy makers seek to minimise the costs of distortionary taxation going

forwards (see Barro (1979) and Chamley (1985,1986) for example). The implications of

the benchmark result in such models is striking: once fears of default have receded, the

optimum level of debt is closely tied to the historic debt level. This martingale process

for debt has also re-emerged in New Keynesian style DSGE models, (see for example,

Benigno and Woodford (2003) and Schmitt-Grohe and Uribe (2004a)), where policy

makers also care about the costs of inflation in an sticky price environment as well as

minimising the costs of tax distortions. These applications of tax smoothing all suggest

that attempts to reduce the extent of distortionary taxation in the long run will require

short run increases in these taxes whose cost outweighs the eventual gain.

However, within this literature there have been attempts to analysis the optimal

quantity of debt by introducing additional costs or benefits associated with the level of

government debt. For example, in Aiyagari et al (2002) implict risk premia in an econ-

omy with incomplete financial markets may encourage the government to accumulate

sufficient assets to pay for (exogenously determined, but stochastic) government spend-

ing after eliminating distortionary taxation, although introducing ad hoc limits on the

levels of assets held by the government will ensure policy is more akin to that described

in the orginal tax smoothing result of Barro (1979). Aiyagari and McGratten (1998)

allow for a role for government debt in that it can help alleviate households’ borrowing

constraints, while Shin (2006) allows for household heterogeneity and idiosyncratic in-

come shocks to provide a role for government debt in facilitating precautionary saving.

However, with the exception of Aiyagari and McGratten (1998), where risk premia due

to incomplete financial markets drive interest rates above the rate of time preference

in a production economy which utilises physical capital, these papers do not allow for

one of the common worries associated with rising debt levels, namely that public debt

crowds out private capital.

In overlapping generations economies where agents do not care about their children

(or do not care about them enough), this effect is central to the desirability of stabilising

debt. There are, in fact, two reasons why the random walk steady state debt result no

longer holds in these Non-Ricardian economies. First, if the economy is not dynamically

inefficient, then the real interest rate is likely to exceed the rate of time preference,

which means that from a Ramsey planner’s point of view it may be worth sacrificing

some current utility in order to achieve a steady state where distortionary taxes are lower

than they currently are (even if the current generation may lose out as a result). Second,

as noted above, the level of the capital stock (and therefore output and consumption)

in these economies is likely to be sub-optimally low, and reducing government debt will

‘crowd in’ additional capital.
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This raises an immediate question: will the debt target in such models be the debt

level that eliminates the need for distortionary taxes, or will it be the level that achieves

the optimal capital stock? This is one of the issues we examine in this paper. Using an

elaborate version of the model of perpetual youth developed by Blanchard (1985) and

Yaari (1965), which allows us to vary the extent of Non-Ricardian behaviour parametri-

cally, we derive the optimal steady state level of government assets. We show how and

why this level of government assets falls short of both the level of debt that achieves

the optimal capital stock and the level that eliminates income taxes. We also explore

the non-linear path the policy maker follows in moving the economy from its current

position to the desired long-run solution to the Ramsey problem.

Section 2 contrasts, in a highly simplified way, the steady state random walk debt

result with the outcome when the rate of interest is above the rate of time preference,

and where capital is below its optimal level. Section 3 outlines a quite rich version of the

model of perpetual youth, which features sticky prices, exogenous growth, distortionary

taxation, government consumption and public and private physical capital accumulation.

In section 4, we discuss social welfare, the model’s calibration, and our numerical results

for both the steady-state of the Ramsey problem and the non-linear Ramsey dynamics.

A final section concludes.

2 Optimal Debt and Optimal Capital

The benchmark model for optimal debt implies that there is no optimal level of debt.

This benchmark assumes that individuals are effectively infinitely lived, and ignores

the possibility of default. Taxation is distortionary, so if we could choose the level of

government debt we inherit, it would be negative, and the interest payments on these

government assets would pay for any government consumption. In the discussion below,

we call this the zero-tax level of government assets, or AT . Of course, without recourse

to default or some equivalent expropriation mechanism, a government cannot choose

the level of debt it inherits. (A Ramsey planner could in theory expropriate sufficient

capital using a capital tax, and then commit to setting capital taxes to zero, but this

commitment is unlikely to be credible.)

Suppose we inherit a level of debt different fromAT , the zero tax level of assets. In the

absence of any other means of reducing debt except higher taxes or lower spending, then

we have a choice between high taxes (or lower spending) now to reduce debt towards the

optimal level, or accepting permanently positive taxes (or lower than optimal government

spending) that will finance the interest payments on the inherited debt level, and so leave

debt unchanged. If the costs of distortionary taxes or lower than optimal public spending

are increasing at the margin, then we get a classic tax smoothing result, which is that

it is optimal to keep the inherited level of debt.

However implicit in this argument is that the real rate of interest is equal to the rate
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at which we discount the future. We can show this formally as follows. Suppose social

welfare can be represented as

Wt = −
∞∑

i=0

βiT 2t+i (1)

where T is the level of distortionary taxes and β is the discount factor. The budget

constraint is

At = (1 + r)At−1 + Tt −G (2)

where A are government assets. The government inherits a debt level B−1 > 0, such

that government assets are negative At−1 = −Bt−1.

The Lagrangian is

L =
∞∑

i=0

βi[T 2t+i + 2λt+i(At+i − (1 + r)At+i−1 − Tt+i)] (3)

The first order condition for taxes is

Tt+i − λt+i = 0 (4)

and for debt

λt+i − β(1 + r)λt+i+1 = 0 (5)

Combining gives

β(1 + r)Tt+i+1 − Tt+i = 0 (6)

If β(1 + r) = 1, then the FOC for debt implies the Lagrange multiplier is constant,

which in turn implies constant taxes. Taxes can only be constant if they are sufficient

to satisfy the budget constraint if A is constant at −B−1, which is the tax smoothing

or random walk steady state debt result. (See, for example, Schmitt-Grohe and Uribe

(2004a) and Benigno and Woodford (2003)). However, if β(1+r) �= 1, then a steady state

is possible only if taxes are zero. If β(1+ r) < 1 debt will decline towards this value. In

this situation it is always better to reduce debt each year, because the discounted benefits

of lower future taxes exceed the cost of higher taxes today. The cost of permanently

positive taxes will always outweigh the cost of reducing debt, because we discount at

less than the rate of interest, and so we head towards the zero tax level of government

assets. If β(1 + r) > 1 then debt will follow an explosive path. For an example of this,

see Kirsanova, Leith, and Wren-Lewis (2007).

In this simple model, when β(1+r) = 1, the tax smoothing result is time consistent.

There is no reason to deviate from the inherited level of debt at any time. This result

will not be robust to two natural extentions of the model: introducing nominal debt, or

staying with real debt but allowing for sticky prices. If inflation is determined by a New

Keynesian Phillips Curve, then Leith and Wren-Lewis (2007) show that there is a first
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period incentive to reduce inherited debt somewhat (but not completely). However, this

incentive recurs as we move to the next period, and so the random walk result is not

just modified, but is also time inconsistent. They also show that the time consistent

policy involves a very rapid reduction in debt to its initial level following a positive

shock. (This is true for a closed economy, or simple open economy with a flexible

exchange rate, but rates of adjustment are slower under EMU - see Leith and Wren-

Lewis (2010).) However, there are reasons for wanting to focus on the time inconsistent

case. In reality governments do not rapidly correct any debt disequilibrium. This may

be because the costs of doing so are not only high, but they are also short term, so an

impatient government would have an incentive to stick to the time inconsistent plan.

When it comes to thinking about the optimal capital stock, we have another bench-

mark result, which is that if consumers are effectively infinitely lived, then in the absence

of the taxation and other distortions, the level of the capital stock that would be cho-

sen by a social planner would be the same as that produced by a market equilibrium.

Because Ricardian Equivalence holds, any increase in government debt leads to a match-

ing increase in private saving, with no impact on this capital stock. In short, debt does

not crowd out capital. However, in an OLG economy, the economy will not in general

generate an optimal capital stock, and government debt will crowd out capital.

