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Abstract

In this paper we investigate wealth inequality/polariaatproperties related to the support of
the limit distribution of wealth in innovative economiesachcterized by uninsurable individual
risk. We work out two simple successive generation examples with stochastic human capital
accumulation and one with R&D, and prove that intense telcigical progress makes the support
of the wealth distribution converge to a fractal Cantoeldet. Such limit distribution implies the
disappearance of the middle class, with a “gap” between tealtlv clusters that widens as the
growth rate becomes higher. Hence, we claim that in a highdyitotratic world in which the
payoff of the successful individuals is high enough, and imiclv social mobility is strong, soci-
eties tend to become unequal and polarized. We also show teglistribution scheme financed
by proportional taxation does not help cure society’s imditj/polarization — on the contrary, it
might increase it — whereas random taxation may well sucteéiing the gap by giving rise to
an artificial middle class, but it hardly makes such classadie enough. Finally, we investigate
how disconnection, a typical feature of Cantor-like setselated to inequality in the long run.
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1 Introduction

How do we predict a fast growing and unequal society’s wedilthribution to look like? In a global
highly competitive and technologically turbulent econoimgividual success or failure may substan-
tially alter one’s position in the social scale. We argud fugieties in a twin peak world would tend
to look polarized with a complex (fractal) structure.

This is proved by constructing a simple competitive econawnity successive generations and
uninsurable individual risk to show how easily the suppdrtheir limit distribution of individual
relative wealth levels can look like a peculiar geometrigeobcalled Cantor set, provided that the
exogenous growth rate is high enough. A Cantor set is a fractéhe real line, that is, a totally
disconnected set with self-similar structure with an emtdeharacteristic: it exhibits a “hole” in
the middle. Our definition of (extreme) inequality is basedsoich hole, which may obviously be
interpreted as the lack of a middle class, which, in turnftsroidentified with the term ‘polarization’
by the mainstream literature on inequality.

Emerging phenomena of income or wealth inequality and palon has been lately observed in
many economies. D’Ambrosio and Wolff (2008) document arralvecrease in US wealth polariza-
tion in the 1983-2004; Wolff (2007) analyzes the dramatibtetelated squeeze in the middle-class
share of total wealth during the early 2000s; Drew-Becker @nrdon (2007) show convincing evi-
dence that 80-90% of the wage distribution fail to grow atgheductivity growth rate, whereas only
the top quintile captures the increase in the productivipngh. Therefore the gap between top in-
comes and lower incomes widens over time. They have showt#&0-80% quantile of the income
distribution in the US have been steadily declining from@862001.

Our main prediction is a positive relationship between poédion and growth, which has proved
empirically significant and robust in the multi-country regsions by Roine, Vlachos and Walden-
strom (2007). In their panel data analysis they showed tiraughout the 20 century growth in
the developed world has been “pro-rich”. According to thigidings, “high income groups in soci-
ety have a larger share of their income tied to the actualldpueent of the economy”, while those
who fail to tie their income to the growth of productivity f&d the lower tail of the distribution. US
evidence suggests that computerization leads to disptaicklle skilled’ workers, and “[d]isplacing
this ‘middle’ generates polarization” (Autor, Katz and Keeay, 2006). In a large panel of countries
Lundberg and Squire (2003) find that growth has a positivecefin income inequality. Perloff and
Wu (2005) show that during the fast growing period 1985-2@02hina income inequality increased
dramatically both nation-wide and in urban areas. From hieeretical point of view, the literature
on income inequality/polarization appears to be alreadly eénough, both from the perspective of
the possible consequences that inequality/polarizatiay nave on growth ratésnd from the per-

1See,e.g, Loury (1981), Banerjee and Newmann (1993), Galor and Z&®Q3), Alesina and Rodrik (1994), Pers-
son and Tabellini (1994), Benhabib and Rustichini (199@&n&bou (1996a), Aghion and Bolton (1997), Piketty (1997),
Aghion, Caroli and Garcia-Penalosa (1999), Benabou (2006}ina and Angeletos (2005a, 2005b). For related empir-
ical contributions seeg.g, Alesina and Rodrik (1994), Perotti (1996), Benabou (199Bknhabib and Spiegel (1997),
Barro (1999, 2000), Forbes (2000), Alesina and La Ferrab@%p



spective of analyzing what aspects of innovation and grawdly generate inequality/polarizatién.
However, this is the first paper that enquires on the fractgdgrties of the support of the equilibrium
wealth distribution generated by the individual adoptidfest evolving technological change.

In this paper, economies with (possibly) polarized weaistrdbution in the long run are analyzed
by means of Iterated Function Systems (IFS) to describe dygiamics and their limit distribution.
Even if the IFS approach seems to be capable of unveiling spe&chs of economic dynamics, the
application of such methodology to economic models seerhs &1 an early stage: up to our knowl-
edge, very few works appeared along this line, and none of tigh the aim to explain wealth or
income inequality. Some examples are Bhattacharya andriviigu (1999a, 1999b, 2001 and, for
an excellent survey, 2007), who dealt mainly with IFS withdam monotone maps, Montrucchio
and Privileggi (1999), Mitra, Montrucchio and PrivilegdlQ04), and Mitra and Privileggi (2004,
2006 and 2009), who studied stochastic optimal growth nsod@hverging to invariant probabilities
supported on Cantor sets. From a different perspectiveciBanze and La Torre (2008) applied
the Collage Theorem to the inverse problem of finding a slétl¥s in order to estimate some key-
parameters of a Lucas-Uzawa type model (see also Kunze, k@ diod Vrscay, 2007a, 2007b, 2009,
and La Torre and Mendivil, 2008).

Our analysis is characterized by markets with equal opparés for all individuals; such equal
opportunities fuel a strong mobility engine that, if assted to high growth rates, may generate in-
equality. Mobility is introduced through stochastic lalmmcome heterogeneity, which represents the
ability of the individuals to adopt better and better tedbgees. If better technologies entail some
adoption uncertainty at the individual level and if suclkkiis uninsurable, due to the unobservable
or unverifiable individual commitment into a learning etfoncome heterogeneity becomes a nat-
ural consequence of aggregate growth, and the faster thegegg growth the relatively larger the
magnitude of the uncertain part of the individual resources

A faster growing environment implies stronger family maiprospects, because a successful
individual from a poor family can more easily overtake thewectessful individuals of a richer family,
but it means a tendency for the middle class to disappear ks wience a “hole” in the middle of
the support of the wealth distribution is more likely to appéhe faster the pace of technological
growth: the wealth distribution becomes polarized intoghtand a low wealth classes. However, the
random dynamical system that governs the individual agsggm across the ever expanding social
wealth distribution is not only polarizing the wealth distrtion, but will mirror the central hole
everywhere through the wealth distribution itself: theeaatze of a middle class at the social level
implies the absence of “middle subclasses” at all levelg, tduthe diversity of the destinies of the
different individuals who travel stochastically throudtetsociety’s wealth distribution. It follows

21t is worth mentioning the literature on skill-biased teotogical change as well as directed technological change,
such as Acemoglu (1999, 2002 and 2007), Card and Di Nardo2j2@dd Autor, Katz and Kearney (2006). For an
excellent survey, see Acemoglu (2008).

3As Mookherjee and Ray (2005, p. 13) notice: “if growth (froeutral technical progress) causes wages to grow at
a uniform rate, then fast growing countries are more likelylisplay wide spans, since higher growth in wages across
generations will dull the level of desired bequests”. Samjl in Mookherjee and Ray (2002). Unlike these models and
that in Mookherjee and Ray (2003), in our paper uncertaitgtyga major role.



that the very same process that generates a wealth digiribubich is disconnected in the middle
multiplies such disconnection at infinity (in all its sul@ntals), thus generating a totally disconnected
support of the wealth distribution. Therefore we reach wiratan call a “pulverized” society. Such
a “fractal society” is an intriguing mix of polarization apdlverization.

This kind of “polarization/pulverization” of the aggregatvealth distribution differs from the
traditional idea of “polarization”. though if we photogtaphe wealth distribution at each point in
time we get a highly “polarized” picture, when we track thegesses for the successive wealth levels
of any single individual we observe a strong mobility. Dyneafly, such societies are not polarized in
“durable classes”, but they show a tremendous impact of iibndeed, it is the amplitude of such
mobility that generates polarization: the very fact that ¢fains of a lucky poor can make her richer
than an unlucky rich is at the same time an important mokalgect and the cause of polarization.

