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Abstract

Employing an endogenous growth model with human capital,
this paper explores how productivity shocks in the goods and
human capital producing sectors contribute to explaining aggregate
fluctuations in output, consumption, investment and hours. Given
the importance of accounting for both the dynamics and the trends in
the data not captured by the theoretical growth model, we introduce
a vector error correction model (VECM) of the measurement errors
and estimate the model’s posterior density function using Bayesian
methods. To contextualize our findings with those in the literature,
we also assess whether the endogenous growth model or the standard
real business cycle model better explains the observed variation in
these aggregates. In addressing these issues we contribute to both
the methods of analysis and the ongoing debate regarding the effects
of innovations to productivity on macroeconomic activity.
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We conclude that using the extra discipline of reproducing the trend pro-

ductivity growth features of the data endogenously constitutes an important

missing component from the real business cycle approach. (Jones et al., 2005,
p. 805)

1 Introduction

Since the seminal work of Kydland and Prescott (1982) a significant amount
of research has been undertaken to better understand the links between tech-
nology shocks and business cycles. Likewise the path-breaking research of
Romer (1986) and Lucas (1988), stressing the roles of knowledge and hu-
man capital accumulation, has led to a large body of literature seeking to
explain the determinants of endogenous growth.1 Quantifying the links be-
tween human capital and growth has already been well documented in the
literature. For example, studies using reduced-form cross-sectional country
or panel regressions unequivocally find a significant link between average
years of schooling and growth (see e.g., Barro and Sala-i-Martin 2004, Barro
2001, 1991, de la Fuente and Domenech 2006). Other research, based on es-
timates of the steady-state relationship between growth and human capital,
also conclude that human capital contributes significantly to growth (see,
e.g. Mankiw et al. 1992, Benhabib and Spiegel 1994, Bils and Klenow 2000
and Temple 2001).

In stark contrast, there is a scarcity of research which estimates the
deep parameters populating the equilibrium conditions of endogenous growth
models. Perhaps the dearth of econometric evidence relating to estimates of
these parameters can be explained by the limited availability of quality hu-
man capital data for this class of growth model and the previous technical
difficulties associated with estimating dynamic stochastic general equilibrium
(DSGE) models more generally. However, recent advances in econometric
methods and applications go quite some way to mitigating both of these
problems.2 Moreover, using the state-space representation to evaluate the
model’s likelihood function via the Kalman Filter, would help to avoid prob-
lematic measurement issues relating to the human capital data by treating

1See the review papers by King and Rebelo (1999) and Rebelo (2005) for references
on the importance of technology shocks in the real business cycle model. See also Barro
and Sala-i-Martin (2004) and Aghion and Howitt (1998) for references on human capital
based endogenous growth models.

2For example, DeJong et al. (2000a), DeJong and Ingram (2001), Ireland (2004), Ireland
and Schuh (2008) and Malley and Woitek (2010) provide examples of estimated RBC or
exogenous growth models using both classical and Bayesian methods. See also Ruge-
Murcia (2007) for an extensive review of studies on the estimation of DSGE models.
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it as an unobservable state variable.
Another difficulty regarding the estimation of endogenous growth models

relates to the vexed issue of how to account for trends or non-stationarity
which may be present in the observed data but not in the theory. In con-
trast to business cycle models where exogenous trends are removed through
a variety of deterministic and/or stochastic procedures, model-specific trans-
formations are required to achieve stationarity in endogenous growth setups.
Unfortunately, these transformations are generally not flexible enough to
induce stationarity in the data required for estimation. To overcome this
difficulty, we introduce a vector error correction model (VECM) of the mea-
surement errors in the spirit of Ireland (2004) and Malley and Woitek (2010)
who incorporate VAR and VARMA measurement errors respectively into the
estimation of DSGE models. However, in contrast to these approaches, the
VECM formulation is flexible enough not only to account for dynamic in-
teractions but additionally trends or co-integrating relations in the observed
data not captured by the theoretical economic model. To the best of our
knowledge, the VECM model has not been utilized previously in this con-
text.3 Hence our first intended contribution is methodological.

Using our modified framework, we further aim to shed new light on the on-
going debate regarding the effects of innovations to productivity on macroe-
conomic activity by estimating the posterior density functions of prototypical
two-sector endogenous growth and one-sector exogenous growth models using
U.S. quarterly data.4 Our estimated models then permit us to assess within
sample fit using marginal likelihood comparisons and to evaluate the relative
importance of total factor productivity (TFP) and human capital produc-
tivity (HCP) in explaining aggregate fluctuations via impulse responses and
forecast error variance decompositions (FEVDs).

We first find, when accounting for aggregate fluctuations in output, con-
sumption, investment and hours, that the combined explanatory power of the
TFP and HCP shocks in the human capital (HC) model is generally much
larger than innovations to TFP in the RBC model. Second, the HC model
significantly improves on the RBC model’s ability to explain investment fluc-
tuations, especially in the short-run. Third, while there is still ample room
for improvement, the HC model does significantly better at explaining hours

3For a Bayesian treatment of VECM models, see, e.g. DeJong (1992), Bauwens and
Lubrano (1996), Geweke (1996) and Kleibergen and van Dijk (1998).

4See Malley and Woitek (2010) for a selected literature review of this debate and for
references to the literature on the Bayesian estimation of DSGE models starting with
the simulation based methods pioneered by DeJong et al. (2000a,b). See also Ireland and
Schuh (2008) and DeJong and Ingram (2001) for recent contributions employing estimated
RBC models to examine the effects of disaggregated productivity shocks.
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variations than the RBC model. Finally, except for hours worked, TFP
shocks in the HC model explain a relatively larger proportion of the cyclical
fluctuations in these aggregates.

2 Prototype endogenous growth model

In this section, we solve for the optimal decisions of households and firms
relying on the Lucas (1988) and Tamura (1991) setups. The engine of long-
term growth in these models is human capital accumulation. The general
equilibrium solution we derive consists of a system of dynamic relations,
which jointly specify the paths of output, consumption, physical capital,
human capital growth, and the fractions of time allocated to work, leisure
and education. Since the Lucas and Tamura models are well known and
effectively represent the industry standard for this class of endogenous growth
model (see, e.g. Klenow and Rodŕıguez-Clare 2005 for a review), the main
purpose of this section is to set out notation and variable definitions which
will be used in the estimation and analysis which follows.