The assumption that individuals leave bequests because they internalise the utility

of the next generation (although with discounting), so that they are effectively infinitely

lived, is a useful benchmark, but it may be at the extreme end of plausible degrees of

inter-generational altruism. At the opposite extreme we have overlapping generation

(OLG) models, which generally assume completely selfish generations that leave no

intentional bequests. In the model of Perpetual Youth developed by Blanchard and

Yaari, if income does not decline with age (and there is no retirement), the real rate

of interest will be above the rate of time preference, and so the level of the capital

stock is likely to be suboptimally low. In addition, higher government debt will crowd

out private capital in OLG models, because Ricardian Equivalence no longer holds.

Agents accumulate assets because it is optimal for them to do so as individuals, with

no thought for the utility of future generations. It is a model of this kind we develop

in the next section. Although the model we develop below is quite rich, the essence of

the implications for government debt for the real interest rate can be understood by

considering some key equations from a simplified version of the model. Ignoring the

households’ cash holdings and the tax on consumption, logarithmic utility implies that

the aggregate consumption function is a linear function of human and financial wealth,

ct = (1− γβ)(lwt +
Wt

Pt
) (7)

where c is consumption, lw is human wealth, W/P financial assets, γ is the survival

probability and β is the households’ subjective discount factor. Human capital is given

5



by

lwt = (1− τwt )wtlt +OIt + γ
πt+1
Rt

lwt+1 (8)

where (1−τwt )wtlt is post-tax labour income, OIt are other (exogenous) sources of income

detailed in the model section and Rt
πt+1

is the real interest rate. Agents hold portfolios

of financial assets such that they effectively receive an additional return 1/γ on their

assets, conditional on their surviving. The dynamics of aggregate financial wealth is

given by
Wt+1

Pt+1

πt+1
Rt

=
Wt

Pt
+ (1− τwt )wtlt +OIt −Ct (9)

Combining these equations implies

Ct =
Ct+1πt+1

βRt
+
(1− γβ)(1− γ)

γβ

Wt+1

Pt+1

πt+1
Rt

(10)

Ignoring capital adjustment costs such that Tobin’s q is always 1, when the only asset is

capital, Wt+1

Pt+1

πt+1
Rt

= Kt, then this equation clearly implies that in steady state r > 1/β.

Individual agents are always saving, but the aggregate level of assets can be constant

because those who die have positive assets and the newborn have none. This is the

first important implication of allowing for finite lives with no bequests: the real rate of

interest can differ from the rate of time preference even in steady state. (The implications

of this point are discussed in Erosa and Gervais (2001).)

The second important difference an OLG model makes is that government debt can

crowd out capital. Let Wt+1

Pt+1

πt+1
Rt

= Kt +Bt, where Bt is government debt as before. In

steady state, if consumption and real interest rates were unchanged, government debt

would crowd out private capital one for one. In fact consumption is likely to fall if capital

falls, increasing the extent of crowding out. However, a reduction in the capital stock

will also raise real interest rates, which for given consumption levels will raise the overall

level of aggregate assets, which moderates the degree of crowding out of capital. (In the

infinite life case, which we approach as γ tends to one, any increase in government debt

leads to an equal increase in savings, so there is no crowding out.)

Just as government debt crowds out capital, if the government holds assets (B <

0), capital will be crowded in. If, when A = 0, capital is sub-optimally low, then

accumulating government assets can be used to move to the optimal level of capital.

We could define the level of government assets that achieve this optimum capital stock

as the ’optimum capital’ level of assets, or AK . Unless the economy with A = B = 0

is dynamically inefficient1, such a move would not represent a Pareto improvement,

because the higher taxes that the government would require to accumulate assets would

hit the current generation. However, as any debt policy is almost certain to disadvantage

1 In this model of perpetual youth, r > θ, so the economy is never dynamically inefficient. However
introducing either government assets, or allowing income to decline with age, can allow the possibility
that r < θ, as we note below.
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some generation, this should not prevent us considering using debt as a means of moving

towards AK .

Defining what is optimal in an OLG model of course involves deciding how to com-

pare different generations. Since we are interested in formulating optimal policy for our

economy populated with overlapping generations of finitely lived consumers we must

face the tricky issue of constructing a welfare metric. We discuss the issues involved in

defining a social welfare function below. However, we essentially follow Calvo and Ob-

stfeld (1988) by splitting the problem into an intratemporal problem of how to allocate

consumption across generations at a given point in time, and an intertemporal problem,

of how to stabilise debt over time. Since we are primarily interested in the latter aspect

of the problem, we abstract from the first by assuming that the policy maker ignores

the intratemporal problem and only considers per capita variables when defining social

welfare in an environment where government debt can crowd out private capital. In

doing so we assume that the policy maker discounts welfare between generations at the

same rate as household discount there own utility.

If the only implication of moving to an OLG framework was that there was some

optimal capital stock, then we could simply calculate AK , and this could become our

long run debt ‘target’. Indeed, if lump sum taxes were available, we could in theory

immediately move toAK : the additional tax payments would be exactly offset by interest

payments on this debt. However, in the absence of lump sum taxes, any change in

government assets/debt will, by changing capital, also change the real interest rate.

This means that the level of government assets that would eliminate distortionary taxes

(AT ) also becomes a potential ‘target’ for long run government debt.

In the case of the Ricardian model, the zero-tax level of assets AT was irrelevant

because of tax smoothing, as the real rate of interest was equal to the rate of time

preference. However in general this condition will not hold in an OLG model. We can

examine the implications of this for steady state debt in a highly oversimplified fashion

as follows. Suppose social welfare can now be represented as

Wt = −
∞∑

i=0

βi
[
T 2t+i + α

(
At+i −AK

)2]
(11)

where A are government assets. Welfare fails to reach the first-best allocation for two

reasons (which for simplicity we assume are separable): taxes are distortionary, but also

capital is away from its optimal level whenever government assets are different from AK .

We still have the budget constraint

At = (1 + r)At−1 + Tt −G (12)

where we now allow the real interest rate to depend on government assets in the following
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simple way:

rt = r0 − γAt−1/2

which captures the idea that as government assets rise, the capital this crowds in reduces

the real interest rate. As before, the government inherits a debt level B−1 > 0. We define

AT = G/r

The Lagrangian is

L =
∞∑

i=0

βi
[
T 2t+i + α

(
At+i −AK

)2
+ 2λt+i (At+i − (1 + r0 − γAt+i−1/2)At+i−1 − Tt+i)

]

(13)

The FOC for taxes is

Tt+i − λt+i = 0 (14)

and for debt

α(At+i −AK) + λt+i − β(1 + r0 − γAt+i)λt+i+1 = 0 (15)

Combining gives

β(1 + r0 − γ
(
At+i − aK

)
− γAK)Tt+i+1 − Tt+i = α(At+i −AK) (16)

which can be rewritten as

β(1 + r̃)Tt+i+1 − Tt+i = (α+ βγTt+i+1)(At+i −AK) (17)

where 1 + r̃ = 1 + r0 + γBK .

Consider the case where β(1+ r̃) = 1 first. Whatever the level of steady state taxes,

government assets will end up at the level that achieves the optimal capital stock i.e.

A∗ = AK where A∗is the steady state level of assets (and B∗ = −A∗ the steady-state

level of debt). Taxes will be given by

T ∗ = G+ rB∗

We can think of this in the following way. The case where β(1 + r̃) = 1 is akin to

tax smoothing, so A∗ is not attracted to AT . However, we do not get a random walk

in steady state debt, because reducing debt has the benefit of increasing capital and

therefore output.

If β(1 + r̃) > 1, we already know that tax smoothing does not apply, and there will

be some history-independent debt target. There are two possibilities. First, taxes are
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positive in steady state, and so steady state government assets exceed the level required

to obtain the optimal capital stock. We therefore have AT > A∗ > AK . Second, taxes

become negative in steady state, but despite this government assets are insufficient to

achieve the optimal capital stock (providing α+ βγTt+i+1 > 0). In this second case, it

must be that AK > A∗ > AT . In both cases, we can think about optimal government

assets as being a compromise between the zero-tax level and the optimal capital level.