We will obtain “fractalized” wealth distributions from tweersions of a simple macroeconomic
model with no aggregate uncertainty and individual idiasgtic income risk. Our specifications
generate enough linearity in the random dynamical systemmhnimmediately translates into well
known properties of the Barnsley IFS used to generate théo€aat. The choice of such a simple
(textbook-like) model allows us to examine in depth the ndirsct relationship between growth rate
and wealth inequality in a dynamic framework.

An important consequence of our main result regards thetedffe fiscal policy aimed at eliminat-
ing polarization/pulverization through income taxatidritdose who are successful and redistribution
to the unlucky individuals. Intuitively, since such polidyrectly attacks the mechanism responsi-
ble for the “fractalization” of society, one would expectttthis would easily reach its target. We
show that this is not the case. In fact, simple redistrisusohemes can never eliminate polariza-
tion/pulverization of society. What's more, even if theegrngorkings of the private economy itself did
not imply socioeconomic disconnection, a direct taxatibwealth of all individuals may be able to
induce polarization/pulverization of society. Also theoption of a random taxation scheme, which
has in principle the potential of creating an artificial mMeldlass in a polarized economy, proves
essentially ineffective whenever the incentive comphtybconstraint is sufficiently tight.

A closer look at how inequality is being affected by the iptay between pulverization and po-
larization — two apparently contradictory aspects relatethe same phenomenon that generates a
Cantor support for the limit distribution — in the long rungs/en by calculating the limit of the
Gini coefficient of the marginal distributions as time tetafinity: we find that inequality remains
positive for the invariant wealth distribution.

The main assumption underlying the (stochastic) dynamibsih models under study is that there
are only two states of nature: ‘failure’ or ‘success’. Su@nifework allows the best outcome under
the low realization to be worse than the worst outcome urigehigh realization whenever the growth
rate is large enough, as we shall prove in our main result.chb&e of such an assumption, if on one
hand plays a key role in establishing a direct relationskigvben growth and wealth polarization, on
the other hand may appear extreme and unrealistic. At thektheé paper we shall show, by means
of a heuristic but robust argument, that the main idea deeelon the ‘two shocks setting’ actually



generalizes to i.i.d. stochastic processes defined by atgense., quite the opposite scenario of
having the “highly discrete” process of only two states —~vpted that such density is bimodal, in the
sense that it concentrates most of the weight on the bowesdafits state space.

The paper is organized as follows. In Section 2 the two macmeemic models of technological
change are introduced. Section 3 is devoted to a self-cwdaeview of the basic mathematical meth-
ods we use to analyze the possibly fractal support of the timstribution for a random dynamical
system. In Section 4 we provide sufficient conditions forlitmét wealth distribution to have a Cantor
support, which we interpret as a polarized/pulverizedrithistion; such conditions are expressed in
terms of (exogenous) growth rate and degree of intergeoredialtruism of the population. In Sec-
tion 5 the main implications of the analysis of Section 3 oa itefficacy of inequality-eliminating
policies are reported in detail. In Section 6 we focus on gal@xamination of the interplay be-
tween inequality and what we have somewhat tentativeledatulverization”. Finally, Section 7
shows the robustness of our approach by proving that smaothrpations of our discrete stochastic
process do not affect the main result. Section 8 concludésssime comments, while the Appendix
A contains the proof of the main result of Section 6 and Appeldexplains the formula for the
approximation in Section 7.

2 Technology and Growth

In this section we introduce two simple macroeconomic medath exogenously evolving technol-
ogy. In the first one, we assume a sequence of successivagensiof altruistic individuals who take
consumption and bequest decisions on their wealth acctetubat of a stochastic income acquired
at the utility cost of learning a technology that is new atrgyggeneration. The second model hinges on
the same framework of the first one, but allows for explatatf new discoveries by means of patents
which expire after one generation. Both models are chaiaeteby a strong mobility engine (equal
opportunities for all individuals) and uninsurable indiual risk. Unlike the mainstream literature,
no imperfections on credit markets or barriers to accessattun are assumed. On the other hand,
uncertainty is modeled in a standard fashion, similar to #ampted in Aghion and Bolton (1997):
there are only two states of nature describing achievenoéetsonomic agents, either ‘success’, with
probability0 < p < 1, or ‘failure’, with probability 1 — p.

2.1 Adoption of New Technologies

Consider an infinite horizon discrete time economy with aiooum of infinitely lived families that
will be indexed byi. With no loss of generality we shall normalize populatioeiothe unit interval,
i.e, i € [0,1]. Each family is formed by a one-period lived altruistic miduals whose preferences
are represented by the following “warm glow” (see Andred®ig9) utility function

u(c,be) =c b —e



wherec > 0 denotes end-of-life consumptian;> 0 the bequest left to the unique heir> 0 a learn-
ing effort? and0 < 3 < 1 the degree of intergenerational altruism. As, for exampl8anerjee and
Newman (1993), Galor and Zeira (1993), or Piketty (1997¢hdDobb-Douglas altruistic preferences
imply that a fraction3 of each individual's end of life wealth will be passed ovehgy child. Hence,
the indirect utility of end-of-life wealthl is linear (risk neutral preferences) and equal to

UW)=(1-8)""5W —e.

The end-of-life wealthi’ of each family is uncertain at the beginning of each genamatit
depends on the wealth level inherited from the past, that ihe bequest left by the ancestor, and on
individual success in learning the technology that becoaagable during her lifetime.

Individuals of generation are endowed with one unit of labor time which they will indieally
use to produce a perishable consumption good at the comnoalugdivity level A, > 0. At the
beginning of period, a new General Purpose Technology (see Helpman, 1998)appargenously
and every individual has to learn it in order to successfaliyer production. Learning technology
A; requires an effort that entails a certain utility cest> 0. Whether an individual exerts the
required effort for learning such technology is somethhmgg tannot be observed by anybody but the
individual®> Moreover “success” in the adoption of the technology is mwésbut it occurs to each
individual with probability0 < p < 1 constant through time, independently of all other indialdu
In other words, all individuals of the same generation féeesame opportunity of success. Since the
(exertion of) learning effort is unobservable, borroweselitor interaction lasts one period only and
individual’s offspring cannot be sanctioned; accordingly idiosyncratic risk can be insured.

Technology is assumed to evolve exogenoudly= vA;_ 1, wherey > 1. Consistently, we will
assume that, = ve;_1, that is, learning a more advanced technology requires eftod.

Provided that individual € [0, 1] alive in periodt undertakes the learning effestat the beginning
of her life, her end-of-periothcomeY; will be:
yi o { 0 with probability 1 — p M

Ay with probabilityp
Notice that in this model income derives from the “abilityi’ the use of current technologies and
entails no utility loss. Failure to gain an effective edimatmight be the outcome of cognitive and
non-cognitive skills, responsible of school drop-outdence the economy of this section is charac-
terized by skill-biased technological change (see Acem®f)08).

4As will become clear later, each agent chooses to exertteffmetween two values: zero and a strictly positive fixed
amount which depends on time.

SSpecifically, it is not the amount of learning effort whichist observable, but whether an individual undertakes such
effort at all.

SEarly interventions in favor of disadvantaged-childreruersas Perry Preschool and other programs discussed by
Cuhna and Heckman (2006, 2007, and 2009) — may modify theapiiities of success at different wealth levels. This is
very important, but it will not alter the main results of thuaper, as we focus our attention to the support of the wealth
distribution.



The evolution of technology yieldd, = 1A, and that of efforie; = ~'eq, with both Ay andeg
strictly positive. Individuak wealth at the beginning of her life in periagds given by the bequest
inherited from period — 1:

bi = BWtifb

whereW, ;| represents the wealth accumulated by her ancestor at thefeimde ¢ — 1. Provided
that individual: will perform efforte; in order to learn technology;, her expected indirect utility
conditional to the past wealth and the performed effortvegiby

E[U W) | (Wii,e)] = (1= 8" W) WL] —e
1=B)""8 [p(BWi, +A) +(L—p) BWi,] —er  (2)
(1—8)"7 8% (BW; +pA,) — e

where the probability of succegsn adopting technologyl; does not depend on time.
We shall assume the following.

Assumption 1
0<eo<(1—70)"775%A,.

Assumption 1 implies that the expected indirect utilityabed by exerting efforé; is greater
than the certain effort for al > 0, thus rational individuals will always put the requiredagtfinto
learning the new technology. It follows that the intergetti@nal motion of the wealth of family
i € [0, 1] is described by

3)

— WL, with probability1 — p
"] BWi,+ A, with probabilityp.