To facilitate the econometric estimation and comparability with the
workhorse HC model, our deliberately minimal deviations from the Lucas
and Tamura setups include: (i) non-zero depreciation rates for human and
physical capital;5 (ii) the change in human capital is positively related to
human capital investment via a time-varying stochastic productivity term in-
stead of a constant one; (iii) TFP is also time-varying and stochastic instead
of being fixed; and (iv) labor supply is endogenous to facilitate comparisons
with the RBC model.6

2.1 Households

The economy consists of a large number of identical households indexed
by the subscript h and identical firms indexed by the subscript f , where
h, f = 1, 2, ..., Nt. The population size, Nt, evolves at a constant rate n ≥ 1,

5Non-zero depreciation rates are not only necessary given that we will be taking the
model to the data but also in light of the calibration findings by Jones et al. (2005) who
state, “A second important finding stems from the fact that the depreciation rate on
physical capital is larger than that on human capital. This single asymmetry imparts rich
dynamics in the model’s response to cyclical shocks”.

6Given the well known difficulties relating to multiple equilibria when endogenous labor
supply is incorporated into this class of model (see, e.g. Benhabib and Perli (1994)), to
accommodate this extra household choice, we find more robust results in the estimation by
excluding human capital externalities which appear in both the Lucas (1988) and Tamura
(1991) models.
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such that Nt+1 = nNt, where N0 is given. Each household’s preferences are
represented by the following time-separable utility function:

E0

∞∑

t=0

βtU(Ch
t , l

h
t ) (1)

where E0 is the conditional expectations operator; Ch
t is consumption of

household h at time t; lht is leisure of household h at time t; and 0 < β < 1
is the discount rate. We use the CRRA form for utility:

Uh
t =

[(Ch
t )

µ(lht )
1−µ]1−σ

1− σ
(2)

where, σ > 1 is the coefficient of relative risk aversion and 0 < µ < 1 is the
weight given to consumption relative to leisure in utility.

Each household h allocates income not consumed to investment, Iht , and
receives interest income, rtK

h
t , where rt is the return to holding capital and

Kh
t is the beginning-of-period capital stock. The household has one unit of

time in each period t, which is apportioned between leisure, lht , work, u
h
t , and

education, eht , such that:
lht + uht + eht = 1. (3)

A household with a stock of human capital at the beginning-of-period t,
Hh

t receives labor income, wtu
h
tH

h
t , where wt is the wage rate and uhtH

h
t is

h’s effective labor.7 Finally, each household receives dividends paid by firms,
Πh

t . Accordingly, the budget constraint of each household is:

Ch
t + Iht = rtK

h
t + wtu

h
tH

h
t +Πh

t . (4)

Each household’s physical and human capital evolve according to:

Kh
t+1 = (1− δk)Kh

t + Iht (5)

and
Hh

t+1 = (1− δh)Hh
t +Bt

(
ehtH

h
t

)
(6)

where, 0 ≤ δk, δh ≤ 1 are constant depreciation rates on private physical
and human capital respectively. The term Bt

(
ehtH

h
t

)
represents the quantity

of “new” human capital created at time t, where Bt denotes human capital
productivity; and

(
ehtH

h
t

)
is h′s effective human capital.

Households act competitively by taking wt and rt as given. Thus each
household chooses {Ch

t , l
h
t , u

h
t , e

h
t , I

h
t , K

h
t+1, H

h
t+1}

∞
t=0 to maximize (1) subject

to (3)-(6) and initial conditions for the two capital stocks and the two pro-
ductivity terms.

7Note that human capital, Ht ≡ LtH
q
t , is the product of the quantity of workers Lt

and the quality or human capital per worker, Hq
t . Following Lucas (1988), it is assumed

that Lt and Hq
t are perfect substitutes so that only Ht matters for production.
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2.2 Firm’s problem

To produce its homogenous final product, Y f
t , each firm employs private

physical capital, Kf
t , and effective labor, uftH

f
t using a Cobb-Douglas tech-

nology:

Y f
t = At

(
Kf

t

)α (
uftH

f
t

)1−α

(7)

where At represents the level of Hicks-neutral technology available to all
firms, 0 < α < 1 and (1− α) are the efficiencies of private capital and
effective labor respectively.

Firms act competitively by taking wt and rt as given. Accordingly, subject
to (7), each firm chooses Kf

t and uftH
f
t to maximize a series of static profit

functions:
Πf

t = Y f
t − rtK

f
t − wtu

f
tH

f
t . (8)

2.3 Decentralized competitive equilibrium (DCE)

The DCE is defined when (i) households and firms optimize, as above; (ii)
all constraints are satisfied; and (iii) all markets clear. Given the Nt iden-
tical households at time period t and also Nt identical firms, economy wide
magnitudes are denoted Xt = NtX

h
t = NtX

f
t . Since human capital is the

engine of long-run endogenous growth, we transform variables to make them
stationary, i.e. we first define per capita quantities for any variable X as
X t ≡ Xt/Nt, where Xt ≡ (Yt, Ct, It, Kt, Ht) and then express these as shares
of per capita human capital, e.g. xt ≡ X t/H t. Finally, the gross human
capital growth rate is defined as γht ≡ H t+1/Ht. Using this notation and
substituting out prices, {rt, wt}

∞
t=0, we obtain the stationary DCE is sum-

marized by a system of eight equations in the paths of the following eight
variables: (γht , yt, ct, ut, et, kt+1, λ

a
t , λ

b
t) given the exogenously set stationary

AR processes whose motion is defined below.8

2.4 Processes for productivity

Given the above set-up, Hicks-neutral productivity, At, and human capital
productivity, Bt, are stochastic. Following the usual practice in the RBC
literature,9 we assume that each follows an AR(1) process:

At = A(1−ρa)Aρa

t−1e
εat

Bt = B(1−ρb)Bρb

t−1e
εbt (9)

8See Appendix 6.1 for the detailed DCE.
9See, e.g. Kim and Lee (2007), DeJong and Ingram (2001) and Perli and Sakellaris

(1998) for similar setups for the two productivity processes.
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where A,B > 0 are constants, 0 < ρa, ρb < 1 are the autoregressive param-
eters and εat , ε

b
t are independent and identically distributed random shocks

with zero means and variances equal to σ2
a and σ2

b respectively.
Innovations to TFP affect the efficiency of both capital and effective labor,

whereas shocks to human capital productivity are purely labor augmenting.
DeJong and Ingram (2001, 541-542) argue that Bt can be thought of as “[...]
an exogenous shock that shifts the efficiency with which hours are trans-
formed into human capital. Examples of a negative shock are the creation
of a new computer operating system that is more difficult to learn than the
previous system and a decrease in funding for government-sponsored train-
ing programs. A positive shock could be a technological improvement in
employee training methods”.

