Safety in the School of Engineering

Contents:
Preface 3

Part A – Policy and organisation
Statement of Safety Policy 6
Organisation and Arrangements 7
Primary routes to raise safety issues 9

Part B – Working safely, what you must know and do
Safety Regulations 12
Risk assessments 12
Injury or Dangerous Occurrence Reporting (Accident Reporting): 12
Fire Prevention 13
Fire Alarm Testing 13
Working Out-with Normal Hours 13
Working in facilities outside of the Rankine and James Watt buildings 14
General Safety 14
What to do (or not do) when carrying out general experiments or procedures 15
General guidelines on how to conduct experiments or procedures safely 15
General guidelines for mechanical, electrical, chemical or biological experiments or procedures 16
Work on mains circuitry and other potentially dangerous electrical supplies 17
The use of display equipment 18
Manual Handling 19
Emergency Plan – what to do in an emergency 21
First Aid Personnel 26
Locations of First aid boxes 26

Emergency phone number 4444
Preface

The University of Glasgow and the School of Engineering are committed to proving a safe and healthy working environment. The University has a Health, Safety and Wellbeing service that was established to bring together various facets of safe working, namely Occupational Health, Radiation Protection (concerned with for example, x-rays, radio-isotopes and lasers), and the Safety and Environmental Protection Services (SEPS). Their web pages and the links therein contain information on the wide variety of safety issues encountered in the University, advice on how to assess risks and the legal framework that people should operate within e.g. COSHH, DSEAR etc. Below are some selected links that provide more information.

http://www.gla.ac.uk/services/health/
http://www.gla.ac.uk/services/occupationalhealthunit/
http://www.gla.ac.uk/services/radiationprotection/
http://www.gla.ac.uk/services/seps/
http://www.gla.ac.uk/services/seps/az/biological_safety/ (biosafety)
http://www.gla.ac.uk/services/seps/az/chemicalsafety/ (chemical safety)
http://www.gla.ac.uk/media/media_334343_en.pdf - (University policy statement on Safety, Health and Wellbeing – this is also listed under Quick links on the /services/health/ webpage).

As part of the arrangements within the University, every level of management is accountable to their line manager and at the same time responsible for the health, safety and wellbeing of those reporting to them. Supervisors should lead, motivate and encourage their staff and students to report on hazards and to discuss all matters relating to health and safety. In the School of Engineering, we hope to foster an open attitude to health and safety issues, in which people can seek help/guidance from suitably experienced persons, irrespective of the direct line management structure.

In order to make sure that the School of Engineering is a safe (as well as enjoyable) place to work, it is necessary for everyone studying and working within the School to co-operate in matters relating to Health and Safety. In particular, whilst it is possible for the School to put in place various rules/regulations/procedures, it must be recognised that there is also an onus on those working and studying in the School to make sure that what they do is done safely. Importantly, this manner of safe working, should not only be safe in respect of their own safety, but should also not adversely affect the health, safety and wellbeing of other people.

This School of Engineering Safety Manual contains safety information relevant to all areas of the School giving minimum standards required. This is intended as a general introduction to what people need to know in order to work safely, and be aware of any surrounding risks. However, it does not replace the need to take expert advice, consult relevant literature or to design work in a way that minimises the risk of injury to yourself or others. Notably, within the School of Engineering, the range of activities is probably more diverse than in most departments of Physical or Life Science.
In order that Safety Manual is not too unwieldy to read, detailed and specific information is contained in supplements that cover chemical, biological and laser safety. Codes of Practice associated with working in specific areas/laboratories should be available from your supervisor or local manager. Nevertheless, it may still appear that a number of items are repeated in several places within this handbook – this is merely to ensure that important information is not missed when referring to selected sections of this manual. It is however, a condition of working in the School (required for insurance) that people read and understand all safety information relevant to their intended activities before commencing the work.

The Control of Substances Hazardous to Health (COSHH) and Dangerous Substances and Explosive Atmosphere (DSEA) Regulations require that a written risk assessment is completed before work involving potentially hazardous substances or situations is undertaken. These must be reviewed after a five-year period, or if there is a change to (a) the system of work (b) the substances involved (c) the people who carry out the procedure.

The School requires that before postgraduate students, or staff, undertake any practical work they must have:
(i) read and understood relevant information from the safety manual
(ii) undergone relevant safety training
(iii) completed and/or passed relevant safety questionnaires/competence assessments
(iv) completed or read and understood relevant COSHH or risk assessment forms

At the end of this document are details of the School’s Emergency Plan i.e. what to do in the case of an Emergency – do read this!

Finally, please remember the manual sets out minimum standards – wherever possible try to exceed these and make the School an environment that promotes the wellbeing of us all.

David Cumming
Head of School
Part A – Policy and organisation
Statement of Safety Policy

It is the declared policy of the School to comply with the Health and Safety at Work Act, 1974, the COSHH Regulations (2002), the DSEA Regulations (2002) and GM Regulations, in both spirit and practice.

As working in the School can involve activities that are hazardous, it is the declared intention to take all appropriate steps to prevent injury, ill health, damage or loss arising from work carried out in the School.