Let b, > 0 denote the “original” bequest available at the beginningesfods = 0 to family 4, then

W — by with probability1 — p
° ] ¥ + A, with probabilityp

SinceA; grows exogenously through time, the random dynamical sy§3¢ described by the two
mapsf; (W,t) = W and f, (W,t) = W + A, evolves along increasing sets of possible wealths.
In particular, at the end of perigcyeneration will be endowed with some wealfly; in the interval

_ t+1
k%ﬁ%+(l—ﬁfﬁ—>fﬂAo @)

v =B

which, sincey > 1,0 < § < 1 andA4, > 0, diverges td0, +o0) ast — +oc.
However, notice that, sincé < § < 1, both f; and f5 in (3) are contractions in the variable
W, that is, wealth grows only thanks to technological par@mét as time elapses. Hence, a better



highlighting of the features of this dynamics can be obtaibg transforming system (3) into an

equivalent law of motion adjusted by the productivity levie| which turns out to be a contractive

process eventually remaining bounded inside a compact/béth we shall caltrapping region
Dividing (3) by A; we get the equivalent system in termsugf= W} /A;:

; (B/7v) wi_, with probability1 — p )
w - .
"7 ) (B/y)wi_, +1 with probabilityp
whose trapping region, as can be easily shown, is the idt@ny@ — (ﬁ/y))*l]. Let
0=", (6)
7

which implies0 < a < 1, and consider the linear transformatigh= (1 — ) w! of (5). With this
change of variable we obtain the following productivityjssted dynamic:

(7)

yi = ay; with probabilityl — p
t ay;_; + (1 —«) with probabilityp,

which, as we shall see more in detail in Section 3.3, has tliéenterval [0, 1] as trapping region.

The stochastic dynamic (7) defines two possible levels adpetivity adjusted) wealth at time
t of individual ¢, y;, provided that her wealth at time— 1 is ¢! ,. The lower level is reached with
probability1 — p while the upper level is reached with probability of success

System (7) belongs to an important family of random dynahsgatems known in the literature
as (Hyperbolic) Iterated Function Syster(i§S). Before studying thoroughly IFS (7), which is the
topic of Section 3, we turn our attention to a second, shghtbre sophisticated, model, mainly to
show that dynamics of the form expressed in (7) can be eaplcated.

2.2 Schumpeterian Growth with Patents

While keeping the same framework of Section 2.1, let us nsurag that every individual of gen-
erationt at the beginning of her economic life has the same probglilic p < 1 of discovering a
better production method that allows the productivity ofusmerd > 1 of individuals to jump to
the new technological frontied, = yA, 4, provided she undertook an indivisible innovation effort
€t = Y€-1.

To render growth endogenous we will assume that produgtiwth ratey is an increasing and
bounded function of the aggregate innovative effgfo% eldi, wherel is the constant (normalized)
population sizé. Inventions are immediately patented and the patents egftiee one generation.

"With this simple assumption — that may be motivated by someskof congestion effects — we eliminate Jones (1995)
scale effects.

8t would not be difficult to allow for population growth. Intestingly, as will become clearer throughout the paper,
offspring’s division of bequest would reinforce inequglit this model and/or even generate it.



We will assume that each individual can run only one reseprofect during her life. Hence we
are building a simple Schumpeterian model in which the pnérgeurs are new people (Schumpeter,
1934, 1939) who try to adapt the ever-evolving society kealgke frontier to their sphere of pro-
duction, as in Aghion and Howitt (1998) and Howitt (1999). eTparallel with Aghion and Howitt
(1998, Chapter 3) and Howitt (1999) cross-sector spillasen our assumption thatl; evolves as
an increasing function of social R&D adoption effort. Thdda a zero growth equilibrium due to
R&D coordination failure: if each individual expects nolyad exert effort she will be better off not
exerting it. In the rest of the analysis we will concentraté/an the positive growth equilibrium.

Unlike usual Schumpeterian models we are here assumingtadiproductive capacity per firms
and/or a limited number of patent licensees. In fact we vafitane that in order to implement each
successful innovation the cooperatiordoforkers (including the innovator) is necessary. Hence, by
the law of large numbers, in the steady state there will ba@ifinp of innovators, and a fractiopd
of individuals employed in all innovative productive prgses. Since we keep the whole population
normalized tol, in order to let all innovators carry on their activity, theadtion pf of employed
individuals cannot exceeq] that is, the number of workers for each activity must be hieahby

1<h< (8)
p

If the RHS of (8) holds with equality, the society is perfgativided in a fractiorp of entrepre-
neurs/ innovators and a fractian- p of workers. If the RHS of (8) holds with strict inequality et
there will be a fraction of people who will be treated as s#ifployed in production processes that
use the technologyl; ; available from the last period. Since patents expire after period, the
technologyA;_,, available only for the innovators at time- 1, becomes of public domain at time
Alternatively, if 0 = 1/p, equilibrium unemployment would result in this simple econy.

Therefore we shall assume that, at each petibdth employed workers in the innovative sectors
and self-employed workers in the old sectors perceiveisalagual to their productivity under the old
technologyA;_;. In this last scenario there will be a fraction< pf < 1 of individuals employed in
the A, technology sector and a fractian- pé of individuals employed in thel, _; technology sector.
Of these families, only a fractiopis able to reap the benefits of the innovative technoldgyeach
by employing) — 1 workers) by means of patents, while the other fractiefp, being they employed
in the innovative sector or self-employed in the old sea®remunerated by the productivity of the
A, technology?

The innovations of this model can alternatively be intetguleas the discovery of an “entrepre-
neurial talent” that allows the innovator to found a firm tpatmits a more efficient use 6fworkers
by making them use the best productive practices availabteei firm. As in Cuhna and Heckman
(2006, 2007, and 2009), and Heckman (2008), non-cognitiéias matter as well as cognitive
abilities. In this sense, the model of this section can bev@tkas an education model of the firm:

°%If & > 1/p, the innovators would not be able to implement their discege and in a competitive equilibrium all
profits would be zero, leading to a society with a unique viegdoup without inequality.



in the particular casé = 1 the individual is only able to privately accumulate the tstaf the art”
human capital. Unlike the previous example, the technolegsned by generationwill be observed
by everybody when it is operated, and, afterwards, everylyamll become able to use it at no ad-
ditional educational cost. With = 1 this model depicts an economy similar to that of the previous
example, except for a perfect educational spillover whibbmes the wealth of the children of the
unlucky generation to instantaneously reach the level@fubky members of the previous cohort.

Let us turn our attention to the evolution of wealth throuigiet in this model. In every periog,
“innovators” will appear angd < 1 skilled workers will be producing with the cutting-edgeheol-
ogy, paying their extra productivity to each successfubvator. The innovator — as a patent holder
or as an entrepreneur — is able to extract the complete ptigtyincrement for one period, thereby
rendering the appropriable technology of every non-intmvaqual to the same valug_;. In other
words, besides directly benefitting from the new technoldgyeach single innovator in periagccan
appropriate the productivity gains of the non-innovatomskers employed in her firm. Her end-of-
period income is thus equal to

At (A= A1) (0-1) =[1+0(y—1)] A )

Hence, the wealth of individualat the end of period, provided she undertook the indivisible
innovation efforte; at the beginning of the period, will be

Wf _ { BWE L+ A with probabilityl — p (10)

| Wi, 4+ [1+6(y—1)] Ay with probabilityp.

The unlucky will get only the one-period lagged producyivit, _; wealth, being her self-employed or
employed by some patent holder firm; in the latter case shé payshe full monopolistic rent to the
successful patent holder who employs her, though she caseletween different patent holders.

Once again, we need to make sure that all families find it coileve: to undertake the indivisible
innovation effort, at the beginning of each periodThe individual expected utility gain conditional
on efforte; is given by

E[U(Y))le =pp[L+0(y =D} Ams + (1= p) pAios — e
=p[l+p0(y— D] A1 — ey,

wherep = (1 — ﬁ)lﬂ 37, while the individual certain utility gain obtained by exerting zero effort
is given by
U (Atfl) = pAi_1.

To achieve our goal,
E[U (Y}) |e] > U (A1)

must hold, which easily translates into the next assumption

10



Assumption 2
0<ey<pb(l—1/7)pAp.

wherep = (1 — )" 7.
Notice that in this case nobody ends up with a zero wealthinste#ad even the “poorest” segment

of the population improves its standards of living at the sateady rater — 1 as the richest. In
particular, at the end of perigdeach individuat will have some wealthiV’; laying in the interval

b + (—1 ] ) Ao, B+ <—1 L >7t 1400 1)] 4

This is a consequence of the temporary nature of patentaltbats the inventors to “exploit” the un-
lucky only for a limited lapse of time and, upon expiry, makieat innovation available for everybody
to be freely used.