2.5 Model solution

Following Klein (2000), we obtain the solution of the linearized stationary
DCE10 in state space form:

ỹt = Z̃tδt;

δt+1 = T̃δt + R̃ǫt+1

(10)

where ỹt = [ŷt ĉt ût]
′ ; δt =

[
k̂t ât b̂t

]′
; for any variable xt, x̂t = ln(xt/x);

x is the model-consistent steady-state value of xt; ŷt, ĉt and ût are the control
variables; k̂t is the state variable; ât and b̂t are the two exogenous processes; Z̃
and T̃ are matrices containing various convolutions of the model’s structural
parameters; and R̃t is a matrix of zeros and ones controlling two productivity
shocks in the vector ǫt+1.

3 Econometric Setup

In the spirit of the hybrid estimation approach of Ireland (2004) and Mal-
ley and Woitek (2010), we next incorporate a VAR(1) representation of an
n-dimensional VECM error block into the DSGE model given by equation
(10).11 We calculate the model’s likelihood function using the Kalman filter

10In other words, we take the first-order Taylor series expansion of the non-linear sta-
tionary DCE in eq. (21) and the exogenous processes in eq. (9) around the steady-state
which we solve for numerically.

11Note that n refers to the number of measurement equations. Also note that bolded
α,β and µ are vectors and as such should not be confused with the scalars α, β and µ
used in the structural model.
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given that human capital, both types of technology shock, and the measure-
ment errors will be treated as unobservables.

3.1 VECM setup

Since we have three measurement equations, we start with a VECM of order
1 to account for the other potential cointegrating relationship in the data not
captured by the theoretical model. The VECM is given by:

∆µt+1 = αβ′µt + Γ∆µt + υt+1. (11)

In levels, this implies a VAR of order 2:

µt+1 =(αβ′ + In)µt + Γ∆µt + υt+1 =

=(αβ′ + In + Γ)µt − Γµt−1 + υt+1.
(12)

The VAR(1) representation of (12) is:

(
µt+1

µt

)
=

(
In +αβ′ + Γ −Γ

In 0

)

︸ ︷︷ ︸
Ã

(
µt

µt−1

)
+

(
In

0n×n

)
υt+1. (13)

Combining (10) and (13) yields the following state-space representation:

ỹt =
(
Z̃ In 0n×n

)



δt

µt

µt−1


 = Zαt

αt+1 =

(
T̃ 0n×n

02n×n Ã

)
αt +




R̃ 0n×n

0n×2 In
0n×2 0n×n



(
ǫt+1

υt+1

)

= Tαt +Rηt+1

(14)

with

ηt+1 ∼ N(0,Q), Q =




σ2
a 0 01×n

0 σ2
b 01×n

0n×1 0n×1 Σ


 . (15)

Note that the way we setup the matrices of the full state-space model implies
that there is no interaction between the structural model and the measure-
ment error component.
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3.2 Estimation algorithm

Using the data matrix, Y, consisting of the vectors ỹt, t = 1 . . . , T , defined
in (10), we estimate the vector of model hyper-parameters θ using the tai-
lored multiple-block Metropolis-Hastings (MH) algorithm proposed by Chib
and Ramamurthy (2010), see also (Chib and Greenberg, 1994, 1995).12 This
method separates parameters into different groups and updates them block-
wise in an MH step, conditional on the remaining groups. Usually, parameter
blocks are generated by searching for groups of correlated parameters, but
this is difficult in a DSGE framework, since the parameters of the linear state
space representation are non-linear combinations of the underlying parame-
ters in θ. Instead, Chib and Ramamurthy (2010) randomize the formation
of the parameter blocks since it helps to avoid poor a priori choices. This
framework also allows parameter groupings to change, which is preferable if
there are irregularities such as changes in the shapes of the posterior param-
eter distributions.

To generate these blocks, we permute the index of the parameters ran-
domly. The first parameter initializes the first block. As in Chib and Rama-
murthy (2010), the next parameter is included into this block with probability
τ = 0.8, and starts a new block with probability 1− τ . Note that in simula-
tion step k, the above algorithm generates pk blocks θk,1, . . . , θk,pk . To find
the maximum of the posterior with respect to block j, we keep all the other
blocks constant and calculate

θ̂k,j = argmax(f(Y|θk,1, . . . , θk,j, . . .θk,pk)π(θ)) (16)

where π(θ) is the prior parameter distribution given in Table 1 below.
We use simulated annealing to calculate (16).13 The negative inverse

Hessian Vk,j of the target posterior distribution is calculated at θ̂k,j. If it is
not positive definite, a modified Cholesky decomposition (Gill and Murray,
1974) is applied to the negative Hessian to find the matrix P, and Vk,j =
(PP′)−1. As in Chib and Ramamurthy (2010), the proposal density is a
multivariate t-distribution with ν > 2 degrees of freedom. Drawing from this
distribution, a candidate θ⋆

k,j is generated, and accepted with probability

12Note that the value of the likelihood function in each MH-step is calculated using the
Kalman filter (e.g. Harvey 1992).

13The algorithm is a generalization of the Metropolis algorithm (Metropolis et al., 1953)
developed by Kirkpatrick et al. (1983) and Černý (1985). For an overview, see e.g. van
Laarhoven and Aarts (1987) or Press et al. (1992, Section 10.9). We set the parameters
for the algorithm as follows: scaling factor for parameter proposal: 0.02; cooling constant:
0.4; stage expansion factor: 8; initial temperature: 5; number of stages: 8; initial stage
length: 4.
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p(θ⋆
k,j, θk,j) =

=min

(
f(Y|θk,1, . . . , θ

⋆
k,j, . . .θk,pk)g(θ

⋆
k,j)t(θk,j|θ̂k,j,Vk,j, ν)

f(Y|θk,1, . . . , θk,j, . . .θk,pk)g(θk,j)t(θ
⋆
k,j|θ̂k,j,Vk,j, ν)

, 1

)
.