Safe working must he regarded as the normal, professional way of working but should include a sense of proportion with regard to the level of safety required as excessively restrictive safety practices can be counterproductive and wasteful. Nevertheless, measures and actions should be taken to reduce risks so far as is reasonably practicable, and if the remaining risk and consequence are too great or severe, then the activity should not be undertaken.

The management and promotion of health and safety in the School is an essential duty incumbent upon all academic and supervisory staff, who are ultimately responsible to the Head of School. However, all staff and students working in the School must recognise that there is a clear duty on them to act responsibly in matters of health and safety and to cooperate with managers in this regard. It is therefore required that all members of staff shall acquaint themselves with relevant safety information before commencing any work. In this context, students and staff should note that there are extensive sets of guidelines and policies covering health, safety and well being on the University’s website:

http://www.gla.ac.uk/services/seps/

and a discussion of many topics can be found in the A-Z index on that site. In particular, attention is drawn to the University policy that it is expected that new and expectant mothers should contact their supervisors and persons responsible for the laboratories in which they work at the earliest opportunity so that suitable risk assessments and working arrangements can be discussed and put in place.

In order to implement the above policy, the School will:
Provide resources and employ means to ensure safe working.

Provide and maintain an appropriate structure for the implementation and development of safe working to include training in safe working methods and assessment and monitoring of working practices to ensure safe working.
Organisation and Arrangements

The following is in place to give effect to the above statement of policy:

Head of School
The Head of School is responsible to the University Court for ensuring safe working practices and conditions are adhered to at all times and that the University Safety Policy is implemented. He is also responsible to ensure the School complies with current safety legislation.

Safety Management Structure
In order to do this, a Safety Management Structure covering Teaching Laboratories and Research Laboratories/Workshops has been implemented. A diagrammatic description of the safety management structure is given below, to illustrate the delegated levels of responsibility.

Director of Safety
The Safety Director, supported by the Safety Coordinator, will be responsible to the Head of School for ensuring compliance with all current Health and Safety legislation applicable to the full range of activities carried out within the School of Engineering; Developing and implementing an effective safety management structure that includes suitably knowledgeable, experienced and competent people; Establishing and chairing an effective safety committee; Developing and implementing policies and procedures that promote a good safety culture by making a safe working environment the norm in the School.

Safety Coordinator
The safety coordinator provides a channel for information exchange and distribution and a direct link to the safety committee. He also provides a link to the School Management Group on matters that require urgent consideration and response.

Laboratory Responsibilities and Laboratory Guardians
Lab Responsibilities and Lab Guardians are responsible for development and implementation of safety policies and procedures in research and teaching laboratories respectively. They act upon the advice of the School Safety Committee and in collaboration with the Safety Coordinator. In research areas this is done in conjunction with leaders of corresponding research groups and members of academic staff conducting research in these areas.

A list of laboratory responsibles and guardians can be found on the School of Engineering website, if you can not find the person responsible for the area in which you wish to work, please contact the School's Director of Safety or the Safety Coordinator.

Safety Personnel
The safety personnel list gives names of individuals who have various levels of delegated responsibility for safety management:

- Heads of Division: These people are responsible for ensuring that all academics associated with their division are implementing the School safety policy.
Heads of Discipline and Convener of the Learning and Teaching committee:
These people are responsible for ensuring that all members of the teaching staff implement the School safety policy, in particular the provision of Codes of Practice, Risk Assessments and delivery of safety briefings and information to Undergraduate and Master level students.

Academic Supervisors: These people are responsible for ensuring that all students, staff (research and technical) and visitors working under their guidance implement the School safety policy and/or producing risk assessments and codes of practice associated with the work they are undertaking.

Heads of Technical Services: These people are responsible for ensuring that all technical staff and other persons (e.g. placement students) working in their areas follow and implement the School safety policy and/or producing risk assessments and codes of practice associated with the work they are undertaking.

Research staff, Technicians, students, visitors: These people are responsible for producing risk assessments and codes of practice associated with the work they are undertaking or understanding and following risk assessments and codes of practice that have been prepared by others.

Area fire officers and wardens: These people are responsible for ensuring that in the event of a fire alarm, people in the areas designated to them evacuate the building in an orderly manner (assuming that they are in the area at the time the fire alarm is sounded). They should also make periodic inspections of the areas designated to them to ensure that there are no hazardous materials or impediments to a safe and orderly exit in the event of a fire.

Safety Committee
The safety committee comprises members from each of the divisions within the School, employee and management representatives together with the Safety Co-ordinator and Director of Safety. It acts as a core decision and policy-making group. Details of the current membership are on the School safety website.

Safety Advisors
Safety Advisors from academic and technical staff with expertise in technology areas within the School have been nominated and will support the safety committee by providing technical advice and guidance.

Global Safety Structure
The Global Safety Structure encompasses all of the bodies contributing to management of safety in the School of Engineering.