The former matters, because tax smoothing does not apply.

Is β(1 + r̃) < 1 interesting? If the term multiplying the deviation of debt from the

optimal capital level happened to be zero it would not be, because there would be no

incentive to stabilise debt. However, as we have seen with the case of β(1 + r̃) = 1, the

additional incentive to move debt towards the level that maximises the capital stock

means that government assets can converge to this level. So providing β(1 + r̃) is not

too far below one, a steady state is still possible. If it does exist, then if taxes are

positive we will have A∗ < AK and A∗ < AT . The reason is that if debt reached the

optimal capital level, then there would be a tendency for debt to explode. The economy

therefore stabilises when this incentive is exactly offset by the incentive to get capital

a little higher. Another possibility is that A∗ > AK and taxes are negative, implying

AT < AK < A∗.

To sum up, in an OLGmodel the ‘target’ or ‘steady state optimal’ level of government

assets A∗ will depend on both the level of assets that delivers the optimum capital stock

(AK) and the level of assets that eliminate distortionary taxes (AT ) in ways that are

likely to depend on the detailed structure and parameterisation of the model. If A∗ is

associated with a real interest rate below the rate of time preference, then it may be the

case that A∗ will not lie in between AT and AK . The next section sets out the model

we will investigate, where we find this is indeed the case.2

3 The Complete Model
In this section we outline our model. Our economy is populated by overlapping gener-

ations of consumers who face a constant probability of death, such that, even if taxes

were lump-sum, Ricardian Equivalence would not hold in our model.3 These consumers

supply labour to imperfectly competitive firms, who combine this labour with capital

rented from a representative capital rental firm and public capital accumulated by the

government, to produce a differentiated product. The firms producing these differenti-

ated products are also subject to the constraints implied by Rotemberg (1982) quadratic

adjustment costs. Consumers’ labour income is taxed, and they hold financial wealth in

the form of money, bonds and equities, as well as life-insurance contracts.

2However, equation (10) will hold, so whether A∗ <> K in steady state will be directly related to
whether the real rate of interest at the optimal level of debt will be greater or less than the rate of time
preference (after adjusting for growth effects).

3For recent analysis that investigates further the short term role that fiscal policy can play in this
class of model, see Devereau (2010).
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3.1 Consumers’ Behaviour

Here we introduce the main departure from the canonical New-Keynesian model. While

there is abundant evidence of a strong interaction among fiscal impulses and output (see,

for example, Blanchard and Perotti (2002) or Fatas and Mihov (1998), standard dynamic

general equilibrium models downplay the role of demand. The importance of the demand

side of the economy is partially restored when there is slow adjustment in nominal and

real variables, but still intertemporal substitution mechanisms and Ricardian equivalence

leave consumption largely unresponsive to a temporary fiscal stimulus. Introducing a

probability of death implies that consumers discount their future disposable income

more heavily, such that the usual Ricardian experiment of a deficit-financed lump-sum

tax cut now increases consumption.

Households face a constant probability of death (1 − γ). As this is a constant ex-

ogenous probability, and there is a continuum of households, they imply there is no

aggregate uncertainty in our economy. This implies that a consumer born at time i,

who is still alive at time t receives utility from consuming a basket of consumer goods

at time t,

cit =

[∫ 1

0
cit(j)

ǫ−1

ǫ dj

] ǫ

ǫ−1

, (18)

and holding real money balances,M i
t/Pt, and suffers disutility from supplying labour to

imperfectly competitive firms, lit. We can write this household’s expected utility function

as,
∞∑

t=0

(βγ)t
[
ln cit + χ ln

M i
t

Pt
+ ϑ ln gct + κ ln(1− lit)

]
(19)

By reducing the household’s discount factor by the survival probability γ we are implic-

itly conditioning on the survival of this particular household (otherwise there would be

double-counting of the probability of death).

Due to the difficulties in conceptualising complete financial contracts amongst mar-

kets participants some of whom are as yet unborn, we assume that financial markets

are incomplete, but in an economy without aggregate uncertainty. Accordingly, we as-

sume that households can hold risk-free nominal one period government bonds which

pay a gross interest rate of Rt regardless of the state of nature (including the survival

of the bond holder), and non-interest bearing money. Households also buy shares, V it in

capital rental firms for a real price qvt which pay out their net cash flows as dividends,

dt. They can also enter into survival-contingent contracts with other households, which

pay an agreed sum to other households in the event of the individual’s death, but enti-

tle the individual to similar payments from deceased households should the individual

survive. The individual will construct a portfolio of money, bonds, equities and survival-

contingent contracts such that the payoff from that portfolio should the individual die

is zero. However, if household i is lucky enough to survive their combined return from
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risk-free bonds, equities and survival-contingent contracts written against those bonds

and shares will be Bit−1Rt−1/γ and
Pt(qvt+dt)V

i

t−1

γ
, respectively, while the return to hold-

ing money is M i
t−1/γ. This is simply an alternative means of capturing the insurance

contracts usually undertaken within the Blanchard-Yaari set-up.

Consumers seek to maximise utility subject to the demand schedule for their labour

services and their budget constraint, which in nominal terms can be written as

M i
t +Bit + Ptq

v
t V

i
t + Ptc

i
t

= Pt(1− τwt )wtl
i
t +

Rt−1B
i
t−1

γ
+

M i
t−1

γ
+

Pt(q
v
t + dt)V

i
t−1

γ

+(1− γ)Pt

∫ 1

0
Ωjtdj (20)

Here consumers earn after-tax income from their labour services Pt(1 − τwt )wtl
i
t, and

receive their share of the profits of final goods producers, (1− γ)Pt
∫ 1
0 Ωjtdj, as well as

household specific public transfers.

Let us define

Hi
t ≡

[
(1− τwt )wtl

i
t + (1− γ)

∫ 1

0
Ωjtdj

]
(21)

and

W i
t ≡

1

γ
M i
t−1 +

Rt−1
γ

Bit−1 +
Pt(q

v
t + dt)

γ
V it−1 (22)

as the non-financial and financial income of generation i households in period t. Then,

the budget constraint can be written as

M i
t

(
Rt − 1

Rt

)
+Qt,t+1W

i
t+1 + Ptc

i
t = PtH

i
t +W i

t (23)

W i
t represents the payoff from the household’s portfolio in all states of nature, but

conditional on the household surviving, and Qt,t+1 = γR−1t is the price of receiving one

unit of that payoff. Note that should the household not survive, the payoff from the

portfolio is zero, such that the expected payoff from one unit of the portfolio across all

states of nature, including the survival/non-survival of the household, is the risk free

rate of interest Rt.

Maximising household utility subject to the budget constraint yields the consumption

Euler equation,

Qt,t+1 = γβ

{
citPt

cit+1Pt+1

}
(24)

or equivalently,

1 = Rtβ
citPt

cit+1Pt+1
, (25)
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a demand for money equation (where mi
t ≡

M i

t

Pt
),

mi
t = χ

Rt
Rt − 1

cit, (26)

a labour supply condition,

(1− τwt )wt(1− lit) = κc
i
t, (27)

and the no-arbitrage condition for equities,

qvt =
πt+1
Rt

(qvt+1 + dt+1). (28)

Using the household budget constraint, together with the money-demand equation,

the Euler equation, and the no-arbitrage condition for perpetuities, we obtain the con-

sumer’s consumption function,

cit =
1− γβ

1 + χ

[
W i
t

Pt
+

∞∑

s=0

(γ)s

(
s−1∏

i=0

πt+i+1
Rt+i

)
Hi
t+s

]
(29)

where the household discounts future labour and profit income more heavily than its

straight rate of time preference, as it will not receive that income should it die, but

expectations are taken over all states of nature, other than the survival/non-survival of

the household. We can further write this as,

cit =
1− γβ

1 + χ

[
W i
t

Pt
+ lwit

]

where lwit represents the generation i′s human wealth, given as the discounted value of

labor income and profits, where the effective discount factor accounts for the probability

of survival,

lwit ≡ Hi
t +

∞∑

s=1

(γ)s

(
s−1∏

i=0

πt+i+1
Rt+i

)
Hi
t+s = Hi

t + γ

(
πt+1
Rt

)
lwit+1 (30)