(17)

We employ the uniform distribution for all the elements of (θ) listed in
Table 1 below. The priors we use for the supports of these distributions

Table 1: Priors for the parameter vector, θ

Parameters Restrictions

Structural

capital’s share α (0.25, 0.4)
discount rate β (0.97, 0.99)
K depreciation rate δk (0.25× 0.05, 0.25× 0.10)
H depreciation rate δh (0.25× 0.05, 0.25× 0.10)
consumption/leisure weight µ (0.25, 0.45)
risk aversion parameter σ (1, 3)
gross rate N growth n (1, 1.0160.25)

Productivity processes

AR(1) parameter in At ρa (0, < 1)
AR(1) parameter in Bt ρb (0, < 1)
constant term in At A (0.01, 1)
constant term in Bt B (0.01, 1)
s.d. A shock σa (0.004, 0.01)
s.d. B shock σb (0.004, 0.01)

Measurement errors

VECM parameters Λ |EV |max< 1
variance-covariance matrix Σ Σ is + semi-definite

Steady-state

solution unique exitflag=0 (csolve.m)∗

gross rate H growth γh (1.0150.25, 1.040.25)
time shares u; e; 1− u− e (> 0)
expenditure shares c/y; i/y (> 0)
∗csolve.m is the Matlab function by Chris Sims used to solve the

non-linear system of equations comprising the model’s steady-state, see

ideas.repec.org/c/dge/qmrbcd/13.html.
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reflect non-sample information from: (i) the human capital model (including
both parameter restrictions and non-negativity constraints); (ii) technical
considerations regarding the existence of a unique steady-state equilibrium
as well as the saddle path stability of the dynamic system; and (iii) the
empirical plausibility of the historical value of long-run human growth.14

Finally, note that the VECM parameter restrictions referred to in Table 1
can be seen more clearly if we rewrite the VECM in equation (11) in VAR(1)
representation:

(
∆µt+1

β′µt+1

)
=

(
Γ α

β′Γ β′α+ 1

)

︸ ︷︷ ︸
Λ

(
∆µt

β′µt

)
+

(
υt+1

β′υt+1

)
. (18)

Since the vector
(
∆µt β′µt

)′
is supposed to be stationary, the companion

matrix Λ is required to have eigenvalues less than one in absolute terms.

3.3 Real business cycle model

The exogenous growth RBC model can be viewed as a special case of sim-
ilarly specified endogenous growth model. Thus to obtain the former from
the HC model we: (i) replace endogenous human capital accumulation with
exogenous labor augmenting technical process. For example, Ht = (γh)t

where γh > 1, is typically used in RBC calibration and estimation studies;15

(ii) drop education time, et, from the time constraint; (iii) drop the two
optimality conditions relating to education and human capital.

With respect to the parameter distributions to estimate as set out in
Table 1, these changes imply that δh = σb = ρb = B = 0. Finally note that
when estimating the RBC model we apply the same priors reported in Table
1 for the remaining common parameters across models.

4 Estimation results

In this section we start by discussing the data, the required theory consistent
de-trending transformations and the time-series properties of the de-trended
data. We then present the first two moments of the estimated posterior pa-
rameter distributions, numerical standard errors and formal evidence relating

14Note that the more familiar annual figures (including the conversion factor to quarterly
rates) are quoted for the depreciation rates and the gross population and human capital
growth rates in Table 1.

15See, e.g. Ireland (2004) and Malley and Woitek (2010) for recent examples of the
latter.
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to convergence for each parameter chain. We finally turn to an assessment of
each model’s ability to explain the observed data. To this end, we undertake
within-sample fit comparisons, impulse response analysis and forecast error
variance decompositions.

4.1 Data and theory consistent de-trending

The measured data used in the estimation includes quarterly per capita out-
put, Y t, per capita consumption, Ct, per capita capital stock, Kt, and total
economy hours, ut, over the period 1964(1) to 2008(4).16 All data are sea-
sonally adjusted at an annual rate except for population.17 Consistent with
the model, output is defined as the sum of consumption plus investment.

To obtain theory consistent stationary variables in the estimation of the
RBC and HC models, output and consumption must be written as shares of
human capital per capita, Ht, or in logs, ln yt = lnY t − lnHt and ln ct = lnCt

− lnH t. Normalizing by Ht is equivalent to removing a common exogenous
log-linear trend in the RBC model and an endogenous local log-linear trend
in the HC model.18 For example, in the RBC case,

ln
(
Ht

)
= ωt

where ω = ln
(
γh
)

and in the HC case,

ln
(
H t

)
= ωtt

where ωt =
1

t

[
t∑

j=1

ln
(
γhj
)
+ ln

(
H0

)
]
.

The difficulty with applying the above transformations for the estimation
of the HC model is the general lack of quality human capital data. However,

16Real consumption (excluding durables) and investment (gross private domestic) are
from the BEA and are in billions of chained $2005. Hours (average weekly: total private
industries) and population (civilian noninstitutional population) are from the BLS. Ap-
pendix 6.2 contains details on how the real capital stock is calculated from the BLS fixed
asset tables.

17Note that the start date for the estimation is dictated by the availability of the total
economy hours data. Although this data was previously available from 1948, the BLS
switched from the SIC to the NAICS system in 2003. After this date, the relevant hours
data is available from 1964.

18Of course, since trends are exogenous in the RBC model, other deterministic and/or
stochastic processes based on e.g. band-pass filters have been used in the literature to
remove them. However, the well know difficulty associated with these filters is that over-
differencing leads to a loss of information, e.g. co-integrating relations and unconditional
means of the data, which may be useful for identification.
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in light of the fact that US physical capital data (see BEA Fixed Asset Tables
and Appendix 6.2) are far more reliable than human capital data, we can
instead de-trend the HC model by Kt and treat H t, as an unobservable in the
estimation. This requires that we re-derive the stationary DCE normalizing
by Kt (see Appendix 6.3) and then resolve for the state space system in log
deviations as in equation (18). Since, post estimation, we wish to analyze the
properties of the endogenous growth model where human and not physical
capital is the engine of growth, we retrieve the model solution in per H t

terms (see Appendix 6.4).

4.2 Properties of de-trended data

As discussed in the introduction, our motivation for adding VECM mea-
surement errors is that the theory consistent de-trending required by the
endogenous growth model will generally not lead to co-variance stationary
series using actual data. To check this in the context of the current appli-
cation, we first plot in Figure 1, the hours worked series, ut, the de-trended
data for the HC model, i.e. Ct/Kt and Y t/Kt and the transformed data for
the RBC model i.e. Ct/(γ

h)t andK t/(γ
h)t.19 In Table 2 we then complement

this information with a standard (classical) augmented Dicky-Fuller (ADF)
test and a Bayesian unit root test based on Lubrano (1995).20

A visual inspection of Figure 1 suggests a clear trend in the hours data
and in the per capital consumption and output data for the HC model.21

However, the plots are less conclusive for the de-trended RBC model data
where both consumption and output appear to be mildly trending from 1985.

19Note that the value for γh is obtained by calculating the geometric average of the per
capita gross growth rate of output over the estimation period, i.e. 1.0051 quarterly or
1.0206 annually.