Persons who can be contacted for safety advice within the School of Engineering:
Day-to-day safety matters: Doug Irons, Bill Monaghan, Brian Robb, Chris Hardy, Denis Kearns and Andrew Glidle.
Laser safety: Bill Ward, Nigel Johnson, Richard Green, Marc Sorel (laser safety officer)
Chemical safety: Bill Monaghan, Andrew Glidle, Phil Dobson
Biosafety: Andrew Glidle, Bill Monaghan, Jon Cooper
Mechanical: Brian Robb, Denis Kearns, Doug Irons
Electrical: Chris Hardy, Peter Miller, Neil Owen
Computing: David Muir, Ken McColl
First Aid: Doug Irons, Bernie Hoey
Portable Appliance Testing (PAT): Chris Hardy, Peter Miller
Heavy Lifting, Equipment moving: Brian Robb, Denis Kearns
Field and off-site work: Doug Irons

Persons responsible for both implementing safety policy and ensuring safe working practices are followed (see following organogram)

Head of School: David Cummings
Director of Safety: Andrew Glidle
Safety Co-ordinator: Douglas Irons
Heads of Research: Konstantinos Kontis, Manuel Salmeron-Sanchez, Bill Sloan, Robert Hadfield, Margaret Lucas
Heads of Discipline: Marco Vezza, Henrik Golee, Simon Wheeler, Scott Roy, Donald Ballance
Staff Representative: Bernie Hoey
Deputy Heads of Technical Services: Bill Monaghan, Brian Robb, Chris Hardy

Academic Supervisors: see staff list
Laboratory Responsible Staff (research): consult academic supervisor, on-line laboratory code of practice, Director of Safety or list on the safety website
Laboratory Guardians (teaching): consult Head of Discipline, Lecture course leader, Director of Safety or list on the safety website
Lecture course leaders: see staff list
Head of Administration: Debbie Goldie

Primary routes to raise safety issues

Please feel free to raise any issues concerning health and safety with any member of the safety committee, member of staff, your supervisor or, if you prefer, ask for it to be raised at the periodic staff-student liaison committees, through your representative.
Diagram of Safety Management Structure

People responsible for formulating risk assessments on a day-day basis:
- Deputy Heads of Technical Services
- Academic supervisors (Research)
- Laboratory Responsibilities (Research)
- Laboratory Guardians (Teaching)
- Lecture course leaders (Teaching)
- Academic Staff, Technicians and Administrative staff working in laboratories and offices

People responsible for implementing safety policies in laboratories on a day-day basis:
- Deby Heads of Technical Services
- Academic supervisors (Research)
- Laboratory Responsibilities (Research)
- Laboratory Guardians (Teaching)
- Lecture course leaders (Teaching)
- Academic Staff, Technicians and Administrative staff working in laboratories and offices

Specialist Advisors for safety (co-opted to safety committee as necessary):
- Lasers
- Chemicals
- Biological
- Mechanical
- Computing
- Lifting
- First Aid
- Field Work

Directors of Safety
- Safety Co-ordinator
- Head of Technical Services
- Heads of Research
- Heads of Discipline
- Staff Representative

Safety Committee:
- Head of School
- Director of Safety
- Safety Co-ordinator
- Head of Technical Services
- Heads of Research
- Heads of Discipline
- Staff Representative

Academic Staff, Technicians and Administrative staff working in laboratories and offices
Part B –
Working safely, what you must **know** and **do**
Safety Regulations.

As indicated earlier, there are a wide variety of activities undertaken within the School of Engineering and each type of activity will be governed by its own regulations, the majority of which are overseen by the UK-wide Health and Safety Executive (HSE) (http://www.hse.gov.uk/).

The regulations and guidance below cover general safety matters and people working with Chemicals, Materials, Biological species, Lasers, Electrical Equipment, Machine tools, Heavy objects and Gases should read and abide by the details in the appropriate supplements to these regulations. It is the policy of this School that all members of staff, students, and all other persons using the School must comply with the general and supplementary regulations.

Risk assessments:
All staff, students and technicians must read the Risk Assessment for the procedures they are undertaking (including fieldwork), and abide by the techniques prescribed in the assessment and the Code of Practice associate with the laboratory they are working in. If there is no Risk Assessment covering the procedure you wish to do, then you should either complete one yourself, or discuss with your supervisor who should complete it.

Whilst it is preferred that individuals prepare their own Risk Assessment for the activities they are undertaking, where people follow a Risk Assessment prepared by others, they should acknowledge their reading and understanding of the procedures in an online database. Importantly, newly discovered hazards associated with a procedure should be brought to the attention of the supervisor and Laboratory Responsible.

The completed assessment forms should be authorised by the supervisor (in the case of PhD students or RAs) or line manager in the case of technical staff, together with the person who is responsible for the laboratory or area where the activity is being undertaken (in most cases this will be one in the same person).

On-line risk assessment forms covering either General activities (e.g. Mechanical, Electrical, Laser, etc); predominantly Chemical activities and predominantly Biological activities are available at the following URL:

http://www.gla.ac.uk/schools/engineering/studentstaff/safety/risk%20assessmen/

If you find that the activity you are undertaking doesn’t fall within the scope of one or other of these forms, contact the Safety Co-ordinator or Director for advice. As well as your supervisor and/or other staff associated with providing safety advice, these people can also give guidance on how to complete the Risk Assessment form.