Following the same technique as in Section 2.1, divide bgthagons in (10) byA; to get the
productivity-adjusted dynamic

W — { aw;_; + 1/ with probabilityl — p 1)

aw! |+ [1+60(y—1)]/y with probabilityp,

wherea = 3/~. Through the affine transformatiof = [0 (v — 1)] " [y (1 — a) w! — 1] of (11), it
is immediately seen that we obtain the same IFS as in (7ngakie relevant values on the interval
[0,1].

3 lterated Function Systems and their Attractor

In this section we provide a self-contained descriptiorhefrhathematical toolkit necessary to handle
IFS of the kind defined in (7). We shall confine our attentiohR8 constituted by maps which are
contractions, since we heavily rely on a basic result on eayence of IFS requiring this property.
Then, we shall generalize the idea of normalizing linearaiiyits over a compact interval (specifi-
cally, [0, 1]) already used in the previous sections, and we shall cyefuidy the geometric proper-
ties of the the fixed point — the attractor — of such normalitt®l On these geometric properties is
based the definition of wealth polarization/pulverizatibat will be used in subsequent sections.

3.1 A Well Known Result on IFS

There is a huge literature available on IFS, which has groeny ¥ast since, a few decades ago,
it proved useful in techniques for generating approximaeages of fractals on computer screens.
Exhaustive treatment can be found, among others, in Higohi(.981), Barnsley and Demko (1985),
Edgar (1990), Vrscay (1991), Stark and Bressloff (1993)dta and Mackey (1994), and Falconer
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(1997, 2003). For a simplified exposition, focused on distugsan optimal growth model exhibiting
the same dynamics as in (7), see also Mitra, Montrucchio andeggi (2004).

Let X be some compact subsetdfand consider a pair of mapg, : X — X, fo : X — X, such
that f; < f, with some constarii < o; < 1 suchthatf; (z) — f; (y)| < aj |z —y|forall z,y € X
andj = 1,2. Given a fixed probability < p < 1, the triple{ f1, f2, p} defines the (contractive) IFS

v — { f1 (z;—1) with probabilityl — p (12)

fo (z;—1) with probabilityp.

on the compact set. System (12) induces an operaioon R, calledBarnsley operatgrdefined by
T(B)=fi(B)U f2(B), B C X, (13)

wheref; (B) denotes the image @ throughf;, j = 1, 2. Successive iterations @ftransformB into

a sequence of sefy = T [T~ (B)] through time. We are interested in properties of the lingiset,

if it exists, to which the sequendg, might eventually converge. A set C X is called annvariant
setor attractor for (12) if it is compact and satisfiés (A) = A. Itis a set such that, once entered by
the IFS, successive iterations’Bikeep the system inside it.

Since (12) describes a stochastic dynamical system, anotipertant aspect of the IFS is the
evolution through time of marginal probability distribois. Given any initial distributiomw, over
X, itis interesting to study how this probability evolves aating to (12). LetB be thes-algebra
of Borel measurable subsets &f and P the space of probability measures @Y, B). Define the
Markov operatorV! : P — P as

Mv(B)=QQ-p)v[fi"(B)] +pv[f;'(B)], foralBeB (14)

wherev € P and f; ' (B) denotes the preimage sgt € X : f; (z) € B}, j = 1,2. OperatorM
is often calledFoias operator As we did for operatofl’, we want to study successive iterations of
M starting from some initial probability,, v; (B) = M [M''1, (B)], which yields the evolution of
marginal probabilities of the system as time elapses. Agloity distributionz* € P is said to be
invariant with respect td/ if

vt = Mv*. (15)

An invariant probability distribution is usually intergesl in economics as the stochastic steady state
to which the economy might eventually converge startingnfisiome initial distribution/, (see for
example Stokey and Lucas, 1989, and Montrucchio and Ryiyijd.999).

Below we recall an important result available for the fixechpof our IFS. Recall that theupport
of a probability distributionv is the smallest closed sét C X such thatv (S) = 1, and that a
sequence/; of probabilitiesconverges weaklyo v* if tlirg) [ fdv, = [ fdv* for every bounded
continuous functiory : R — R.
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Theorem 1 Consider the IFS described Ky, fo, p}.

i) There is a unique attractor for the IFS; that is, a unique cawetsetA C X, such thatf; (A) U
f2 (A) = A

ii) There is a unique probability distribution* on (X, B) satisfying the functional equation (15),
that is,
V' (B)=1—p) v [f{(B)] +p [fs(B)] forall B € B. (16)

iii) A is the support of* and, for any probabilit}’ v, on (X, B), the sequence;, = My, for
t=20,1,2,..., converges weakly tg".

The original proof relies on a contraction mapping argunaewitdates back to Hutchinson (1981).
See also Lasota and Mackey (1994) and Falconer (2003) fibvefiudiscussion.

3.2 Scaling Maps

Consider the IFS (12) and assume that the mgpg$, are increasing. Let andb be their fixed
points respectively, that ig; (a) = a and f, (b) = b, as in figure 1. Since the mags, f, are both
contractions, it is readily seen that, as time elapsesesgaluthat are admissible eventually must lay
inside the intervala, 0], that is,[a, b] is the trapping region of (12). In other words, the portiorief
mapsfi, f> which is relevant in the long run is included in the squére figure 1 (where the plots
of f; and f, are in bold). Hence, with no loss of generality, we mayNet [a, b].

b

T fo

fi
)
I
1 N G2
g1 .

0 1 a b

FIGURE 1: normalization of two contractive magg, f» over the unit square.

19To be precise, weak convergence holds for any initial proiyat such thatf |z — a| dv < oo for some constant.
See Section 2.1.2 in Mitra, Montrucchio and Privileggi (2Pfbr more details.
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For any increasing contractive maps f», such relevant region can be “normalized” over the
interval 0, 1] (that is, the squar& can be transformed into the squa¥en figure 1) by the following
two transformations:

1. by arigid translationtowards the origin, so that the fixed poinbecomes the origin itself, and

2. byscalingthe whole systerby a factork = b — a.

The outcome of such transformation is a new IFS

_ ith ility1 —
= g1 (Y1) W!t probabf fty D (17)
92 (y4—1) with probability p
where the mapsg; are given by
g; (y) :k:_l [fj (ky+a)_a]7 j: 1727 (18)

with & = b — a, as can be easily checked. Figure 1 illustrates this traaslacaling procedure
that transforms the original relevant regidninto the new “normalized” relevant regiaN, which
is the unit square. Such normalization can be generalizedajos f; < f, that are not necessarily
monotoné'! see Cozzi and Privileggi (2002) for details.

Transformations that are translations and scaling arectalmilarities (see Falconer, 2003, pp. 7
and 8). Asimilarity has the property of transforming sets into geometricaityilsir ones, in the sense
that it preserves relative distances between points of tiigenal set; formally, it is a transformation
S :R"— R" such thatsS (z) — S (y)| = k |x — y| for all z, y € R™ and some constardtio or scale
k > 0. Therefore, by construction, the IFS (17) obtained thro{dg}), has graph similar to the graph
of the original IFS (12); this can be easily checked by notivag the graphs inside the squailéand
N in figure 1 are themselves similar. With a slight abuse of ieology, we shall say thahe IFS
(12) and (17)re similar.

An important consequence of the normalization proceduserdeed above is that the invariant
sets of both (12) and (17) have the same geometric propesabey are generated by similar sys-
tems. Thus, similar IFS have similar attractors, and stuglyhie geometric features of the attractor of
the normalized IFS (17) is equivalent to studying the geoynat(12).

3.3 Normalized Linear IFS

If the mapsf; are linear and with same slope< o < 1, that is, of the form

2 = { ax,_1 + z;  with probabilityl — p 19

axy_1 + 29 With probabilityp,

11To be precise, at least in the study of inequality phenomaisa,the contractivity property could be relaxed some-
where in the “relevant region” (the squafdn figure 1). The only minimum requirement is that the graphitf;, f> do
not intersect inside this area and that the maps are coiotnaaiutside such area, so that the system is being attraxcted
the intervalla, b] as time elapses.
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wherez, zo are any constants such that < z,, thena = 2,/ (1 —a), b = 2/ (1 — «) and (18)
becomes the affine transformation

Zi — Z .
g](y):ay+(1_a) ? 17 j:1727 (20)
Z9 — 21
which transforms IFS (19) into the similar one
_ ith probability 1 —
v probabiiy = o)
ay;—1 + (1 — «) with probabilityp

defined onX = [0, 1]. Figure 2 illustrates why intervél, 1] is the trapping region of the contractive
system (21)0 is the fixed point of the map, (y) = ay and1 is the fixed point of the map, (y) =
ay + (1 — «); since, at each period, the system “jumps” from one map tother with probabilities

1 — p andp respectively, it must eventually remain “trapped” betweemd1.

g2

Y1

(251

0 1

7 Yt

FIGURE 2: X = [0, 1] is the trapping region of system (21), whetigy) = ay + (1 — «) andga(y) = ay.