20See, also Bauwens et al. (1999, Ch. 6) for a review of Bayesian unit root tests and the
associated controversies.

21Note that hours worked is a stationary quantity in the theory given that it is part
of the fixed time constraint. Hence, there are no model consistent transformations that
would be appropriate for this series.
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Figure 1a: Hours data
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Figure 1b: HC data
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Figure 1c: RBC data
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We now turn to more formal evidence regarding unit roots in the data.
Following Lubrano (1995) the order of the AR(p) model for any variable, z̃t,

A (L)
(
z̃t − µ̃− δ̃t

)
= ǫ̃twhere ρ = 1− A (1) (19)

with and without a deterministic trend is based on the Schwarz information
criterion and is reported in the first column of Table 2. The ADF test statis-
tic, τ and the tail probability from the posterior distribution of ρ, Pr(ρ ≥ 1)
are given in second and final columns respectively. The lag polynomial has
a unit root if A(1) = 0. Hence, the null hypothesis for both tests is that z̃t
contains a unit root or that ρ = 1.

The findings in Table 2 below for both the classical and Bayesian tests
suggest that unit roots are present for all series except for output in the
RBC model. Thus, despite following theory-consistent stationary inducing
transformations for consumption and output, neither the exogenous log-linear
trend in the RBC model nor the endogenous local log-linear trend for the HC
model is flexible enough to deliver uniformly stationary data for all variables.
Of course, if a common-trend is employed, an alternative to the log-linear
trend could be used to induce stationarity in both consumption and output
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for RBC model instead of the VECM procedure proposed here.22 However,
in sharp contrast, no such flexibility is possible in the HC model since trend
growth is endogenous.

Table 2: Unit Root Tests
p τ Pr(ρ ≥ 1)

Constant
Ȳt/K̄t 2 -1.43 0.308
C̄t/K̄t 3 -1.25 0.088
Ȳt/(γ

h)t 2 -3.30⋆ 0.005⋆

C̄t/(γ
h)t 2 -2.11 0.166

ut 1 -2.14 0.185
Constant & Trend

Ȳt/K̄t 2 -2.86 0.132
C̄t/K̄t 3 -2.85 0.999
Ȳt/(γ

h)t 2 -3.27⋆ 0.021⋆

C̄t/(γ
h)t 2 -2.34 0.425

ut 1 -2.08 0.443
⋆ indicates when the unit root hypothesis is rejected at
the five per cent level.

4.3 Estimated parameter distributions

Table 3 below summarizes the estimated parameter distributions by reporting
their means and standard deviations along with a measure of estimation
accuracy based on numerical standard errors, NSE, (Geweke, 1992). In
addition, we calculate Geweke’s χ2-test which, for each parameter chain,
compares the mean of the first 20 per cent of the sample with the last 50 per
cent.23

Before discussing the detailed estimation results, it is first useful examine
some aggregate evidence relating to the posterior likelihood functions of the
HC and RBC models. These are displayed in Figure 2 for a total of 10,000
simulations and clearly suggest that the likelihood functions have converged
to their respective maxima. It also appears from respective heights that the

22Note that, the trend in hours would still need to be removed in this case.
23The figures reported in Table 3 are based on a 15 per cent taper for the peri-

odogram window underlying the calculation of NSE. To calculate this statistics, we use
the programs coda.m and apm.m provided by James LeSage in his econometrics toolbox
(www.spatial-econometrics.com).

16



HC model provides a much better overall fit to the data. We examine this
point more formally below.

Figure 2: Posterior likelihood functions
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Starting with the structural parameters in Table 3 below, there are no
surprises regarding the sizes of the means given our priors regarding the sup-
ports for the various distributions. However, it is noteworthy, consistent with
the research of Jorgenson and Fraumeni (1989) and Jones et al. (2005), that
δk > δh. The biggest differences across models appear to be that in the HC
model, the discount rate, β, and the weight attached to consumption in util-
ity, µ, are both lower than in the RBC model. The latter in conjunction with
relative risk aversion parameter, σ, imply that the intertemporal elasticity
of consumption, 1

µ(1−σ)−1
, and leisure, 1

(1−µ)(1−σ)−1
, are -0.556 and -0.487 for

the RBC model and -0.669 and -0.418 for the HC model respectively. Oth-
erwise, the remaining estimated structural parameters for both the HC and
RBC models are of similar orders of magnitude. To more fully understand
the quantitative implications of all these differences, we examine the impulse
responses of both models below.
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Table 3: Posterior Distributions of Parameters, θ

Structural Parameters
HC Model RBC Model

ψj mean s.d. NSE
|θj

χ2 mean s.d NSE
|θj

χ2

α 0.39403 0.00604 0.00089 0.20223 0.36015 0.03694 0.00258 0.14713
A 0.60027 0.27182 0.05163 0.52254 0.81734 0.15205 0.01050 0.52273
B 0.13484 0.01078 0.00093 0.52329 na na na na
β 0.97668 0.00150 0.00020 0.70217 0.99366 0.00501 0.00028 0.21908
δk 0.03347 0.00375 0.00117 0.11431 0.03093 0.00517 0.00025 0.20724
δh 0.01082 0.00080 0.00062 0.61194 na na na na
n 1.00072 0.00065 0.00010 0.17347 1.00247 0.00125 0.00007 0.42546
µ 0.26216 0.01179 0.00040 0.20274 0.43110 0.01905 0.00146 0.51146
σ 2.89046 0.11045 0.00590 0.06336 2.85455 0.14083 0.00987 0.68824

Productivity Processes 0.00000
HC Model RBC Model 0.00000

ψj mean s.d. NSE
|θj

χ2 mean s.d. NSE
|θj

χ2

ρa 0.99154 0.00191 0.00002 0.10282 0.99713 0.00237 0.00020 0.74209
ρb 0.99027 0.00245 0.00003 0.36348 na na na na
σa 0.00408 0.00005 0.00388 0.13849 0.00476 0.00046 0.00010 0.45352
σb 0.00427 0.00014 0.00909 0.88048 na na na na

Summary: VECM Measurement Errors 0.00000
HC Model RBC Model 0.00000

ψj mean s.d. NSE
|θj

χ2 mean s.d. NSE
|θj

χ2

Λ|EV |max
0.83391 0.03150 0.00411 0.21524 0.79840 0.03609 0.00397 0.99055

Tr(Σ) 0.00004 0.00000 0.01621 0.53879 0.00012 0.00001 3.48E-6 0.66724

Turning to the two productivity processes, the high values for ρa and ρb
suggest that innovations to technology are highly persistent. This echoes the
results reported in Ireland (2001) and Malley and Woitek (2010).24 The mean
value of the variance of the Hicks-neutral technology process, σa, for both the
RBC and HC models is consistent with other estimates in the literature at
about half-a-percent. Also note that the estimate of σb, in the HC is roughly
of the same magnitude and while greater than σa, in the HC model, it is less
than σa, in the RBC model. Again, the fuller implications of these estimates
will be become apparent below in the context of the FEVDs.