Injury or Dangerous Occurrence Reporting (Accident Reporting):
The following items should be reported to the Safety Co-ordinator (Doug Irons) as soon as possible: (see http://www.gla.ac.uk/services/seps/accidencereports/incidentreporting/ and the forms on this webpage: http://www.gla.ac.uk/services/seps/forms/)

a) Any injury - no matter how trivial.
b) Any dangerous occurrence - even if it does not result in injury to anyone.
c) Any existing or potential hazard - so that it can be dealt with before it causes an accident.

When an accident or dangerous occurrence occurs, the causes will be investigated by the School Safety co-ordinator together with the people involved in the incident and their supervisors, the Safety Director and, if necessary, appropriate specialists. Collectively they will determine what action should be taken to prevent a recurrence of the incident and they will pass this information on to the University Safety and Environmental Protection Service. More information on the University’s protocols for reporting incidents can be found at:

http://www.gla.ac.uk/services/seps/accidentsemergencies/incidentreporting/

Fire Prevention
Do not smoke inside the building.
Do not store combustible or flammable materials on or near heaters.
Do not leave electrical heaters switched on in unoccupied rooms.
Switch Off all electrical equipment when not in use.
Close all windows at the end of the working day.
Close all doors - including corridor fire doors.
Restrict the use of flammable liquids to the absolute minimum, and ensure that they are stored safely.
Know the location of fire extinguishers and Fire Blankets, and learn how to use them - Do not wait until a fire occurs before reading the instructions!

Fire Alarm Testing
The fire alarm in the Rankine Building will be tested on Thursday mornings and in the James Watt Building on Thursday afternoons.

Fire Safety Training
It is a requirement that all new staff and post graduate students attend one of the fire safety training sessions run by SEPS when they join the University and do further refresher training at recommended intervals. See information at:

http://www.gla.ac.uk/services/seps/az/firesafety/

Working Outwith Normal Hours
It is important that you comply with the following instructions when working outwith normal hours (or the rules given in the local codes of practice, if these are more stringent and note, there are special arrangements for year 4 and 5 undergraduate and postgraduate taught students, as detailed in a separate document on the School Safety website):

1) Record your arrival and departure in the logbook provided at the entrance of the Rankine Building, the entrance of the JWNC, and the entrance of the James Watt Building
2) Plan what you are doing to reduce the risk of fire to a minimum.
3) Acquaint yourself with the whereabouts of the nearest exit, fire extinguisher, and light switches for corridors and stairs leading to the nearest exit.

Potentially dangerous operations must never be undertaken out-with normal hours unless a second responsible person is present. If at all practical, such operations should be restricted to normal hours when medical and other services are readily
available. When assessing the hazards of an operation, you should bear in mind that a mistake could cost your life, so be very careful when making an assessment.

The greatest care must be taken to avoid starting a fire. Adopting the following safe working practice can minimize the risk:

a) Ensure that all equipment is in good working order - especially electrical or high power devices.
b) Assess the consequences of equipment malfunction, and consider what action is necessary to cope with such an occurrence.
c) Ensure that fire-fighting equipment is close at hand, and that you know how to use it.
d) If flammable substances must be used, restrict the quantity to the minimum necessary for the job.

Postgraduate research students who intend to work late must inform a senior member of the group, and give details of the work they intend to do.

Arrangements have been put in place for undergraduate and postgraduate taught students wishing to access the building and work out of hours (i.e. before 8.30 am and after 5 pm). Such students must get a form detailing the out-of-hours Terms of Access and Safety Regulation from the School HR/Finance office in Rm 720 of the Rankine building, sign it, and get it stamped. This will allow staff to authorise your matriculation card to operate the building entry access systems. These permits will typically cover periods of a semester or the duration of your course, so you should only need to do this once or twice. The buildings must never be used for anything other than study and computer work unless an explicit arrangement has been made with a supervisor and an appropriate risk assessment has been carried out.

It is strongly advised that inexperienced personnel when working late should be accompanied by experienced personnel. (Note: The late working arrangements in the JWNC stipulate that two people must be present in the JWNC for all activities, no matter how minor, or experienced the persons involved – see the JWNC website for further details).

Finally, if there is a serious injury, dial 4444 and ask for an ambulance. If no First Aider is available and the injury is not serious but requires first aid, the injured person should go (preferably accompanied by someone) to the Minor Injuries Unit, West Glasgow Ambulatory Care Hospital, Dalnair Street, Yorkhill (Yorkhill Hospital), Glasgow G3 8SJ).

In the event of a serious accident or sudden illness you should dial 4444 (or 2222 if at Acre Rd) and ask for an ambulance - then summon a first-aider. A list of first-aiders is given in the Appendix.

If the accident involves chemicals, full written details should be sent with the patient.

Working in facilities outside of the Rankine and James Watt buildings
Each of the Acre Road wind tunnel, James Watt Nano Fabrication Facility and the Spinal Unit at the Queen Elizabeth University Hospital have their own codes of practice and/or safety manuals that supplement the rules given here and provide more details of the procedures that must be followed in those locations, including contact details in case of emergencies.
General Safety
Safety in the workplace is obviously important.