3.2 Aggregating across Consumers and Consumption Dynamics.

If the size of each cohort when born is 1, then the size of a cohort i at time t is given

by, γt−i. Therefore the total size of the population is given by4,

t∑

i=−∞

γt−i =
1

1− γ
. (31)

4Note that this implies that an infinitesimally small number of consumers will live-forever. This is
why this means of introducing non-Ricardian behaviour is sometimes called the ‘perpetual youth model’.
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Aggregate variables are defined as, xt =
∑t
i=−∞ γt−ixit. Aggregating consumers’ labour

supply yields,

(1− τwt )wt

(
1

1− γ
− lt

)
= κct (32)

The aggregate demand for money is given by,

mt = χ
Rt

Rt − 1
ct (33)

It is similarly possible to aggregate across consumers from different generations to gen-

erate an aggregate consumption function,

ct =
1− γβ

1 + χ

[
Wt

Pt
+ lwt

]
(34)

and aggregate human wealth is given by,

lwt = Ht + γ
πt+1
Rt

lwt+1

where

Ht ≡

[
(1− τwt )wtlt + st +

∫ 1

0
Ωjtdj

]
(35)

It should be noted that the aggregate of financial wealth, Wt =Mt−1 +Rt−1Bt−1 +

Pt(q
v
t + dt)Vt−1, takes account of the fact that not all households will have survived

from last period into the current one, implying that the households’ aggregate budget

constraint is given by,

Mt +Bt + PtqtDt + Ptq
v
t Vt + Ptct = Pt(1− τwt )wtlt +Rt−1Bt−1 +Mt−1

+Pt(q
v
t + dt)Vt−1 + Pt

∫ 1

0
Ωjtdj (36)

3.3 The Capital Rental Firm’s Behaviour

We assume that there is a single representative firm accumulating private capital for

rental to the final goods firms. This firm seeks to maximise the discounted value of

its cashflows. This objective function is consistent with maximising the value of the

households’ equity. Therefore the firm’s objective function is to maximise the following

expression,

Pt(q
v
t + dt)Vt−1 = pkt kt − et +

{
∞∑

z=1

(
z−1∏

i=0

R−1t+i

)
Pt+z
Pt

[
pkt+zkt+z − et+z

]}
(37)

where pkt is the real rental cost of capital, kt is the capital stock, et is real investment

expenditure, and τkt is the rate of taxation on the income from renting capital. The
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equation of motion of the capital stock is then given by,

kt+1 = et + (1− δ)kt. (38)

The first order condition for investment is given by,

λkt = 1 (39)

where λkt is the Lagrange multiplier associated with the equation of motion for the capital

stock. Given the homogeneity of our profit function, this is equivalent to Tobin’s q so

that in the absence of capital adjustment costs, Tobin’s q is one. Also, differentiating

the Lagrangian with respect to kt+1 gives the equation of motion for Tobin’s q,

1 =
πt+1
Rt

(
pkt+1 + 1− δ

)
(40)

The capital accumulated by this sector is then rented out to the imperfectly competitive

firms producing final goods for consumers, as described below.

This marginal q can be related to average q (and therefore the value of household’s

equity) as follows. Firstly, use the equation of motion of the capital stock to rewrite as,

λkt kt+1 =
πt+1
Rt

(
pkt+1kt+1 +

(
kt+2 − et+1 +Φ

′

(
et+1
kt+1

)
et+1

)
λkt+1

)
. (41)

Then, using the first order condition for investment, we obtain

λkt kt+1 =
πt+1
Rt

(
pkt+1kt+1 − et+1 + kt+2λ

k
t+1

)
(42)

which implies that,

λkt kt+1 + pkt kt − et = (q
v
t + dt)Vt−1

so we can define non-human wealth as,

Wt =Mt−1 +Rt−1Bt−1 + (Ptp
k
t + 1− δ)kt

3.4 Capital and Labour Demand: Cost Minimization

The optimal combination of capital and labour employed in the production of final

goods, is obtained from the cost minimization problem of the firm, given the production

function it faces,

yjt = Atk
α1
jt (A

l
tljt)

α2(kpt )
α3 . (43)

where kjt is the private capital employed by the firm, ljt is the labour employed by

the firm, Alt is labour embodied technical progress and kpt is the public stock of capital

accumulated by the government. We assume that this production function exhibits
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constrant returns to scale in its arguments, so that the firm faces diminishing returns

in its private factors. Accordingly, we can experience exogenous growth through the

exogenous growth of labour-embodied technical progress, ω such that Alt+1 = ωAlt.

This implies the following cost minimising combinations of labour and capital,

ljt
kjt

=
α2
α1

pkt
wt

and the real marginal cost, mct ,which is common across all firms, is given by,

mcjt = (yjt)
1−α1−α2
α1+α2 A

−
1

α1+α2

t α
−

α1
α1+α2

1 α
−

α2
α1+α2

2 (pkt )
α1

α1+α2 (wt)
α2

α1+α2 (Alt)
−

α2
α1+α2 (44)

wt is the real wage and pkt the rental cost of capital. Since all firms are identical, these

can be related to aggregate variables and we have:

lt
kt
=

α2
α1

pkt
wt

mct = (yt)
1−α1−α2
α1+α2 A

−
1

α1+α2

t α
−

α1
α1+α2

1 α
−

α2
α1+α2

2 (pkt )
α1

α1+α2 (wt)
α2

α1+α2 (Alt)
−

α2
α1+α2 (45)

and,

yt = Atk
α1
t (A

l
tlt)

α2(kpt )
α3. (46)

3.5 Price Setting of Final Goods Firms

We define Rotemberg price adjustment costs as,

φ

2

(
pt(j)

π∗pt−1(j)
− 1

)2
Ptyt (47)

where π∗ is the steady-state inflation rate. The problem facing firm j is to maximise

the discounted value of profits,

max
pt(j)

[
Πt(j) +

∞∑

z=1

(
z−1∏

i=0

R−1t+i

)
Πt+z(j)

]

where given the demand curve, yt(j) = (pt(j)/Pt)
−ε yt , nominal profits are defined as,

Πt(j) ≡ pt(j)yt(j)−mctyt(j)Pt −
φ

2

(
pt(j)

π∗pt−1(j)
− 1

)2
Ptyt (48)

= pt(j)
1−εP εt yt −mctpt(j)

−εP 1+εt yt −
φ

2

(
pt(j)

π∗pt−1(j)
− 1

)2
Ptyt
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So that, in a symmetric equilibrium where pt(j) = Pt, the first order conditions are

given by,

(1− ε) + εmct − φ
πt
π∗

(πt
π∗
− 1
)
+ φ

πt+1
Rt

πt+1
π∗

yt+1
yt

(πt+1
π∗

− 1
)
= 0 (49)

which is the Rotemberg version of the Phillips curve relationship. Equilibrium real

profits of all final goods producers are then given as,

∫ 1

0
Ωjtdj ≡ P−1t

(∫ 1

0
Πt(j)dj

)
= yt

[
1−mct −

φ

2

(πt
π∗
− 1
)2]

That completes our derivation of the model, which is summarised in Appendix 1.

4 Social Welfare

Defining what is optimal in an OLG model involves deciding how to compare different

generations. Since we are interested in formulating optimal policy for our economy

populated with overlapping generations of finitely lived consumers we must face the

tricky issue of constructing a welfare metric. Calvo and Obstfeld (1988) define the

social welfare function at time 0 as,

W0 =
∞∑

s=0

[
∞∑

t=s

u(s, t)(γβ)t−s

]
ρs +

0∑

s=−∞

[
∞∑

t=0

u(s, t)(γβ)t−s

]
ρs (50)

where u(s, t) = ln cst+χ ln
Ms

t

Pt
+ϑ ln gct+κ ln(1−lst ) is the utility at time t of a household

born at time s. The first summation is the utility of representative agents of generations

yet to be born, discounted at the policy-maker’s discount factor, ρ. The second is the

expected utility of households currently alive. These utilities are discounted back to the

birthdate of the currently living generations, rather than the current period. Calvo and

Obstfeld (1988) note that this is necessary to avoid the time inconsistency in preferences

that would otherwise emerge by treating generations asymmetrically. In other words,

if the policy maker did not discount utilities back to birthdates, then he would wish

to change the consumption plans he put in place for currently unborn generations the

moment they are born.