To save space, the final block of parameters reported in Table 3, consisting

24Also note that the above authors find that the data prefer the trend-stationary to
difference-stationary technology in the standard RBC model.
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of the maximum absolute eigenvalue of the companion matrix, Λ, and the
trace of variance-covariance matrix, Σ, summarizes information relating to
the 20 parameters in the VECM block. These include 9 from the VAR
coefficient matrix; 6 from the variance-covariance matrix; 3 from the error-
correction or factor loading vector; and 2 from the co-integrating vector.

Turning to the degree of uncertainty associated with all of the estimates
in the Table 3, we find via the standard deviations, that all the parameter
distributions are quite concentrated. Moreover, examination of the numerical
standard errors as a share of the absolute value of the means of the posteriors
reveals that our estimates are very precisely estimated. Finally the Geweke
χ2-test shows that all parameter chains have converged.

4.4 Within sample fit

To more formally assess the difference in posterior likelihoods presented in
Figure 2, we next calculate the Bayes factor based on marginal likelihoods
obtained from the simulated parameter realizations. For example, if we let
MHC denote the HC model, andMRBC the RBC model. The Bayes factor for
comparing the models is given by the ratio of the two marginal likelihoods25

for MHC and MRBC ,

BFHC,RBC =
p(Y|MHC)

p(Y|MRBC)
. (20)

The log-difference between the marginal likelihoods of the HC and RBC
models is 105.45 suggesting that the former provides a far better within
sample fit to the data (see, e.g. Kass and Raftery, 1995, p. 777).

4.5 Impulse response functions

To obtain a quantitative impression of how model outcomes are affected by
the parameter estimates in Table 3 we next examine the impulse responses
(IRFs) of the two models to a temporary 1-percent increase in TFP. The IRFs
in Figure 3 below are reported as percent differences from the steady-state
for 60 quarters and include 90% highest posterior density intervals.

The plots for the RBC model (dotted line) show the expected results.
That is, on impact, the marginal products of capital and labor increase.
The IRFs show that as a result agents work and invest more leading to
greater output. Consumption also increases but by less than the increase in

25To calculate the marginal likelihoods, we follow the harmonic mean approach of New-
ton and Raftery (1994).
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output due to consumption smoothing. Since the TFP shock is temporary,
all variables eventually return to their respective steady-states at a speed
which depends on δk, δh, and the size of ρa in the TFP processes. Consistent
with the estimated values of ρa, Figure 1 illustrates that TFP is an extremely
persistent trend stationary process in both models.

The HC model (solid line) responds qualitatively in a similar manner as
the RBC model for output and its components. However, the responses in the
HC model are relatively higher for around five years. This is because human
capital growth and its per capital level have risen due to the increase in time
allocated to education. The increase in education time occurs since, given
the increased return to working, households can afford to substitute work
with education time. Households also find it optimal to substitute leisure
for education since the positive effects of increased consumption on utility
arising from higher human capital growth appear to outweigh the negative
effects of less leisure. Note that despite the fall in hours worked, ût, effective
labor, ût + Ĥt, increases and encourages greater capital accumulation which
complements effective labor in production. In sharp contrast, in the RBC
model, the increase in hours worked, due to higher returns, is absorbed by a
fall in leisure. We will see in the FEVDs below that this extra use of time in
the HC model has important implications for its ability to explain aggregate
hours.

Examination of the 90% highest posterior density (HPD) intervals indi-
cate that, except for output and investment after five years and consumption
for all time horizons, the distributions of the impulse response functions do
not generally overlap. Also except for output and consumption, at 10 years
and above, the distributions appear to be reasonably concentrated.

Finally it is worth noting that a clear model implication of the estimated
endogenous growth HC model is that fluctuations in education time and out-
put deviations are procyclical. This is in contrast to the findings of exogenous
growth RBC models with human capital, see, e.g. DeJong and Ingram (2001)
and Perli and Sakellaris (1998), who find a countercyclical link due to the
increased opportunity cost of not working when TFP increases.

Reference to the stylized facts regarding this relationship appear to be
inconclusive however. For example DeJong and Ingram (2001), using college
enrollment data from the October supplement of the Current Population
Survey state that the data ”... indicate a negative relationship between the
growth rates of output and college enrollments in the U.S. The raw correlation
between these series is -0.31 over the period 1970 − 1996. Moreover, Dellas
and Sakellaris (1996) found college enrollments to be countercyclical using a
probit analysis that controlled for a wide range of factors.”
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Figure 3: Impulse responses
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In contrast the simple correlations in Table 4 below provide a somewhat
different picture and suggest a procyclical link between fluctuations in college
enrollments and output.26 Besides the different time periods employed in the
studies cited above and in Table 4, the correlations might also differ due to the
different survey coverage employed by the US Census Bureau. For example,
the Current Population Survey reports college enrollment of students 14 years
old and over, whereas the US National Center for Education Statistics (Table
4), reports college enrollment for persons 16 to 24 who graduated from high
school in the preceding 12 months.27 In any event, college enrollments, while
the best available measure, is not broad enough to capture what is intended
by education time in both endogenous and exogenous growth human capital
models. For example, this measure does not capture non-college education
post high school nor on the job training.

Table 4: Trend and cyclical college enrollment (CE) -
output (Y ) correlations (1960-2008)

ρ(CE, Y ) 0.7934
ρ(CElin, Ylin) 0.6023
ρ(CEquad, Yquad) 0.5315
ρ(CE∆, Y∆) 0.1501
ρ(CEhp, Yhp) 0.1505

Source CE data: US Digest of Education Statistics.

4.6 Forecast error variance decompositions

We next turn to an assessment of the HC and RBC models’ ability to explain
the observed variation in the measured variables (i.e. output, consumption,
investment and hours). To this end, we undertake FEVDs which allows us
to split the k-step-ahead forecast error variances of the measured variables
into the portions explained by shocks to technology and to the measurement
errors.28 The former includes the common A shock for both models and the
B shock for the HC model. Innovations to the error system in contrast, pick
up the combined effects of shocks, not present in the structural model(s).29

26Note that the data used in Table 4 are logged prior to detrending with deterministic
(i.e. linear and quadratic) and stochastic (first-difference and Hodrick-Prescott) proce-
dures.