It’s not just a matter of avoiding accidents. It requires a safety-conscious attitude, and habitual practice of appropriate procedures.

It’s not just a good idea, either. The UK Health and Safety Executive require the University to inform and guide students and employees in these practices. You’ll find similar requirements in any company you work for. Some students will be familiar with safety procedures from previous or part-time jobs; for others, “safety culture” may be new. A lot of safety regulations may seem like ‘common sense’, however common sense accrues with experience and this manual is designed to provide information (and links to information) for people coming from a wide variety of backgrounds.

Accidents by their nature happen, but it is important for everyone working and studying in the School to reduce their likelihood and minimise the consequences. Understanding safety helps you protect not only yourself against mishaps, but also your friends and colleagues. If you have questions or observations, please mention them to any member of staff and/or members of the School Safety committee.

What to do (or not do) when carrying out general experiments or procedures:
This may seem like a very long list and you may find that only some of the rules apply to what you want to do – others are more general e.g.
Always:
- be alert, gentle, quiet, and observant;
- read instructions, including safety instructions;
- ask when you don’t understand something;
- tie your hair back if it’s long enough to get caught in the equipment;
- check the location of emergency switches, fire escapes, phones, fire extinguishers, and first-aid boxes.

Don’t ever:
- run or fool around in the lab.;
- wear a tie…or any other loose clothing or jewellery that could get caught or touch circuits or chemicals;
- take food or drink into a lab where there are chemicals/biochemicals open electrical or mechanical equipment – you never know what has been spilled on the bench before you get there, and a drink that gets knocked over onto some equipment is likely to cause problems;
- modify or interfere with the correct operation of equipment unless you have properly assessed the risks of doing this;
- remove the earth lead from any instrument or equipment.

General guidelines on how to conduct experiments or procedures safely
Read instructions or protocols thoroughly. If in doubt, ask.
Wear protective glasses and/or protective clothing where necessary. Note:
Normal prescription glasses do not offer enough protection in cases where eye protection is necessary, and protective over-goggles must be worn with them.
Be clear what you are going to do, before you do it. For every operation, imagine what consequences would be if it went wrong (this is the fundamental basis of a risk assessment).
Never ever have shafts rotating without safety guards.
Take extreme care with hand tools, especially soldering irons, electric drills, scalpels, knives, clippers etc. We take these tools for granted because they seem so familiar. But many nasty accidents arise with them, so follow proper procedures, and wear safety glasses.

If equipment is getting too hot or starting to smell, switch it off and work out whether this is correct (some things do smell, but most things don’t). The maximum touch temperature of most equipment should not exceed about 50°C.

Treat lasers with extreme respect. Special precautions are enforced. Special precautions are also enforced with liquid nitrogen and even more stringent rules with other laboratory gases and chemicals.

If gas cylinders, liquid nitrogen or liquid helium containers, flammable solvents or dangerous chemicals are to be conveyed by lift, they must not be accompanied by passengers except in the case of a well-ventilated lift such as the goods lift. Such items should be placed in the lift, which can then be called from the appropriate floor by an assistant.

Gas cylinders should be supported by a stand or fixed securely when in use. They should be transported on proper trolleys only, and should have the gauge head removed before being transported.

General guidelines for mechanical, electrical, chemical or biological experiments or procedures
For convenience, this list of guidelines is split into sections, however to save too much repetition in this manual, people should read all sections since many procedures will involve elements in both lists.

Electrical and Mechanical:
Machine tools must not be used unless competence has been agreed and permission has been obtained from the Mechanical Services Manager or his deputy.

Appropriate safety guards must be in place before machines are used.

All persons with long hair must wear a safety hat with hair net before using machine tools or moving equipment in which hair could get caught.

Welding equipment, gas burners, etc., must not be used in the vicinity of flammable liquids or materials.

Personal Electrical Equipment - Anyone who brings personal items of mains-operated equipment (Electric heaters, kettles, radios etc.), into the School, must ensure that they comply with the safety standards of the University, and that they are maintained to these standards. Owners of such items may have them tested by applying to the Electronics Services Manager.

All mains electrical supplies up to and including the outlets are the responsibility of Estates and Buildings. No work may be carried out by School personnel on electrical supplies.

All mains electrical equipment must be correctly wired (brown = live, blue = neutral, yellow/green = earth), and have a correctly rated fuse fitted.

All equipment - except double insulated - must be earthed.

Wiring should be periodically checked for safety in accordance with assessment of risk and tested using a Portable Appliance Tester where appropriate.
Power points must not be overloaded.

Electrical heaters must not be left switched on in unoccupied rooms.

Protect cables that run across the floor with a suitable cover.

Laboratory equipment must not be run overnight unless a competent member of staff has carried out a risk assessment detailing the unattended risks.

The tubing connecting water supplies to equipment must be connected to both the supply and equipment by proper clips – not wired on. Such tubing should also be inspected regularly for signs of aging/leaks, and renewed with new tubing (rather than patching) when appropriate.