By changing the order of summation the welfare function can be rewritten as,

W0 =
∞∑

t=0

[
t∑

s=−∞

u(s, t)

(
γβ

ρ

)t−s]
ρt (51)

so that the instantaneous flow utility to the policy maker is given by the summation

over generations of their instantaneous utility discounted by the private discount factor

and adjusted by the public discount factor. These are then discounted over time using
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the policy maker’s discount factor, ρ. This can be further rewritten as,

W0 =
∞∑

t=0

[
∞∑

z=0

u(t− z, t)

(
γβ

ρ

)z]
ρt (52)

which allows us to decompose the policy-maker’s problem into two parts. The first part

involves the policy maker’s optimal allocation of consumption and labour supply across

households. The second relates to the intertemporal aspects of the problem. Since we

are only interested in the macroeconomic effects of fiscal adjustment in an environment

where government debt can potentially crowd-out private capital, we abstract from the

intratemporal intergenerational problem and focus on the intertemporal problem, such

that the social welfare function is given by,

W0 =
∞∑

t=0

ρt[ln ct + χ ln
Mt

Pt
+ ϑ ln gct + κ ln(1− lt)] (53)

where we assume that ρ = β such that the policy maker discounts the future at the

same rate as households, but without accounting for the probability of death. In solving

its intertemporal problem the policy maker ignores the distribution of variables across

generations at a given point in time by focusing on per capita variables.5

An additional complication we need to consider is that our model is non-stationary

due to the exogenous increase in labour-embodied technical progress. Due to the fact

that utility is logarithmic we can rewrite the objective function in terms of detrended

variables as,

W0 = Et

∞∑

t=0

βt ln (ut)

where ln (ut) = lnA
l
0+χ ln (c̃t)+(1−χ) ln

(
g̃ct

)
+
∑t−1
s=0 ln (ω)+ϕ ln (1− lt). This implies

we can obtain an exact expression for discounted lifetime welfare,

Wt = βEtWt+1 + lnA
l
0 + χ ln (c̃t) + (1− χ) ln

(
g̃ct

)
+

β

1− β
ln (ω) + ϕ ln (1− lt)

5 It should be noted that allowing the government to implement a (lump-sum) intratemporal redistrib-
ution scheme to maximise social welfare would effectively offset the differential tax treatment of different
generations that the perpetual youth model relies on to break from Ricardian Equivalence. While al-
lowing aggregate policy to consider distributional issues when implementing macro policy would require
us to track the distribution of financial wealth across generations which is generally intractable due to
the impact of birth of new generations on that distribution.
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4.1 Optimal Monetary and Fiscal Policy

Given the social welfare function, the optimal policy problem can be set up in terms of

a Lagrangian as,

L0 = max
yt

E0

∞∑

t=0

βt[U(yt+1,yt,yt−1,ut)− λtf(yt+1,yt,yt−1,ut)]

where yt and ut are vectors of the model’s endogenous and exogenous variables, respec-

tively, U(yt+1,yt,yt−1,ut) = ln ct+χ ln
Mt

Pt
+ϑ ln gct+κ ln(1−lt)+tip, where tip refers to

terms in the productivity growth which are independent of policy, f(yt+1,yt,yt−1,ut) =

0 are the model’s equilibrium conditions, and λt is a vector of Lagrange multipliers as-

sociated with these constraints.

The optimisation implies the following first order conditions,

[
∂U(.)

∂yt
+ βF

∂U(.)

∂yt−1
+ β−1λt−1F

−1 ∂f(.)

∂yt+1
+ λt

∂f(.)

∂yt
+ βλt+1F

∂f(.)

∂yt−1

]
= 0 (54)

where F is the lead operator, such that F−1 is a one-period lag. We can then solve these

first order conditions in combination with the non-linear equilibrium conditions of the

model, f(ys+1,ys,ys−1,us) = 0.We do this fully non-linearly to obtain the steady-state

of the policy makers problem. Since this is a perfect foresight economy, we can also solve

for the non-linear transition dynamics using standard techniques, and we discuss those

dynamic paths below.

In exploring optimal policy, we also consider the allocation that would be achieved

by a social planner who simply implemented the first-best solution. The social planner’s

problem, in stationary form, is given by,

L0 =
∞∑

t=0

βt[ln c̃t + ϑ ln g̃t + κ ln(1− lt)] + tip (55)

subject to,

ỹt = Atk̃
α1
t lα2t (k̃

p
t )
α3 (56)

ωk̃t+1 = ẽt + (1− δ)k̃t (57)

and

ωk̃pt+1 = ẽpt + (1− δ)k̃pt (58)

ỹt = c̃t + g̃t + ẽt + ẽpt (59)

Note that government debt does not exist in the social planner’s problem, so the con-

straints involved in inheriting a positive debt level disappear. Deriving the focs and

eliminating the associated lagrange multipliers gives us the optimal relationship between
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government spending and consumption,

g̃t = ϑc̃t (60)

the labour allocation is given by,

χ

1− lt
= c̃−1t α2

ỹt
lt

(61)

the intertemporal consumption/saving decision is given by,

ωc̃−1t = βc̃−1t+1[1− δ + α1
ỹt+1

k̃t+1
] (62)

while the balance between public and private forms of capital is given by,

α1k̃
p
t = α3k̃t (63)

Simultaneously solving equations (56)-(63) then yields the social planner’s allocation.

4.2 Calibration

In order to analyse the main implications of our model, we first calibrate our model

based on empirically observed levels of real GDP growth, public and private capital,

government consumption, labour income shares and government debt in the US. Between

1980 and 2008, the average annualised growth rate was 2.88%, private and public capital

to GDP ratios were 2.3 and 0.6 respectively, government consumption was 16% of GDP,

the labour income share was around 54% and government debt averaged 55.6% percent

of GDP. Table 1 summarises the values of the calibrated baseline parameters, and Table

2 summarises the resultant steady-state..

The elasticity of demand with respect to price (ε) is set to 11, consistent with a

steady-state mark-up, ε/(ε− 1), equal to 1.1. The price adjustment cost parameter of

φ = 100 is standard and is set to ensure the log-linearised NKPC matches that obtained

under Calvo (1983) pricing with empirically estimated contract duration probabilities

such as those in Leith and Malley (2006). We assume a steady-state annualised inflation

rate of 2%. Parameter κ, measuring the weight on leisure in utility, was set to 1.14,

which is generally consistent with households allocating about a third of their time

to market activities. While the weight given to government consumption in utility,

ϑ = 0.24, implies that the policy maker would ensure that government consumption as

a share of private consumption is similar to the patterns found in the US data.With

a quarterly discount factor (β) of 0.9938, and a survival probability of γ = 0.995,

implying an expected adult working life of 50 years6 our model can match these steady-

6We focus on economically active individuals (from 15 to 64 years old). 50 years is then a com-
promise between the years that Europeans are active, which is the reference variable for labour, and
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β γ χ ϑ κ α1 α2 δ ε φ A
0.9938 0.995 0 0.24 1.14 0.59 0.34 0.021 11.0 100 1

Table 1: Calibration of baseline model - Parameters

b/y ω g/y k/y kp/y wN/y π r τ
55.6% 2.88% 0.16 2.27 0.64 0.54 2% 5.44% 0.45

Table 2: Calibration of baseline model - Initial Steady State

state ratios with an elasticity of output with respect to labour and private capital of

α1 = 0.59 and α2 = 0.34, respectively. This, in turns implies a coefficient on public

capital in production of 0.07 which is slightly above the 0.05 adopted in Baxter and

King (200X), but well within the range of estimates considered in the meta-analysis of

Bom and Ligthart (2009). Finally, since seignoriage revenues play no significant role in

debt stabilization, we assume that the economy approaches its cashless limit, χ → 0.