27These data can also be found in US Census Bureau 2011, Statistical Abstract, Table
272.

28Note that the FEVDs are posterior distributions based on the draws we retain from
each of the chains.

29Recall that these three errors include one for each measured variable, i.e. output,
consumption and hours. A fourth is not required for investment since it follows residually
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Table 5 reports, for the HC and RBC models respectively, the median
percent of the total forecast error variance (FEV) for each measured variable
explained by innovations to neutral, A, and labor augmenting, B, technical
change along with the first and third quartile. These results first suggest
that when accounting for aggregate fluctuations, the combined explanatory
power of the TFP and HCP shocks in the HC model is generally much larger
than innovations to TFP in the RBC model for all variables considered.
This especially holds over the business cycle horizon, i.e. 3-5 years. The
only case where TFP in the RBC model marginally dominates the combined
productivity shocks in the HC is for investment at infinity.

The results also suggest that the HC model significantly improves on the
RBC model’s ability to explain investment fluctuations for at least 5-years,
e.g. compare the median value of the combined productivity shocks in the
HC model with the A shock in the RBC model. This finding is consistent
with the much more elastic response of investment in the HC model depicted
in the impulse responses of Figure 3. As explained above, this is driven by
the endogenous increase in education time and hence growth in this setup.

Table 5 further indicates that while there is still ample room for improve-
ment, the HC model does significantly better at explaining hours variations
than the RBC model throughout the forecast horizon. However, in both
models, the explanatory power of the technology shocks monotonically de-
clines as the forecast horizon increases. Comparing the effects of A versus B
shocks in the HC model, the results further suggest that with the exception of
hours worked, TFP shocks explain a relatively larger proportion of the cycli-
cal fluctuations in the measured variables. Also, compared to output and
consumption, we can also see that B shocks are relatively more important in
explaining the FEV of investment.

Further evidence from the 3-quartile range suggests that the distributions
of the FEVDs are generally concentrated and quite distinct. Regarding the
latter, comparing the distributions of A+B from the HC model with A from
the RBC model indicates that strong overlap in distributions only occurs for:
(i) output at 5-years and above; (ii) consumption at 3-years and above; and
(iii) investment at 10-years and above. No overlap is present at any forecast
horizon for hours.

from output and consumption. To save space, we do not present these but the FEDVs
associated with each measurement error are available on request. Further note that since
the FEVDs are normalised, the contribution of the error block as a whole can be easily
implied by subtracting the contribution of technology shock(s) from unity.
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Table 5: Forecast Error Variance Decomposition: Quantiles

Output Human Capital Model RBC Model
A B A+B A

Horizon 25% median 75% 25% median 75% 25% median 75% 25% median 75%
1 0.5403 0.5523 0.5635 0.1061 0.1158 0.1260 0.6564 0.6693 0.6814 0.1662 0.1846 0.2285
4 0.3595 0.3824 0.4087 0.0767 0.0857 0.0970 0.4390 0.4704 0.5017 0.1554 0.1756 0.2105
8 0.2958 0.3262 0.3606 0.0674 0.0784 0.0910 0.3665 0.4067 0.4496 0.2206 0.2474 0.2902
12 0.2874 0.3247 0.3608 0.0691 0.0818 0.0952 0.3607 0.4087 0.4557 0.2766 0.3064 0.3571
20 0.3014 0.3451 0.3831 0.0771 0.0921 0.1071 0.3819 0.4396 0.4888 0.3582 0.3909 0.4480
40 0.3162 0.3653 0.4050 0.0854 0.1027 0.1201 0.4061 0.4709 0.5237 0.4585 0.5024 0.5621
∞ 0.2901 0.3424 0.3874 0.0789 0.0970 0.1169 0.3754 0.4448 0.5020 0.2338 0.3721 0.5106
Consumption Human Capital Model RBC Model

A B A+B A
Horizon 25% median 75% 25% median 75% 25% median 75% 25% median 75%
1 0.4597 0.4789 0.5045 0.0038 0.0045 0.0057 0.4645 0.4837 0.5096 0.2463 0.2876 0.3312
4 0.3551 0.3812 0.4151 0.0087 0.0100 0.0116 0.3646 0.3912 0.4267 0.2402 0.2757 0.3219
8 0.3301 0.3623 0.3986 0.0253 0.0290 0.0333 0.3571 0.3914 0.4317 0.2797 0.3216 0.3759
12 0.3360 0.3725 0.4100 0.0422 0.0485 0.0556 0.3813 0.4210 0.4648 0.3159 0.3617 0.4200
20 0.3554 0.3961 0.4346 0.0692 0.0799 0.0913 0.4298 0.4779 0.5248 0.3648 0.4141 0.4771
40 0.3680 0.4115 0.4492 0.0972 0.1135 0.1310 0.4751 0.5291 0.5758 0.4247 0.4803 0.5479
∞ 0.3362 0.3819 0.4249 0.0969 0.1167 0.1381 0.4473 0.5053 0.5569 0.1642 0.2845 0.4203
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Table 5: Forecast Error Variance Decomposition: Quantiles

Investment Human Capital Model RBC Model
A B A +B A

Horizon 25% median 75% 25% median 75% 25% median 75% 25% median 75%
1 0.3399 0.3552 0.3695 0.2355 0.2538 0.2732 0.5889 0.6098 0.6318 0.0646 0.0776 0.0975
4 0.2682 0.2834 0.3006 0.1718 0.1898 0.2116 0.4473 0.4756 0.5098 0.0670 0.0802 0.0986
8 0.2197 0.2420 0.2689 0.1303 0.1514 0.1765 0.3535 0.3955 0.4448 0.1055 0.1250 0.1529
12 0.2076 0.2375 0.2692 0.1160 0.1393 0.1653 0.3277 0.3788 0.4343 0.1380 0.1622 0.1968
20 0.2096 0.2482 0.2837 0.1062 0.1312 0.1574 0.3197 0.3812 0.4429 0.1944 0.2262 0.2721
40 0.2129 0.2614 0.3010 0.0928 0.1170 0.1428 0.3074 0.3802 0.4448 0.2851 0.3326 0.3880
∞ 0.1921 0.2478 0.2938 0.0731 0.0953 0.1191 0.2677 0.3455 0.4133 0.2447 0.3779 0.4895
Hours Human Capital Model RBC Model