Chemical and Biological:
Spectacles should be worn in preference to contact lenses, which could trap chemicals between the lens and the eye. Soft lens in particular can also absorb solvent vapour.

Do not pour (waste) solvents, toxic or harmful chemicals or biological agents down the drains: If waste solvent drums/chutes and chemical or biohazard bins are not in the laboratory, arrange with your supervisor to install them.

Do not eat, drink, smoke or apply make-up in areas where chemicals or biological agents are used or stored.

Do not sniff unknown chemicals or gases - they may be toxic.

Do not store mercury in unsealed vessels. Mercury spillages should be reported immediately to the Superintendent.

Highly flammable solvents must not be kept in rooms or laboratories in containers greater than 2.5 l, unless special permission has been given by the research supervisor. Up to 50 litres may be kept in a properly designed cabinet.

Vessels containing chemicals must be labelled clearly and correctly - this includes waste chemicals.

Broken glass, razor blades, scalpels, sharp objects etc must not be disposed of in wastepaper bins. They should be put in a suitable, labelled container such as waste glass or sharps bins. If they are contaminated in any way with biological agents, they should be placed in a biohazard bin for disposal.

To avoid cuts, and poisoning by contamination, broken glassware should be swept up not picked up.

Work on mains circuitry and other potentially dangerous electrical supplies associated with items of equipment, including the precautions to be observed when carrying out mechanical work on electrically powered equipment.

No persons should make adaptations to or otherwise interfere with the fixed mains electrical supply. If this needs to be done, Estates and Buildings should be contacted. E&B personnel will either do this, or arrange for a specialist contractor to do this. All electrical supplies that employ an extension lead connected to the fixed mains supply
should only use commercially supplied, pre-configured plug boards with an adequate power rating. If special arrangements are needed for the type or location of electrical sockets or supplies that can not be provided using a simple unmodified plug board, then these should be installed by Estates and Buildings. In exceptional circumstances, with the approval of the deputy technical service manager (electronics), a custom extension may be provided by staff from one of the electronics workshops after it has been assessed for electrical safety by the deputy technical service manager (electronics) or suitably qualified electronics workshop staff whose job is graded at level five or above.

Any connections to, or adaptations of, the mains circuitry or other circuitry with the potential to cause danger (e.g. high current circuitry) within equipment should only be carried out by suitably trained personnel and all such work must be inspected by a member of the electronics workshop on completion, who will check it for electrical safety and perform a portable appliance test. In general all work on this type of circuitry should be conducted with the equipment disconnected from its power source (e.g. the mains supply or a high capacity battery). See below for the procedure to be employed where the equipment must remain connected to its power source in order to carry out the work.

Any work on exposed electrical circuitry, including its construction, where the maximum potential difference is greater than 50 V or where there are high currents with the potential to cause danger, can only be done after a risk assessment has been completed and approved by the deputy technical service manager (electronics) or suitably qualified electronics workshop staff whose job is graded at level five or above. This will require all hazards to be assessed and controls put in place. A minimum control in this situation is the designation of two additional competent persons to be present to monitor your safety and render assistance or raise the alarm should you be injured. Additionally, if mains supply voltage is involved, this must come from an RCD protected socket or isolation transformer. A simple means of supply disconnection in an emergency must be available.

Note, the above requirements for working on exposed electrical circuitry also apply when performing other work, such as mechanical construction, maintenance or repairs to equipment that is powered by an electrical supply. i.e. the work cannot be done with the circuits dead; it is reasonable to carry out the work with live circuits; suitable precautions are in place e.g. protective shielding to cover the circuitry. In general, such work should be performed with the equipment disconnected from its power supply.

Persons inexperienced in the requirements of electrical wiring associated with potentially hazardous supplies or equipment should obtain guidance and training from staff in the electronics workshop or other qualified person before commencing work.

Use of Display Screen Equipment

The Health and Safety (Display Screen Equipment) Regulations 1992 lay down requirements for the use of “display screen equipment” by “users”. In the context of the School of Engineering “display screen equipment” can be equated with PCs, Macs, Workstations and VDUs.

However the term "user" is less easily defined. It refers to employees whose work requires them to make use of display screen equipment for some significant but unspecified fraction of the working day.
The safety problems of using display screen equipment relate mainly to fatigue and strain associated with prolonged use. For the most part symptoms are only temporary.

Equipment:
The chair must be safe and adjustable to meet the needs of the user. The screen must be positioned suitably for the user and must be free of excessive glare and reflections - if necessary by the addition of a hood or a filter to the screen and blinds to the windows. The image size and quality should be comfortable for the user. The keyboard should be independent from the screen and be easy to use. The desk should be of suitable dimensions to allow comfortable use - perhaps in conjunction with footstools, arm rests, screen stands and document stands.

Environment
The lighting provision in the environment should ensure that reflections from the screen surface and phosphor do not make the image difficult and tiring to view. It is important that there is no excessive difference in light levels between the screen image and the background level from behind the screen e.g. from a window. Furthermore it is best to avoid a large contrast between the illumination of any paper document being read and the light output from the screen image. The noise level, temperature and humidity of the workplace should be satisfactory.