The depreciation rate (δ) is equal to 0.021, as estimated by Christiano and Eichenbaum

(1992).

It should be noted that this calibration is not based on the steady-state of the

Ramsey problem, but the steady-state of the structural model equations given the levels

of government consumption, investment and taxes needed to support observed levels of

government spending, public capital and government debt as a proportion of gdp, as well

as labour income shares, growth rates and private capital/output ratios. We shall see

that when these variables, in conjunction with monetary policy, are chosen optimally

the economy will move a long way from this starting point. For these reason we do

not employ any approximation techniques in solving the model, such that steady-state

solutions and dynamics of the model are all obtained as fully non-linear solutions to the

Ramsey policy problem described above.

4.3 The Optimal Debt Target

In this section we examine the optimal level of steady state government assets implied

by the simplified version of our model, using the calibration set out above. This solution

is obtained by solving the non-linear equations of the model together with the first order

conditions (54). In the steady-state solution the policy maker achieves their inflation

target of 2%, so that in terms of the steady-state solution to the Ramsey problem it

is as if this is a ‘real’ model, where the only distortions are monopolistic competition

and income taxes, which are the only taxes available to the government. However, when

life expectancy which is probably a more relevant variable for consumption. We also set “economic”
life expectancy equal to 50 years as a way of having a lower discount rate and, therefore, higher non-
Ricardian effects. Nevertheless, in sensitivity analysis, we also consider the consequences of having a
lower probability of death.
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we consider the dynamics of the solution to the Ramsey problem, we shall see that

monetary policy has a significant role to play in the short-run.

Before exploring folly optimal policy, we consider first the steady state associated

with zero government assets/debt. Essentially, policy is optimal in the case, except that

we replace the foc for government debt with a target of zero debt. Government spending

continues to be set at its optimal level, conditional on zero debt. This is the third column

in Table 3 labelled ‘Zero Debt’. Here we can see that there is a slight increase in the ratio

of private capital to output as a result of the reduction in government debt, but a quite

dramatic fall in the ratio of public capital to output from the 0.64 found in the data

to 0.37. Public consumption is a bit over a quarter of the level of private consumption,

and tax rates have fallen to 31% encouraging time spent in work to rise from 0.34 to

0.36. The welfare implications of such a policy are that steady-state welfare is 16%

lower than that achieved by the social planner, which is a significant improvement on

the 63% reduction in welfare relative to the Social Planer’s allocation implied by the

initial, unoptimised, steady-state. .

Variable Calibration Zero Debt mc = 1 +Lump Sum Optimal Lump Sum +mc = 1 Soc. Planner

b/y 0.56 0 0 0 -2.84 -11.80 —2.90 n.a.

k/y 2.27 2.29 2.51 2.51 2.36 2.65 2.60 2.60

kp/y 0.64 0.37 0.38 0.40 0.39 0.40 0.39 0.39

r 5.44% 5.85% 5.89% 5.89% 5.36% 3.83% 5.40% n.a.

c/y 0.57 0.58 0.55 0.54 0.56 0.53 0.54 0.54

g/y 0.12 0.12 0.13 0.13 0.13 0.13 0.13 0.13

τ 0.45 0.31 0.29 n.a. 0.19 n.a. n.a. n.a.

h 0.34 0.36 0.40 0.49 0.41 0.47 0.49 0.49

Welfare 63% 16% 7% 1% 9% 3% 0 n.a.

Table 3: Steady State of Ramsey Problem

The next two columns look at the impact of the two steady-state distortions on the

model, if government debt remains zero. Removing the monopoly distortion raises the

level of all variables, although the impact on private capital is greatest. If we in addition

allow lump sum taxes, so that the income tax rate is zero, then we substitute labour

for capital, and as a result there is a substantial increase in the real interest rate and a

massive increase in labour supply to 0.49. However private capital is still sub-optimally

low in this economy and welfare falls only 1% short of the level achieved by the social

planner. The reasons for this shortfall can be seen by comparing these numbers with

the final column of the table, which gives the allocation that would be chosen by a social

planner who fixed physical capital investment, output, consumption and labour supply

only constrained by technology and the resource constraint.
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The sixth column, labelled ‘Optimal’, restores both distortions, but sets government

assets to their optimal level, assuming a discount rate equal to the rate of time preference.

As expected, the optimal steady state debt target is negative. In fact, it is optimal

for government assets to exceed the level of the capital stock, so that agents are net

creditors. A direct implication (see equation (10)), is that the steady state real interest

rate is slightly below the rate of time preference (after adjusting for growth). (The level

of annualised real interest rates that would equate the two in the presence of steady-

state growth of 2.88% is approximately 5.47%). Compared to the case where debt was

zero, output is over 14% higher. Relative to this higher level of output, government

consumption has risen to 13% of GDP, as the interest from government assets pays for a

good proportion of this expenditure. The income tax rate has fallen from its calibrated

rate of 45% to only 19%. However the fact that the income tax rate remains positive,

implies that we are clearly well below the zero tax level of government assets.

This last finding enables us to interpret our results in terms of the analysis in section

2. We noted that if the real interest rate in steady state was below the rate of time

preference, then it was possible that A∗ < AK < AT . From the above we can see that

A∗ < AT , although AK is unobservable. However, if A∗ > AK (government assets were

greater than that required to achieve the optimum level of capital), then this would

not be a steady state, because there would be an incentive to cut taxes and raise debt

because the real interest rate was below the discount rate. We could observe AK directly

by eliminating distortionary taxes. This is done partially in the next column. The

optimal level of government assets rises substantially, with a more moderate increase in

capital, output and consumption. This clearly illustrates that AK is greater than the

A∗ in the previous column. The steady-state of this ‘optimal’ policy falls 9% short of

the levels of welfare enjoyed under the social planner’s allocation. Allowing taxes to be

lump-sum (column 7) leads to a massive increase in the steady-state level of government

financial assets as tax smoothing ceases to be an issue, a dramatic reduction in the real

interest rate and an overaccumulation of private sector capital. In this case, welfare is

only 3% less than that attained by the social planner. While if we were to eliminate the

monopolistic competition distortion as well, a policy maker with access to lump-sum

taxes could achieve the social planner’s allocation.

We noted in section 2 that the arguments for discounting the utility of future gener-

ations by the rate of time preference were not compelling. If we discounted utility at a

lower rate, then clearly the optimal level of government assets would rise. In the most

extreme case, where no discounting took place, the optimal level of capital would be

the golden rule level that maximised steady state consumption. In this model, without

discounting by the policy maker, the real interest rate would simply reflect technical

progress. Whether this could be achieved with a sufficiently large level of government

assets is unclear, but experiments with the model suggest that values of government

assets in excess of 12 times the level of GDP continue to produce a positive real interest

22



rate in excess of the rate of technical progress. In that sense, the levels of A∗ presented

in Table 3, although historically unprecedented, are not the upper bound of what might

be socially optimal in an OLG economy.

We now undertake a sensitivity analysis of the optimal steady-state debt-gdp ratio

as we vary the producitivity growth rate and the productivity of public capital, respec-

tively. Figure 1 plots the steady-state debt-gdp ratio as a function of the annualised

productivity growth rate. There is a strong dependence of the desired debt-gdp ratio

on the growth rate, where a lower rate of productivity growth would substantially raise

the desired stock of government assets. This is essentially driven by the fact that higher

anticipated productivity growth reduces the socially optimal degree of capital accumu-

lation such that there is less need to accumulate government assets in an attempt to

crowd-in private investment. The desired stock of steady-state government assets also

depends on the productivity of public capital - see Figure 2. The intuition is straight-

forward - as the productivity of public capital rises, relative to private capital there

is less need for the government to attempt to reduce public debt in order to crowd in

private-sector investment as public-sector investment is increasingly effective in raising

output levels. We shall consider the impact of changing the probability of death on both

the transition and steady-state below.