A B A +B A
Horizon 25% median 75% 25% median 75% 25% median 75% 25% median 75%
1 0.0301 0.0404 0.0523 0.0816 0.1041 0.1290 0.1125 0.1452 0.1815 0.0175 0.0232 0.0317
4 0.0212 0.0281 0.0361 0.0595 0.0769 0.0964 0.0813 0.1055 0.1329 0.0156 0.0205 0.0276
8 0.0159 0.0214 0.0279 0.0474 0.0627 0.0811 0.0636 0.0844 0.1094 0.0137 0.0179 0.0240
12 0.0135 0.0185 0.0245 0.0422 0.0574 0.0753 0.0558 0.0761 0.0999 0.0122 0.0158 0.0213
20 0.0106 0.0147 0.0199 0.0356 0.0495 0.0659 0.0462 0.0647 0.0860 0.0097 0.0127 0.0169
40 0.0068 0.0099 0.0138 0.0244 0.0349 0.0483 0.0314 0.0449 0.0623 0.0061 0.0081 0.0106
∞ 0.0041 0.0062 0.0090 0.0148 0.0217 0.0312 0.0189 0.0280 0.0403 0.0003 0.0004 0.0005
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5 Conclusions

This paper has attempted to contribute to both the methods of analysis and
the ongoing debate regarding the effects of innovations to productivity on
macroeconomic activity. To this end we employed a sectoral decomposition of
productivity shocks using an endogenous growth HC model and an exogenous
growth RBC model augmented by VECM measurement errors to explain the
dynamics and the trends in the data not captured by the structural models.

We first find, when accounting for aggregate fluctuations in output, con-
sumption, investment and hours, that the combined explanatory power of the
TFP and HCP shocks in the human capital (HC) model is generally much
larger than innovations to TFP in the RBC model. Second, the HC model
significantly improves on the RBC model’s ability to explain investment fluc-
tuations, especially in the short-run. Third, while there is still ample room
for improvement, the HC model does significantly better at explaining hours
variations than the RBC model. Finally, except for hours worked, TFP
shocks in the HC model explain a relatively larger proportion of the cyclical
fluctuations in these aggregates.

Our results for the endogenous growth model are encouraging and suggest
that its explanatory power might be further improved by adding more cyclical
structure which directly links human capital accumulation with the goods
producing sector. For example, in addition to the input of learning time,
it is also necessary to employ goods and services such as tools, computers,
tuition fees, etc. to acquire human capital.30

In light of our finding, we conclude that there is indeed value-added in
estimating endogenous models in a hybrid framework which allows both the
theory and the data to speak.
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6 Appendices

6.1 Stationary DCE relative to H t

yt = At (kt)
α (ut)

(1−α)

nγht kt+1 −
(
1− δk

)
kt + ct = yt

nγht = 1− δh +Btet

λat = µ (ct)
µ(1−σ)−1 (1− ut − et)

(1−µ)(1−σ)

λat = β
(
γht
)µ(1−σ)−1

Et

{
λat+1

[
αyt+1

kt+1
+ 1− δk

]}
(21)

λat =
(1− µ)ut (ct)

µ(1−σ) (1− ut − et)
(1−µ)(1−σ)−1

(1− α)yt

λbt =
µ (ct)

µ(1−σ)−1 (1− ut − et)
(1−µ)(1−σ)(1− α)yt

Btut

λbt = β
(
γht
)µ(1−σ)−1

Et{λ
a
t+1 (1− α) yt+1 + λbt+1

(
1− δh + et+1Bt+1

)
}

where λat and λbt are the transformed shadow prices associated with (4) and
(6) respectively in the household’s problem.31

6.2 Capital stock data

The capital stock data used in the estimation are from the BEA Fixed Asset
Tables 1.1, 1.2. 7.1(a,b) and 7.2(a,b).

6.2.1 Nominal capital stock

• We concentrate on the definition of capital which directly contributes
to producing measured GDP. Thus starting with Fixed Asset Table 1.1
(nominal billions of $, year end estimates) we proceed as follows:

Table 1.1 line 3: private fixed assets (excluding consumer durables)

+Table 1.1 line 21: government fixed assets (state and local)

+Table 7.1a line 30: non-defense fixed assets (federal)

+Table 7.1b line 32: non-defense fixed assets (federal)

-Table 1.1 line 7: private residential fixed assets

equals: nominal capital stock used to produce GDP

31Note that λa
t = Λa

t /H
µ(1−σ)−1

t and λb
t = Λb

t/H
µ(1−σ)−1

t where h-superscripts have
been omitted since we are in a symmetric equilibrium.
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6.2.2 Real capital stock

• Our estimates of the real capital stock are derived from Tables 1.2
and 7.2. Real stocks are not reported but instead quantity indexes
are quoted. We convert each of the nominal measures to real stocks
in constant $2000 by multiplying the quantity indexes by the nominal
value of each of the stocks in 2000 and then dividing by 100.

6.2.3 Temporal disaggregation of the capital stock

• Since this data is not available quarterly we employ the method by
Litterman (1983) to distribute the annual series to the quarterly fre-
quency. The quarterly indicator variable we employ to this end is real
(billions of chained $2005) private nonresidential fixed investment, from
the BEA.

6.3 Stationary DCE relative to Kt

As discussed in the text, the theory consistent stationary DCE can also be
obtained by defining any per capita non-stationary variable, X t, as a share
of the observed per capita capital stock, Kt instead of H t. Also recall that
the log-deviation of any stationary variable from its steady-state is defined

as x̂t = ln
(
xt

x

)
or in this context x̂t = ln

(
Xt

Kt

)
− ln

(
X

K

)
. Hence we can

re-express the stationary DCE given by (21) relative to Kt as follows:

yt = At(utht)
(1−α)

nγkt − 1 + δk + ct = yt

nγkt ht+1 =
[
1− δh +Bt (et)

θ
]
ht
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µ(1−σ)−1 (1− ut − et)
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where γkt ≡ Kt+1/Kt.
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6.4 Recovering the stationary DCE relative to H t

To facilitate the comparisons of the impulse response functions and forecast
error variance decompositions between the HC and RBC models, we need
to recover the relevant quantities relative to Ht post estimation for the HC
model. To this end we apply the following transformations:

k̂ht = −ĥkt

ŷht = ŷkt − ĥkt

ĉht = ĉkt − ĥkt

îht =
(y
i

)
ŷkt −

(c
i

)
ĉkt − ĥkt (23)

γ̂ht =
beθ

nγ
b̂kt +

bθeθ

nγ
êkt

k̂ht = ĥkt

where the h and k superscripts have been added to denote the two represen-
tations of the model based on H t and K t normalizations respectively.
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