Job Design
The user's work schedule must include breaks from display screen use. The software must be appropriate to the task and suited to the needs of the user. Training in its use should be provided. The user should receive information about the health and safety aspects of display screen equipment use. Fuller details and advice on the safety aspects of the use of display screen equipment can be found in the booklet Display Screen Equipment (DSE) available at web page

http://www.gla.ac.uk/services/seps/az/computers/

Note: Staff who wish to have an eye test should contact the Safety Coordinator.

Manual handling
Lifting, carrying and handling of loads is one of the most common causes of injury at work resulting, typically, in muscular strains or physical injury. For this reason there are regulations that require every manual handling task to be managed in a way that minimises the risk to those involved. The management process required is, in essence, a risk assessment.

The starting point is to consider whether the manual-handling task is necessary or if the work might be organised differently, or perhaps mechanised. Sometimes major alteration is not possible immediately, but may be identified as a future goal.

Where manual handling is essential a risk assessment of the task(s) must be carried out. Responsibility for this should be assigned to appropriate members of staff who may also require some training in the risk assessment process.

Where the risk is low, assessments can sometimes be done generically, for example, to look at a particular type of handling operation. However, where risks are higher risk assessments that are specific to individual tasks will usually be needed.

Staff members who are regularly involved in manual-handling as part of their work must get formal manual handling training and also receive periodic refresher training.
(SEPS can arrange courses on a cost-recovery basis. See "Training Courses" page for details.)

In some cases protective clothing will have to be provided to staff involved in manual handling work. (e.g. safety footwear, gloves). SEPS guidance on manual handling can be accessed from this link:
Guidance notes on Manual Handling:

http://www.gla.ac.uk/services/seps/az/manualhandling/

Training provision.
Hopefully the need for any specialist training will be highlighted when you prepare, or read the Risk Assessments or Codes of Practices associated with procedures you are going to follow and the labs in which you are going to work. However, if you (or your supervisor) think you need specialist safety training then you should consult your supervisor, Doug Irons, Andrew Glidle or links on the University’s safety website –

http://www.gla.ac.uk/services/seps/

In addition to this, other Schools and colleges within the University may provide short courses that you can attend to cover training in basic techniques – again your supervisor, Doug Irons or Andrew Glidle may be able to advise you about these.
EMERGENCY PLAN – What to do in an Emergency

FIRE, POLICE, AMBULANCE
DIAL 4444
This number must not be used for other than the specified emergencies.

Accident or Illness
In the event of a serious accident or sudden illness you should dial 4444 (or 2222 if at Acre Rd) and ask for an ambulance - then summon a first-aider. A list of first-aiders is given in the Appendix.

If the accident involves chemicals, full written details should be sent with the patient.

In the event of a less serious accident or illness you should summon a first-aider. If the first-aider decides that hospital treatment is required, the patient should be accompanied to the Minor Injuries Unit, West Glasgow Ambulatory Care Hospital, Dalnair Street, Yorkhill (Yorkhill Hospital), Glasgow G3 8SJ a colleague to phone the receiving desk - Tel 0141 201 0290

If no first-aider is available and the incident is not an ‘emergency’ the injured person should go (preferably accompanied by someone) to the Minor Injuries Unit, West Glasgow Ambulatory Care Hospital, Dalnair Street, Yorkhill (Yorkhill Hospital), Glasgow G3 8SJ.

Burst pipes, electrical faults etc.
For emergencies such as burst pipes, electrical faults etc. which occur during normal working hours, contact one of the following:
Technical Services Manager Ext 5251
Deputy Service Managers Ext 5831/6308/4306
Janitor Ext 5213 (Rankine Building), 4309 (James Watt Building)
Estates & Buildings Office Ext 6000
For emergencies occurring outwith normal working hours contact:
Main Gatehouse Ext 4444 (at Acre Road, Ext 2222 will contact the security services for the Garscube Campus)

Fire
On Discovering a Fire:

Raise the alarm by operating the nearest Fire Alarm Call Point.
An electronic sounder will then sound continuously.

Evacuate the building

Proceed to the designated assembly point

On Hearing a Warning of Fire
- Evacuate the building quickly and calmly
- Proceed to the designated assembly point
On Both Occasions:
- Do not delay your departure by collecting personal belongings
Where possible close room doors behind you
Do not use lifts
Do not re-enter the building until a Fire Brigade Officer has stated that it is safe to do so
Do not fight a fire if:
- It is dangerous to do so
- You are on your own
- There is a possibility of your escape route being cut off by fire or smoke
- The fire continues to grow
- The fire involves hazardous materials
If in doubt get out

In addition you should familiarise yourself with:

The escape route from the premises:
The position and operation of Fire Alarm Call Points

The correct method of calling the Fire Brigade (dial 4444 and ask for the fire service)
The evacuation procedure for the premises
The location of assembly points for the James Watt Building are on the grass nearest the flag pole, and for the Rankine Building, on the grass in front of the houses in Oakfield Avenue