4.4 Transition paths

In this section we present a brief analysis of the optimal transition path to this steady

state, using a simulation of the full non-linear Ramsey policy. Our simulation begins

at the calibrated steady-state which features public and private capital to GDP ratios

of 0.64 and 2.27, respectively, alongside a debt to gdp ratio of 0.56. Starting from

that initial position, the Ramsey policy will move us towards the steady-state labelled

‘optimal’ in Table 3, where the long-run capital to GDP ratios for public and private

capital are, 0.39 and 2.37 and the government debt to GDP ratio has fallen to -2.84.

We break the transition between this initial state to the Ramsey steady-state into two

stages. The first year impact of adopting optimal monetary and fiscal policies is shown

in Figures 3 and 4, where the solid line details the paths followed by key variables in the

initial year of the optimal policy. The most striking aspect of the early response to the

switch to optimal policy is that it is desirable to underetake a very large privatisation

programme, effectively transferring public capital to the private sector to the extent that

the public capital to GDP ratio actually falls below its long-run value despite starting

well above such a position.7 In otherwords, although the initial ratio of public capital to

gdp is well above the optimal long-run ratio, in the transition there is an overshooting

7Strictly speaking since we have single aggregate good in this economy which can be costlessly
converted to and from use in consumption or either type of capital, this ‘privatisation’ does not involved
a direct transfer of capital goods from the public to private sector. Nevertheless, the simultaneous
reduction in public capital and increase in private capital mimics just such a transfer.
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in the sell-off of public capital, and in the medium term public capital needs to be re-

accumulated to achieve its long-run optimum. The proceeds of selling off public capital

in this way give rise to a significant initial fall in government debt. There is also a mild

initial rise in inflation, as policy makers take advantage of the fact that expectations are

given in the initial period of the new optimal policy by raising inflation without fueling

future inflation expectations and thereby slightly erode the real value of government

debt. However, it is the effects of the selling public assets that have the biggest impact

on initial debt dynamics.

Beyond the effects of the privatisation of public assets, the remainder of the fiscal

adjustment is far smoother and is reported in Figures 5 and 6. which show that dynamic

adjustment is very drawn out over time. Although a significant part of the debt reduction

is achieved very quickly by selling public capital, it takes over 100 years to achieve the

first 50% of the adjustment and complete adjustment takes around 500 years. This

very long adjustment period is not surprising for two reasons. First, while complete

tax smoothing no longer applies, the Blanchard-Yaari framework with realistic values

for the probability of death gives only quantitatively minor deviations from Ricardian

Equivalence, and so a large smoothing element is retained. Second, earlier analysis using

models of this type suggest very long drawn out dynamics (e.g. Leith and Wren-Lewis

(2000)). The result that debt adjustment should be very slow appears fairly robust (see

Marcet and Scott (2008) for example).

The reduction in debt is achieved by above steady-state tax revenues, a short-run

de-accumulation of public capital and cuts in government consumption. However, even-

tually once the debt has fallen sufficiently, tax rates fall and public investment and con-

sumption can rise above current levels. Consumption declines for several years, which

clearly shows why moving to the optimal level of debt is not a Pareto improvement. The

current generation will be worse off as a result of raising the level of government assets.

Most of the adjustment in debt is achieved through fiscal variables, and monetary policy

generally succeeds in ensuring minimal deviations from its inflation target throughout

the transition. .

Although the speed of adjustment is very slow, the size of adjustment required from

current levels of debt is also very large. As a result, the implications for debt reduction

for debt reduction today will still be significant. We should also note, however, that are

starting point for adjustment does not involve interest rates at the zero lower bound

and a large recession, so our analysis has no immediate implications for the current

‘stimulus versus austerity’ debate. However, we can contrast the transition paths for

identical economies starting from different initial levels of public debt. Here we can see

that all the economy will tend to the same steady-state level of government assets in

the long-run, any initial shock to government debt will only be eliminated very slowly,

with clear differences across the transition paths for at least 150 years. This implies

that even although it may be optimal to substantially reduce government debt in the
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long-run, the fact that the recent financial crisis has raised government debt levels does

not imply that that fiscal correction need be noticeably more rapid.

The dashed green line in the same Figures consider the transition path starting from

a position where government debt is significantly higher. Here the privatisation pro-

gramme is even more extensive, even although public capital will be built up again in

the long-run. Additionally, the high debt stock tempts the policy maker to engineer

a one-off suprise burst of inflation, such that inflation rises to an annualised rate of

almost 40% upon adoption of the optimal policy, although the policy maker quickly

returns inflation to target in subsequent periods. This application of surprise inflation

in the initial period arises since we allowed the policy maker to exploit the fact that

inflationary expectations are given prior to unexpectedly implementing optimal policy.

It is interesting to note that this burst of inflation is achieved through a combination

of loose monetary policy and an increase in distortionary tax rates, which is also infla-

tionary. The fact that the policy maker is prepared to implement such a large rate of

inflation demonstrates just how significant the time-inconsistency problems inherent in

the optimal Ramsey policy must be (see Leith and Wren-Lewis (2007) for an exploration

of the implications of not being able to commit to the optimal policy in the context of

an infinite horizon New Keynesian economy). Beyond those initial attempts to reduce

the debt burden the subsequent reduction in government debt remains gradual, alhough

it is clearly more aggressive when debt levels are particularly large However it remains

the case that it takes over 100 years to achieve half the desired reduction in the debt to

gdp ratio and 500 years to achieve the full adjustment.

The absence of the random walk result stems from the fact that in our OLG economy

interest rates typically deviate from consumers’ rate of time preference since government

debt constitutes an element of net worth. We assess the importance of the absence of

Ricardian Equivalence by decreasing the expected working life from 50 years to 25 years

and then 12.5 years in Figures 7-10.8 Looking at the dynamic paths for debt in Figure 7

we can see that this has little impact on the ultimate long-run level of government assets,

but significantly affects the speed of fiscal stabilisation. With the shortened household

planning horizon of 12.5 years the debt stock turns negative almost instantly, thanks

to the aggressive sell-off of public sector assets and deflation of the real value of debt

due to an initial surprise inflation resulting from a relaxation of monetary policy and a

sharp rise in distortionary taxation. Essentially, the policy maker acts quickly to offset

the costly crowding out induced by the high levels of interest rates associated with high

levels of government debt when the deviation from Ricardian equivalence is large.

Finally, we consider the robustness of these results to variations in other key pa-

rameters. Figure 11 plots the transition paths for government debt under the optimal

policy for various changes in model parameters. In all subplots the benchmark calibra-

tion implies an optimal transition path given by the solid red line. In the first subplot,

8This is done by reducing the quarterly survival probability from 0.995 to 0.99 and then 0.98.
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we then increase the markup from 10% to 12.% (green dashed line) and from there to

16.7% (blue dot-dashed line). This affects the level of output produced, cet. par. and

so affects the initial debt-gdp ratio although the level of debt is held constant across

simulations. Nevertheless the differences are small and ultimately a greater degree of

imperfect competition results in a slightly higher level of debt-gdp largely reflecting the

reduced level of output rather than any desire to increase the level of government bor-

rowing. The next subplot varies the weight attached to government spending in utility

from the benchmark to 0.3 (green dashed line) to 0.4 (blue dot-dashed line). As the

weight attached to government consumption is increased there is some desire to increase

the debt to gdp ratio relative to the becnhmark optimum, again reflecting the lower level

of output implied by this reparameterisation. The third subplot, increases the weight

on leisure in utility, from the benchmark to 1.2 (green dashed line) to 1.4 (blue dot-

dashed line). This has a very small impact on the transition and ultimate steady-state,

although again there is a tendency to have a slightly higher debt-to-gdp ratio as worker

effort is reduced, reflecting the reduced output levels this implies. Finally, we vary the

degree of price stickiness from the Rotemberg adjustment cost of 100 to 75 and then 50.

This has a negligible impact on both transition dynamics and the optimal steady-state.

Therefore, across all these variants of model parameterisation the optimal speed of fiscal

correction and its ultimate accumulation of a large amount of financial wealth on the

part of the government remain unchanged.