Notice that (20) provides an alternative — and more genax@Ho obtain the normalized IFS (7)
from the two (apparently) different systems (5) and (11)ect®ns 2.1 and 2.2 respectively, where a
direct change of variable has been used instead.

Itis important to stress that the affine transform (20) dassaffect the sloper of the mapsf; of
the original linear IFS (19); in other words, the (similgyitransformation (20heutralizes the effect
of the additive constants andz,. We thus have proven a general property, stated in the foilpw
lemma, which will be central in proving the main results o€tean 5.

Lemma 1 The common slope of the maps in dinear IFSof the type (19) completely characterize
its dynamic properties, independently of the additive taimts z; and z,. Accordingly, the geometric
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properties of its attractor depend uniquely on parameteand not on additive constants.

Specifically, the (similar) linear IFS (19) and (21), whicwvie the common slope for both pairs
g; and f;, havesimilar attractors Thus, we are entitled to concentrate our analysis exalsin
IFS (21) — or, equivalently, on the IFS (7) — over the unitiméd, X = [0, 1].

To see how parameter (and not additive constants) affects the whole geometry&f (21),
observe that the graphs gf andg, are two increasing parallel lines crossing the lower lett Hre
upper right vertex of the unit squaj@ 1]2 respectively: the largex (close tol) the steeper and the
closer they are, the lower the flatter and the more apart they are. One may check (in ther)o
figures 3, 2 and 4(a) to grasp how these graphs change as vhluelecrease.

3.4 Geometric Properties of the Attractor

It is important to emphasize some features of the attradtof the IFS (21) — the support of its
invariant distribution — which depend only on contractiantbra and are independent of probability
p. This will provide a key ingredient for our definition of wéalpolarization/pulverization.

A quick glance at figure 2 makes clear that the support of o8ni#il be the whole intervalo, 1]
wheneven /2 < a < 1. This is becaus@ ([0, 1]) = ¢; ([0, 1]) U g2 ([0, 1]) = [0, 1] if the images ofj;
andg, overlap, that s, ifl /2 < a < 1, as figure 3 shows. In this case we shall say that all marginal
distributionsy;, and thus also the invariant distributioh, have “full support”.

Yt+1

Yt

FIGURE 3: ¢1([0,1]) U g2([0,1]) = [0,1] when1/2 < a < 1.

More interesting is the case when images$/0, 1]) andg, ([0, 1]) do not overlap: this happens for
0 < a < 1/2,sinceg; ([0,1])Ugs ([0,1]) =[0,a]U[1l — a, 1], where[0, o] and[1 — «, 1] are disjoint.
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Fora < 1/2, there is a “gap” between the two image sets, with amplitude
h(a)=1-2a>0. (22)

Note thath («) is decreasing iny, and the gap “spreads” through the unit interval by suceessi
applications of the mapg;, reproducing itself, scaled down by a factotw, in the middle of each
subinterval born after each stepFigure 4 reproduces the first three iterations of (21) isigufrom
0, 1], generating a union of (= 23) intervals of lengthn?.

14 19

U1 Yo

Yo
(@) (b)

Y2
(c)

FIGURE 4: first three iterations of our IFS fer < 1/2 starting from|0, 1]. The third iteration gives a union of
eight intarvals of lengtla?, as can be seen on the vertical axis in (c).
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By pushing these iterations to the limit, we eventually fimdsdtractor with features of the usual
Cantor ternary set; in fact, for = 1/3, the support is precisely the Cantor ternary set. Cankerdéets
of the kind constructed by computirign; .., 7* ([0, 1]) for 0 < o < 1/2 exhibit several geometrical
properties that are typical éfactals

The most bewildering — and intriguing — feature of fractalthie need of a more sophisticated tool
than the topological dimension — which allows only for iregegalues — to measure the “consistency”
of their structure. Several dimensions has been consttdiotehis purpose, like, among others, the
Hausdorff dimension, the Box-counting dimension and tmeil8rity dimension (for a discussion on
dimensions see, for example, Falconer, 2003). All fradtalge the peculiarity that their dimension is
a “fraction”, from which the name “fractal”; for instanceag@tor-like sets which are the attractors of
(21) for0 < a < 1/2 have Hausdorff dimension In 2/ In «« (positive but less tham), which, in this
case, is the same as the Box-counting and the Similarity mbioas.

Wheneveir < 1/2, the attractor of (21) has dimension less thawhich implies that it is totally
disconnected; that is, between any two points there aree8igpoints laying outside the attractor).
Conversely, even if dimensions less thiadenote sets with very “disperse” points, it can be shown
by means of a standard Cantor diagonal argument that Chikeéosets contain uncountably many
points, which are all pulverized across the interval it§elthe mathematical literature they are often
referred as “Cantor dust”). Nonetheless, none of thesagare isolated,e., all Cantor-like sets have
the paradoxical property that they are battally disconnecte@dndperfect A terse and accessible
discussion of the Cantor ternary set and its properties edound in Chapter 11 in Strogatz (1994).
Also Crownover (1995) is a good reference for an introdycémproach.

3.5 The Invariant Distribution

Properties of the attractot discussed before shed some light also on the limiting bistion sup-
ported on it. A subset dR with dimension less thahhave Lebesgue measure z&f&inceA is the
support of the invariant distributian’, v* (A) = 1, from which we deduce that* turns out to be sin-
gular with respect to Lebesgue measure whenewverl /2. However, singular invariant distributions
are not confined to the case< 1/2, as it is widely discussed in Mitra, Montrucchio and Prigilg
(2004), where singularity versus absolute continuity praps ofv* are systematically investigated.
To have a flavor of what such an invariant distribution migiuid like, one may draw some itera-
tions of Foias operatét M defined as in (14) starting from the uniform distribution oje 1]. This,
in the casd) < o < 1/2, is equivalent to the following construction. Split a uniass so that the
right interval of 7" ([0, 1]) has mas® and the left interval has mass— p. Then, divide the mass on
each interval of’ ([0, 1]) between the two subintervals 6f ([0, 1]) in the ratiop/ (1 — p). Continue
in this way, so that the mass on each interval’6f[0, 1]) is divided in the ratigp/ (1 — p) between
its two subintervals i+ ([0, 1]) (see also Example 17.1 in Falconer, 2003). Figure 5 depictes

127 rigorous proof of this fact, which uses the notionHdiusdorff measurecan be found in Edgar (1990).
13The Maple code that generates plots like in figure 5 is avigiltbm the authors upon request.
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iterations ofM using this construction starting from the uniform disttiba for« = p = 1/3.

2 4
1- 2
0 1 0 1
(a) M* (b) M2
81 16
44 8-
|| T (P
1 1
(c) M? (d) M4
32 64
16+ 32
0 1 0 1
(e) M? (f) M®

FIGURE 5: first six iterations of operata¥/ starting from the uniform probability for = 1/3 andp = 1/3.

Figure 6 shows two examples of eight iterations)dfin the overlapping case,e. for a >
1/2, when the invariant distribution* has full support. Note that far close tol [high “degree
of overlapping” of the images; ([0, 1]) and g, ([0, 1])] and p sufficiently close tol /2, figure 6(a)
suggests that* will be “smooth” (absolutely continuous); while, whenevegets closer td /2 and
p gets closer to the endpoiri®r 1, as in figure 6(b), the approximation resembles the traseoied
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in figure 5(f), where the limiting distribution is known to sengular.

@ a=4/5andp=1/3 (b) « =3/5andp =1/8

FIGURE 6: two examples of the first eight iterations of Foias operatostarting from the uniform probability
in the overlapping case, that is, far> 1/2.

We end this section by noting that Theorem 1 applied to ouZ2$ provides also some standard
information on the limiting distribution*. Denote byy* € [0, 1] the random variable associated
to the invariant distribution*, that is, lety* be therandom fixed poirit of system (21). Then, the
functional equation (16) can be rewritten as

* * 1_
V*(y*GB):(l—p)y*<%€B)+py*<y—— aGB),

« «

which allows for a direct computation of expectation andarace ofy*:

E(y)=p (23)
Var () = (1 - ). (24)

Note that these computations are justified thanks to weakergance, since expectation and variance
are the integrals of the identity functigiy) = y and the functiory (y) = [y — E, (y)]? respectively,
which are both bounded and continuous|@n].