The position and operation of Fire Fighting Equipment
The position of Fire Resisting Doors and the need to keep such doors closed when not in normal use

Any necessary rapid shut-down procedures, for experiments or equipment to minimise further risks whilst the building is evacuated.
The position and content of Fire Action Notices
The position and content of Safety Signs

Contact with Dangerous Chemicals
The following notes apply to most, but not to all, dangerous chemicals. If in doubt consult a First Aider or databases such as those provided by the chemical supplier e.g. http://www.sigmaaldrich.com/

Contact with Skin:
Wash off contaminant with a gentle, but copious stream of cold water for at least twenty minutes. Remove contaminated clothing while flooding the injury (use gloves). Obtain medical help for all but very minor burns. Hydrofluoric acid burns must always be considered serious - even if there are no immediate symptoms - and medical aid should be obtained as soon as possible.

Contact with Eyes:
If an eye wash bottle, or station, is not available, wash with a very gentle stream of cold water for at least ten minutes. It may be necessary to enlist the aid of a colleague to hold the eyelids open to ensure that the water enters the eye. Be careful that contaminated water does not splash the uninjured eye. Always take eye casualties to hospital.

Ingestion of Chemicals
If chemicals are swallowed and lips and mouth are burned give sips of water or milk to drink, but do not induce vomiting. Call an ambulance.

Electric Shock
In the event of an electric shock, switch off the equipment and unplug at the mains before trying to pull the victim clear. If the victim is breathing, send for a first-aider immediately. If the victim is not breathing call an ambulance and then attempt resuscitation.
School of Engineering First Aid Personnel

James Watt South Building
- Emma O'Donnell Room: 620 Tel.: 3575 (De-fib Trained)
- Bernard Hoey Room: 619 Tel.: 6148 (De-fib Trained)
- Brian Robb Room: 549 Tel.: 4421 (De-fib Trained)
- Michelle O’Halloran Room: 374 Tel.: 4309
- James Blunn Room: 374 Tel.: 4309
- Alison Gore Room: 363 Tel.: 4914
- John Kitching Room: 237 Tel.: 5246
- Wilson MacDougall Room: 237 Tel.: 5246
- John McCulloch Room: 237 Tel.: 5246 (De-fib Trained)
- Ian Scouller Room: 237 Tel.: 5246 (De-fib Trained)

James Watt North Building
- Ron Thomson Room: 338 Tel.: 4313

Rankine Building
- James Spence (Janitor) Room: 403A Tel.: 5213
- Julien Reboud Room: 807 Tel.: 8002
- Peter McKenna Room: 743 Tel.: 7576
- Alan Yuill Room: 712A Tel.: 6684
- Trevor Davies Room: 704 Tel.: 5205 (De-fib Trained)
- Tom O’Hara Room: 506 Tel.: 6676
- Bridget Sweeney Room: 315 Tel.: 3912 (De-fib Trained)
- John Davidson Room: 201A Tel.: 4833
- Robert Boyd Room: 201A Tel.: 4833
- Ian Gardner Room: 201A Tel.: 4833

70 University Avenue
- Dr Nigel Johnson Room: 306 Tel.: 4110

76 Oakfield Avenue
- Dr Manlio Tassieri Room 105 Tel.: 8116

James Watt Nanofabrication Centre
- Donald Nicolson JWNC Tel.: 6102 (De-fib Trained)
- Dave Gourlay JWNC Tel.: 6102
- Linda Pollock JWNC Tel.: 6102

Location of First Aid Boxes

James Watt Building
- Anatomy Wind Tunnel
 - Level 2 Rm 224 Wall next to stores
 - Level 3 Janitors box
 - Level 3 Rm 335 Dynamics Lab
 - Level 4 Formula Student W/Shop
 - Level 4 Rm 438 Tuck Lab Materials lab
 - Level 5 Integrated Suite
 - Level 6 Rm 620 Teaching office
 - Level 7 Rm 711 Utilities Room
Rankine Building

Level 8
Rm 809A Biomedical Engineering
Rm 807 Biomedical Engineering
Rm 810 Biomedical Engineering

Level 7
Rm 709 Teaching Lab
Rm 712A Electronics Workshop

Level 6
Rm 611A Cleanroom
Rm 610 Device Room
Rm 607 Thin Films Lab
Rm 605 Teaching Lab

Level 5
Rm 509 Teaching Lab
Rm 501A Soils Lab

Level 4
Rm 403B First Aid Room
Janitors booth

Level 3
Rm 329 Comp Teaching Lab
Rm 316 Teaching Lab

Level 2
Rm 226A Bioreactor
Rm 222A EDC measurement lab
Rm 216A Corridor
Rm 201A Laser Lab Office

Level 1
Rm 109 EDC lab
Rm 121 Terrahertz office

James Watt Nanofabrication Centre

Level 2 corridor on wall near LN2 tap
Level 3 corridor on wall near shower 1
Level 3 corridor on wall near shower 2
Level 3 aq.process near eye wash station
Level 3 chem prep on wall near shower 3
Lev 3.5 mezzanine on wall LHS of entry