5 Conclusions

In models without default where agents are effectively infinitely lived, there is no opti-

mal debt target because the costs of reducing debt are always higher than the cost of

accommodating the existing level of debt. In OLG models this is no longer true for two

reasons. First, the real rate of interest is likely to be above the rate of time preference,

so the benefits of future reductions in debt now outweigh the current costs of achiev-

ing lower debt. Second, the level of the capital stock is likely to be below the socially

optimal level, and reductions in debt will crowd in capital.

In this paper we examine the optimal level of debt in one particular OLG model, the

model of perpetual youth. We show that the optimal debt target in a calibrated version

of this model involves positive government assets (i.e. a negative debt target), but these

assets are below both the level required to eliminate distortionary taxes, and the level

required to achieve the optimum capital stock. This is because, when the economy is

distorted by monopolistic competition and income taxes, as debt declines the real rate

of interest falls below the rate of time preference before the economy reaches the optimal

capital stock. The optimal transition path towards this steady state is very drawn out,

involving hundreds of years, but as the steady state involves historically unprecedented

levels of government assets, the implications for debt adjustment in the short term may
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still be quantitatively significant.
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A Appendix — Summary of Aggregate Model

The aggregate demand for money is given by,

mt = χ
Rt

Rt − 1
ct (64)

where all variables are now in per capita terms.

The aggregate consumption function is

ct =
1− γβ

1 + χ

[
Wt

Pt
+ lwt

]
(65)

where aggregate financial wealth in real terms is

Wt

Pt
= mt−1π

−1
t +

Rt−1
πt

bt−1 + λkt kt+1(p
k
t + 1− δ)kt (66)

where mt ≡Mt/Pt and bt ≡ Bt/Pt, and the aggregate human wealth is

lwt = Ht + γ
πt+1
Rt

lwt+1 (67)

with

Ht ≡ (1− τwt )wtlt +

∫ 1

0
Ωjtdj (68)

The government budget constraint is given by

gt + ipt + st = τwt wtlt + bt −
Rt−1
πt

bt−1 +mt −
mt−1

πt
(69)

The definition of profits (in real terms)

∫ 1

0
Ωjtdj = yt

[
1−mct −

φ

2

(πt
π∗
− 1
)2]

Combine the households’ aggregate resource constraint with the government budget

constraint and the definition of profits to obtain the aggregate resource constraint

gt + ipt + ct + et +
φ

2

(πt
π∗
− 1
)2

yt = yt (70)

Labour supply is

(1− τwt )wt

(
1

1− γ
− lt

)
= κct (71)

The equation of motion of the private and public capital stocks are given by,

kt+1 = et + (1− δ)kt (72)
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kpt+1 = ipt + (1− δ)kpt (73)

respectively, and the first order condition for investment is given by,

1 =
πt+1
Rt

(
pkt+1 + 1− δ

)
(74)

Inflation is described by,

(1− ε) + εmct − φ
πt
π∗

(πt
π∗
− 1
)
+ φ

πt
Rt

yt+1
yt

πt+1
π∗

(πt+1
π∗

− 1
)
= 0 (75)

Technology,
lt
kt
=

α2
α1

pkt
wt

mct = (yt)
1−α1−α2
α1+α2 A

−
1

α1+α2

t α
−

α1
α1+α2

1 α
−

α2
α1+α2

2 (pkt )
α1

α1+α2 (wt)
α2

α1+α2 (Alt)
−

α2
α1+α2 (76)

and,

yt = Atk
α1
t (A

l
tlt)

α2(kpt )
α3. (77)

A.1 Stationary Model

With an exogenous growth rate in labour-embodied technical progress of ω such that

Alt+1 = ωAlt, we can render the equilibrium stationary by deflating the following variables

{yt,mt, ct
Wt

Pt
, kt, et, bt,Dt} by the level of labour-embodied technical progress..

The aggregate demand for money is given by,

m̃t = χ
Rt

Rt − 1
c̃t (78)

The aggregate consumption function is

c̃t =
1− γβ

1 + χ

[
W̃t

Pt
+ l̃wt

]
(79)

where aggregate financial wealth in real terms is

W̃t

Pt
=

m̃t−1

ωt−1
π−1t +

Rt−1
πtωt−1

b̃t−1 + (p
k
t + 1− δ)k̃t (80)

where mt ≡Mt/Pt and bt ≡ Bt/Pt, and the aggregate human wealth is

l̃wt = H̃t + γ
πt+1
Rt

ωl̃wt+1 (81)

with

H̃t ≡ (1− τwt )w̃tlt +

∫ 1

0
Ω̃jtdj (82)
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The government budget constraint is given by,

g̃t + ĩpt = τwt w̃tlt + b̃t −
Rt−1
ωt−1πt

b̃t−1 + m̃t −
m̃t−1

ωt−1πt
(83)

The definition of profits (in real terms)

∫ 1

0
Ω̃jtdj = ỹt

[
1−mct −

φ

2

(πt
π∗
− 1
)2]

Combine the households’ aggregate resource constraint with the government budget

constraint and the definition of profits to obtain the aggregate resource constraint

g̃t + ĩpt + c̃t + ẽt +
φ

2

(πt
π∗
− 1
)2

ỹt = ỹt (84)

Labour supply is

(1− τwt )w̃t

(
1

1− γ
− lt

)
= κc̃t (85)

The equation of motion of the private and public capital stocks is given by,

ωk̃t+1 = ẽt + (1− δ)k̃t (86)

ωk̃pt+1 = ĩpt + (1− δ)k̃pt (87)

respectively, and the first order condition for investment is given by,

1 =
πt+1
Rt

(
(1− τkt+1)p

k
t+1 + (1− δ)

)
(88)

Inflation is described by,

(1− ε) + εmct − φ
πt
π∗

(πt
π∗
− 1
)
+ φ

πt
Rt

ωỹt+1
ỹt

πt+1
π∗

(πt+1
π∗

− 1
)
= 0 (89)

Cost minimisation,
lt

k̃t
=

α2
α1

pkt
w̃t

mct = (ỹt)
1−α1−α2
α1+α2 A

−
1

α1+α2

t α
−

α1
α1+α2

1 α
−

α2
α1+α2

2 (pkt )
α1

α1+α2 (w̃t)
α2

α1+α2 (k̃pt )
−

α3
α1+α2 (90)

and the production function,

ỹt = Atk̃
α1
t (lt)

α2(k̃pt )
α3 . (91)
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Figure 1: Ramsey Steady-State and the Rate of Growth
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Notes to Dynamics Figures 3—6: Solid red line - initial debt of 54% of gdp, dashed

blue line - initial debt of 110%, dotted green line - initial debt of 160%.
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Figure 3: Ramsey Dynamics in the First Year I
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Figure 5: Ramsey Dynamics Beyond the First Year I
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Figure 6: Ramsey Dynamics Beyond the First Year II

Notes to Figures 7-10: Expected Lifetime of 12.5 years - green dotted line, 25 years

- blue dashed line and 50 years - red solid line.
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Figure 7: Ramsey Dynamics and Non-Ricardian Consumers I
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Figure 8: Ramsey Dynamics and Non-Ricardian Consumers II
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Figure 9: Ramsey Dynamics and Non-Ricardian Consumers - First Year I

0 0.5 1 1.5 2 2.5 3 3.5 4
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

P
ri
va

te
 C

o
n

su
m

p
tio

n

Time Period (Qtrs)
0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.5

1

1.5

2

P
ri
va

te
 I
n

ve
st

m
e

n
t

Time Period (Qtrs)

0 0.5 1 1.5 2 2.5 3 3.5 4
0.12

0.14

0.16

0.18

0.2

0.22

P
u

b
lic

 C
o

n
su

m
p

tio
n

Time Period (Qtrs)
0 0.5 1 1.5 2 2.5 3 3.5 4

−2.5

−2

−1.5

−1

−0.5

0

0.5

P
u

b
lic

 I
n

ve
st

m
e

n
t

Time Period (Qtrs)

0 0.5 1 1.5 2 2.5 3 3.5 4

1.25

1.3

1.35

1.4

O
u

tp
u

t

Time Period (Qtrs)

Figure 10: Ramsey Dynamics and Non-Ricardian Consumers - First Year II
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Figure 11: Robustness of Optimal Policy Across Alternative Parameterisations
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