4 Growth and Inequality

The stochastic dynamic model expressed by (7), or more giiyney (21), turns out to be especially
useful for a slightly different interpretation, which isstimain focus of this paper. One-period proba-
bility p of individual i of successfully adopting technology at the end of period — or discovering
some innovative production method in the Schumpeteriasioeiof the model — can be seen, by the

t4See Arnold (1998) for a detailed treatment of random dynahsigstems and random fixed points.
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law of large numbers, as the “average proportion of the wpopailation” that in the long run is able
to catch the opportunity of benefitting from the (constamiplving) new technology. In this sce-
nario, the IFS (21) describes the evolution through timénefwealth distribution across a population
of a continuum of individuals normalized tg which, by Theorem 1, in the long run converges to
some invariant wealth distributiar’ supported on a subset ©f 1].

From this aggregate perspective, expectation (23) cardoea®the average productivity-adjusted
wealth in the steady state, and variance (24) as the dispedfiindividual wealths. From (23)
it is immediately seen that the higher the individual praligbp of exploiting technologyA; (or
successfully innovating), the “richer” the economy on agey;, while (24) shows that low values of
parameter = 3/~ (i.e., low altruism rate5 or high exogenous growth rai¢ and values of parameter
p close tol /2, entail a dispersed invariant wealth distribution Index (24) provides a very rough
measure of wealth inequality; incidentally, note that,day fixed value of probability of succegs
the lower parametet, the more dispersed the (steady state) wealth distribution

In view of Section 3, we are in the position of saying much nmrehe steady state of such kind
of economy. Specifically, we focus on the existence of a meiddhss, which is often considered
important for growth itself, for democracy, for sociopualél stability, and for the law and order, as
quantified, among others, in the empirical analyses of Akeand Rodrik, (1994), Perotti (1996) and
Barro (1999). A strong middle class in our economy is represkby an invariant distribution*
that gathers a proportionally larger fraction of the popialaaroundl /2 than close to the endpoints
0 and1 of the interval|0, 1]. Our main result, Proposition 1, provides clear-cut caodg for the
converse, théack of a middle classthus characterizing economies which are polarized ingesm
wealth distribution.

The self-contained description of such steady state inderfrattractor of the IFS (21) carried
out in Section 3.4 makes clear the relationship betweeresadfiparametet and the very existence
of a middle class: economies featuring values: 1/2 for the exogenous parameter= 3/~ have
the striking property that a middle class disappears ayraftér one period starting from any wealth
distribution, on [0, 1]. Such disappearance is graphically represented by the tgstpreen the
two disjoint image sets; ([0, 1]) andg, ([0, 1]) in figure 4(a): already the first marginal distribution
v, concentrates wealth on two disjoint classes regardlesBeofvealth distributions, on [0, 1] in
t = 0. Furthermore, this gap is doomed to stay there forever,ishaiso the limiting (steady state)
wealth distributionv* turns out to be characterized by the same lack of a middle.cldste that,
as we observed in Section 3.4, this happens independenthegirobability of success, and the
size of the gap increases as parametdecreases, which is consistent with the measure of digpersi
provided by (24). Since the lack of a middle class can be sean axtreme case wfealth inequality
accordingly to the literature on inequality we shall refeittwith the termwealth polarization'

Moreover, we have seen in Section 3.4, that whenever thedswsetg;, ([0, 1]) andg. ([0, 1]) are

SWe shall see in Section 6 that the term polarization becomalsigmatic whenever a more technical definition of
polarization is needed for distributions supported on Gasets. Throughout most part of this paper, we shall empley t
term polarization to identify whatever wealth distributioharacterized by a missing middle class, as formalizetlan t
next Definition 1.
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disjoint, after the first iteration of the IFS the hole appegin the support of the marginal wealth
distributiony; is being infinitely replicated on smaller scale in all sugpaf the successive marginal
distributionsy,, for all ¢t > 2, leading in the limit to a support for the invariant distritaun »* which
is a Cantor-like set. This phenomenon creates a form of-giss social disconnection that we
somewhat tentatively will labetealth pulverization

The discussion above leads to the following definition of Mrepolarization/pulverization based
on the (no) overlapping property of the image sets of the mapsdg, of the IFS (21).

Definition 1 Consider any economy of the type described in Section 2 efperductivity adjusted)
wealth distribution through time is described by the &5, g2, p} defined as in (21) oX = [0, 1].
We shall say that such economypiarized/pulverized whenevel®

g1 (1) <g2(0). (25)
A direct application of Definition 1 leads to our main result.

Proposition 1 Under Assumption 1 for the model introduced in Section 2.Xomdition (8) plus
Assumption 2 for the model described in Section 2:2 525 the supportA of the limit distribution

v* of both economies is a Cantor-like set, and thus they arergeld/pulverized in the long rut.
Moreover, the largery (and/or the smaller3), the larger the gap between the fractions of the pop-
ulation — the the “poor” and “rich” — near the endpoints of thiaterval [0, 1], independently of the
values of parametersandé.

Proof. Sincea = (3/v, v > 26 <= «a < 1/2, which itself is equivalent to (25). The latter
statement follows from (22), which measures the size of #yelgetween the “poor” and the “rich”
fractions of the population as a decreasing function ef 3/~. =

Proposition 1 shows that a high economic growth rate, by rewwg the successful individuals and
penalizing in relative terms those who are not ready to ditelmpportunities associated with the new
technologies, make the middle class disappear and polswidety in two different wealth classes.
Polarization becomes dramatic the larger the jump in privdtic v and the smaller the individual
degree of altruisng (or, equivalently, the more selfish the individuals).

Remark 1 Itis important to highlight that a polarized wealth disttibon does not mean that wealth
classes are trapping the individuals: all individuals hake same opportunity to become rich or poor
in this economy and it is precisely the amplitude of$beial mobility— and not the frequency, that
is the probabilityp of catching the technological opportunity, or finding someavative production
method — that generates wealth polarization.

18For a discussion of the no overlap property (25) applieddotsistic optimal growth models of the Brock and Mirman
(1972) type, see Mitra and Privileggi (2004, 2006 and 2009).

Conditiony > 24 is both necessary and sufficient for the attractaio be a Cantor set. However it is clearly only
sufficient for polarization, since, generally speakingjrasariant distribution may well have full support and at #zne
time exhibiting some degree of polarization, as it will bewh in Section 7.
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5 Redistribution and Social Cohesion

It turns out that normalizing maps of IFS as in (19) on therivag[0, 1] has important policy impli-
cations. Specifically, redistribution schemes based omptsam transfers from the rich to the poor
aimed at doing away with social polarization/pulverizatare not capable of achieving such goal,
while direct wealth taxation may even make polarizationseoiThis happens because the “hole” that
generates polarization depends only on paramet@oseferences) and (growth rate), as it has been
widely argued in the previous sections, and cannot be affielby mere transfers of income, as the
latter simply translate into different values for consgant z, in system (19).

This result appears counter-intuitive at a first glance. Wl slevote the next sections to analyze
in detail whether and how alternative forms of governmetdrirention may affect wealth polariza-
tion. First, two types of lump-sum transfers which fail tcnehate wealth polarization, one for the
model described in Section 2.1 and one for the Schumpeteeiaion of Section 2.2, are discussed.
Thereafter, such a result is being even strengthen by slgawat direct wealth taxation may actually
worsen polarization. In Section 5.2, however, we shallrafiéiscal solution based on random taxation
of the rich that may wipe out polarization, at least in thesgeof “filling the gap” in the support of
a polarized invariant distribution. For simplicity, we Wilot assume that polarization/pulverization
implies productivity losses.

5.1 Lump-Sum Transfers

In the model of Section 2.1, let us assume that the gains fimoess are taxed at the end of each
period a proportiold) < 7 < 1 and that proceeds are redistributed lump-sum to the urdaékif all
individuals exert effore; in order to learn technologyl;,, the steady state proportion of rich families
in the economy will still bep. Hence, the government in the long run will be able to coltest
revenues equals tar A;, which — assuming a balanced government budget every perogals the
aggregate lump sum transfer received at the end of petgdhe whole poor.

Since taxation further reduces the expected benefit defivadhaving the opportunity of adopt-
ing technologyA;, in order to let all individuals keep putting effart even under taxation and thus
obtain a dynamic similar to that in (3), an upper bound on e r is needed. Let us discuss in
detail how Assumption 1 needs to be modified to avoid freengdiehavior due to the possibility
of receiving, out of nothing, a transfer that generates adngitility than the expected utility gain
produced by putting effo;.

Let 0 < [ < 1 denote the fraction of the population who decides to putrefipin learning
technologyA;. Then, at the steady state, the total amount of tax revesygs il;, and each non-
successful individual— which are both the unlucky ones who exerted effpeind the lazy ones who

BNote that, assuming lumps sum redistribution to all indials — not only to the unluckies — would not alter the
gualitative results of our analysis.
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did not exert any effort, that amount to a proportion pl of families — receives a transfer given by

) pl
T = A, 2
! 1—plT ! (26)

In view of (2), the individual expected utility gain conditional to effost is given by

E[U(Y))|e] =p[pQ—7)A+ (1 —p)T}] — &

l
=plp(L=7)A+(1—-p) lfplTAt — e,

wherep = (1 — 5)1_5 37, while the individuali certain utility gain obtained by exerting zero effort
is given by
pl

U(T) =ry

Ay

In order to let all the families put the effart = 4'¢, required to learn technology;, we need
E (U (¥) o] > U (1))
to hold for all0 <[ < 1, which leads to

-
<1 — 1 —pl) ppAy > eg.

Since the minimum of the left hand side is reachedifer 1, then, for each givemr, satisfying

Assumption 1, the following restriction on parameteguarantees that all families will always put
effort e; in learning technology!; also under government taxation.

Assumption 3 Assumption 1 holds and

€o
0§T<(1—p)<1—ppA0>, (27)

wherep = (1 — )" 7 %,

Hence, in view of (3), the dynamics of individui& wealth becomes:

(28)

;=

— AW, +p(1—p) " 74, with probabilityl — p
BWE, +(1—1)A, with probability p,

wherep (1 — p)*1 T A, represents the transfer received by a single unlucky faimely7} in (26) with

[ = 1. By dividing both equations in (28) by; we get productivity-adjusted linear dynamics:

i { (B/7)wi_, +p(1—p)~'7 with probabilityl — p (20)

e B/ wi_y+ (1 —7) with probability p.
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Under Assumption 3, the RHS in (27) implies< 1 — p, which, in turn, impliesp (1 —p) ' 7 <
(1—7). Ifweleta = /v, 21 =p(1 —p) ' 7andz, = (1 — 1), (29) becomes as in (19), which is
similar to (21), and thus a direct application of Lemma 1 indiately yields the following result.

Proposition 2 If v > 273, polarization/pulverization never disappears for all ome tax ratesr
satisfying Assumption 3.

Figure 7 shows that only the common slope of the two maps itotsg) the IFS affects polariza-
tion/pulverization while lump-sum transfers — which arehiiog else than additive constants — have
no effect in reducing inequality.
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FIGURE 7: redistribution from the rich to the poor has the only effefcshrinking the size of the gap, it does
not make it disappear.

There is, however, an important difference with respech&édynamics obtained in Section 2.1.
Observing the evolution through time of the supports of tlaegmal distributions; of systems (28)
or (29), itis clear that the standard of living of the poor endealth redistribution will be bounded
away from zero in the long run, that is, nobody will end up vdthero wealth in the steady state. As
a matter of fact, the feasible wealths of system (28) at titag in some subset of the interval

t+1 t+1
b5 + (—1 ] )v”lp(l — ) o, Bty + (—1 SLs )Wl (1= 7) 4,

)
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where the left endpoint is strictly positive and increasowgr time. Therefore, although govern-
ment redistribution does not affect polarization/pulgation, it still proves effective in sustaining the
wealth of the poor. Clearly also the “rich side” of the popiga is being affected by having a reduced
— by factor(1 — 7) — maximum possible wealth compared to that of the originasitde region (4).
Thus, the overall effect of a redistributive policy by thevgotnment is to narrow the whole absolute
wealth around its mean, without changing polarization/putation features in relative terms.

It would be natural to endogenize fiscal policy along thedin€Alesina and Angeletos (2005a)
and Alesina, Cozzi, and Mantovan (2009), with the importafiérence that here luck and unluck are
not additive, but multiply effort. As shown by Alesina, Cgzand Mantovan (2009), the implied dy-
namics will depend on how preferences for a desired didgtabare chosen: somewhat unexpectedly,
the present model suggests that the introduction of thdilitigwf living in a polarized/pulverized
society could get voters to support lower taxation.

5.2 Government Purchase of Innovations

If the effort ¢, required to promote innovation is sufficiently small, in tRehumpeterian model of
Section 2.2 the government could reward the innovator bghasging the innovation and at the same
time making the innovation itself immediately publicly #ehle to everybody, as suggested by Kre-
mer (1998).

Provided that population is normalized tpthe society as a whole will put effoet in R&D for
new technological projects and at the steady state thetdeva fractionp of successful innovators
who possess technology;. Suppose that the government, in order to make technafpgublicly
available in period, buys the technological know-how from thdraction of innovators at the lowest
incentive compatible pric®,i.e., atp—le,, and allows the fractioi — p of unluckies to freely use it
in their own firms. Assume further that the government chawaethe unluckies the whole cost
of research through a lump-sum tax to be fully transferrethéduckies. Then, the law of motion of
wealth becomes:

W) = { BWi + A —(1—p)~" e with probabilityl — p 0)

BWE L+ A+ ple with probability p,

where(1 — p)’1 e, denotes the per capita cost of research charged to the irduankdp e, denotes
the per capita compensation for the productivity gain I&s We will assume:, small enough to
guarantee that the unluckies are better off under this ébpcechase of the new technology than under
laissez faire

Observe that, at least for the cgse< 1/2, which seems sufficiently realistic, system (30) can
be reduced to system (7) — or (21) — through formula (20). &foee, once again, Lemma 1 and
Proposition 1 apply stating that polarization/pulveriaats completely determined by conditigrn>
24 and a result similar to Proposition 2 holds: government e private innovations does not

®Note that any price slightly higher thart'e; makes each individual strictly better off undertaking tr&fReffort.
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affect polarization/ pulverization.
The delicate part, as usual, is enforceability of such acgolnobody would vote a government
policy which leaves everybody worse off. The individual egfed indirect utility gain is

B0 (9] = lp(4+ %) +0-p (4- 1) e

I—p

= ppAs — e,
and thus, the effort condition turns out to be the sam&iasAssumption 1:
eo < ppAp. (31)

Note that, by assuming < 1/2, necessarilyp < 1 — p, and thus (31) implies, < (1 — p) Ay,
which guarantees that the left endpoint of the support ohtlaeginal probabilities of process (30),

which at timet is
; 11— (ﬁ/'Y)Hl t+1 ( €0 )
by + | ————~L— Ay — ,
ﬁ 0 < v — ﬁ Y 0 1 —p

is strictly positive for allt. This means that, like in the previous section, the poorsgingent of the

population improves its standards of living at the samedsteatey — 1 as the richest.

5.3 Direct Wealth Taxation

Let us now consider wealth taxation (not redistributed lesum) for the model described in Section
2.1. If final wealth is taxed at a rate< 7, < 1, the dynamical system (5) becomes:

(32)

wi— 1 A=) (B/7)wisy with probability1 — p
"\ (1= 7)) (B/7)wi_, + (1 —7) with probabilityp

which, again in view of Lemma 1 and Proposition 1, immediaieiplies the following result, as can
be easily established by letting= (1 — 7,) (5/7), z1 = 0 andz, = 1 — 7, so that (32) is as in (19)
and thus similar to (21).

Proposition 3 Suppose Assumption 1 holds dnét 7, < 1—(ppAy) " eo. Then, ify > (1 — 7,) 26,
polarization/pulverization emerges.

In this case, government intervention proves effective {fee worse) in modifying polariza-
tion/pulverization as it is capable of affecting the comnstope of the maps of (5) — and thus also
that of the maps in (7) or (21) — besides the additive constamherefore, a high enough wealth
tax rate can generate a polarized wealth distribution elven< 2, that is, even if growth and al-
truism are such that that the private sector let alone doegearerate polarization. In other words,

20This seems to be reasonable since utility is linear and vehtaikien from the unluckies goes to the luckies, leaving
the expected utility gain unchanged.
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somewhat paradoxically, in this model the middle class magppear and the economy becomes
polarized/pulverized as a result of an active redistnfaipolicy. Here, to isolate the pure effect of
taxation, we have not assumed any transfer from the govermmezall, however, from Section 5.1,
that any lump sum transfer would not have any effect on wemdtarization.

5.4 Random Taxation

We here show that a redistribution scheme based on rand@tidaxnay reduce and, in some cases,
even eliminate polarizatioff. The idea is to increase the uncertainty in the model so thatvtio-
maps IFS (28) is being replaced by a three-maps IFS in whzinthge set of the second map might
fill the hole left by the other two images set in case of pokran.

In the framework developed in Section 2.1, let us assumethieagains from success are taxed
at some rat® < 7 < 1 with probability1 — ¢, with 0 < ¢ < 1. At each period, the successful
individuals face a tax lottery such that they have to pay with probability1 — ¢ and0 with proba-
bility ¢q. Probabilityq is constant through time and is independent of the prolbiisucces®. The
government controls parametegrandr. The total amount of proceeds are redistributed lump-sum to
the unluckies.

If all individuals exert effort, in order to learn technologyl,, the steady state proportion of rich
families in the economy will still be@. A fraction ¢ of this proportion will be tax exempt, while the
other fractionl — ¢ will be taxed at rate-. Hence, the government in the long run will be able to
collect tax revenues equals to

p (1 - Q) TAtv

which — assuming a balanced government budget every pereguals the aggregate lump sum
transfer received at the end of perioldy the whole poor.
The dynamics of individual wealth becomes:

BWi | + M”‘t with probability1 — p
Wi=19 Wi, +(1-r)4, with probabilityp (1 — q)
BWE L+ Ay with probabilitypg,

where, in the first linep (1 — p) ' (1 — ¢) 74, represents the transfer received by a single unlucky
family. Let« = 3/~ and consider the productivity-adjusted dynamics:

fi(wi_)) = owi | + p(%_;)r with probability 1 — p
Wi=9 fo(wi,)=oawi,+(1—7)  withprobabilityp (1 — q) (33)
fs(wi_y) = awi_, +1 with probability pq.

System (33) contains three (affine) contractive maps itledtby parameters, p, ¢ andr, where the

2lwe owe the idea of studying the effects of a random tax on faltion/pulverization to Salvador Ortigueira.
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last two are decision variables for the government. We wamntvestigate for what values of these
parameters 1) incentive compatibility hold®,, all individuals exert effort,, 2) the three maps are
ordered so thaf; < f, < f3, and 3) whether values of the parameters exist so that thgeiset off;
fills the (possible) gap left by the image setsfpfand f;. The last point would mean the possibility
of eliminating polarization through government redigitibn under this random scheme.

With no loss of generality for the rest of this section we sagsume

N | —

<a<

Wl =

The right inequality implies that the two maps in (21) exhfmlarization (their images do not over-
lap), while the left inequality allows for the introductiar a third affine map with the same slope
a between the two given maps, so that the hole left by the tweepiging image sets can be com-
pletely “filled”. From figure 4(a), it is easily understoodathmaps with sloper < 1/3 have images
sets which cannot fill the whole interv@, 1]. Clearly, for maps withw < 1/3, arguments similar to
the one carried out in this section can be implemented fatgantaxation schemes that use different
tax rates. For example,if < 1/n, n — 1 tax rates, each with positive probability, are necessary.

In order to let all individuals keep putting effart even under taxation, an upper bound on the tax
rater similar to that in Assumption 3 is needed. By replacing theate tax rate with the expected
rate tax(1 — ¢) 7 we are easily led to the following inequality:

T<1Lp(1 60), (34)

wherep = (1 — 5)1_6 (3%. Moreover, in order to havé < f>

I—p

T <
1 —pq

must hold; whilef, < f3 follows from0 < 7 < 1. Hence, the following assumption is what we need.

Assumption 4 Assumption 1 holds and

1— 1—
O<T<min{—p(1— 60), p}’
1—q ppAg 1 —pq

wherep = (1 — )" 7 g°.

To analyze the possibility of eliminating polarizationt les normalize the three maps IFS (33)
to the intervall0, 1] along the argument discussed in Section 3.3. We shall appiguia (20) with
a=0/v,z1=p(1— p)_1 (1 — ¢) T andzy, = 1 to get the lower and higher maps as in (21), while the
constant intercept of the map in the middle will be obtaingdeltting z; = (1 — 7) in (20). Hence,
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we get the normalized system

g1 (wj_y) = aw}_, with probability1 — p
w; =4 g2 (wiy) =oaw_,+(1—n)(1—a) with probabilityp (1 — q) (35)
g3 (wj_,) = aw}_; + (1 - «) with probability pq,
where
n— (1-pr '
(l=p)—p(A-q)T

Note that, under Assumptioné,< n < 1.
The overlapping condition for the three image sets is agtitborward computation that leads to

l1-2a<(1-—a)np<a,

which, in terms ofr, boils down to

(1-2a)(1-p)
(1-p)(1-a)+(1-20)p(1—gq)

a(l—p)
(I-p)(I-a)+ap(l—gq)

IA

T <

(36)

Note that condition (36) is nonempty far3 < a < 1/2, and coincides with a single value for
whena = 1/3, that is when inequalities in (36) become equalities andetieeonly one mags, in
(35) whose image set can fill the whole gap left by the other two

The left hand side of condition (36) is the most important ur analysis: it requires to be
sufficiently large in order to eliminate polarization. Hoxee, in view of Assumption 4, we observe
thatT must be not too large to let the incentive compatibility (Bé)always satisfied. If this constraint
is too tight, duee.g, to a high value of the ratiey/ (ppAo), the left hand side in (36) might not hold,
thus leaving the government with no room for applying redistive policies against polarizatidh.
Specifically, polarization is neglectedfis chosen to be equal to the left hand side of (36) and

o _ (1-2a)(1—q)

pode S T A (-t (I —2a)p(—q) (37)

Note that we did not discuss any restrictions for the chofqeacameter; by the government so
far. Since by Assumption &,/ (ppAo) < 1, there always exist values for paramejet 1, possibly
close tol, such that (37) is satisfied. In other words, there is alwagsr for the government to
eliminate polarization through a random taxation and lwsups redistribution scheme in the sense
of making the support of the steady state distribution ofesys(35) to be the whole intervé, 1].
However, values of close tol imply that almost the wholg fraction of the steady state successful

22Note that the other component of Assumption 4 is alwaysfiadisince

(1-2a)(1-p) R St 4
1-p(Q-a)+(1-20)p(1—q) 1-pg

is always true.
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population,i.e., pg out of p, is paying no taxes, while only a negligible fractipiil — ¢) of the suc-
cessful population is paying taxes; but this amounts exastthe “middle class” artificially created
through the random taxation. Therefore, as the new middkesatarries nearly no weight, polariza-
tion remains substantially unaltered in terms of “wealtstribbution”, even if such distribution has
full support. That is, once again, a tight incentive contphity constraint in Assumption 4 leaves
little room for government intervention and substantiaftguces hopes of eliminating polarization
even through random taxation.

6 Inequality Versus Pulverization

So far we have used the term polarization to genericallyrdssan extreme degree of inequality due
to the disappearance of a middle class in a distribution @ie@ on a Cantor set (as in Definition
1). A more “technical” concept of polarization assumesjdesthe inequality produced by different
wealth levels between groups, also a certain degree of otmatien, or “clustering”, of wealth within
each group: if the distribution of wealth is highly gatherithin groups but very diverse between
groups in a population, then wealth is considered “polafitetween the groups (seeg, Esteban
and Ray, 1994, Wolfson, 1994, and, for a survey, Zhang andiar2001). In other words, the
generation of tensions possibly evolving to rebellionpfgvor social unrest is more likely if wealth
is distributed among groups which have a strong self-itiefeeling.

However, we have seen in the previous sections that thergfrikequality phenomenon possibly
occurring after one period, the lack of a middle class, indpeeplicated on a smaller scale among
wealth sub-clusters after each iteration of any IFS simdaf21), provided that > 25 [see,e.q,
figure 5]. In Section 4 we somewhat tentatively called “pukation” such dispersion of wealth over
a Cantor set. Clearly, pulverization runs against poléiopasince it may be seen as the result of a
progressive erosion of the wealth concentration aroundwbemnain clusters appeared after the first
period. In the limit, whenever the invariant distributiohveealth is supported over a Cantor set, all
wealth groups are distinct (a Cantor set is disconnectatianh of them bear zero weight (a Cantor
set has a continuum of points over which a unit mass is beirepgpas we shall see in short).

All these considerations should be enough to discourageatiegnpt for providing meaningful
polarization measures for distributions supported on @aséts by means of any standard index
available in the literature. Nonetheless, in this sectiamaim at shading some light on whether
pulverization may or may not affect, if not — technically agigg — polarization, at least inequality
in the long run. Such goal is achieved by adapting the mostilpopnequality measure, the Gini
coefficient, to our invariant wealth distribution when isigpported on a Cantor set.

Formally, given a finite distribution of weights, . . ., 7, on wealthdV/, ..., W,,, with =;, W, >
0, the Gini coefficient is given by

n n

1
GZ@ZZWWWG—WJM (38)
i=1 j=1
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where ., denotes the mean wealth across the whole sample. Cleanyg38eant to measure in-
equality by using statistical data available for societgh finite populations. The pursue of some
generalization of (38) to include infinite distributiongpgorted over fractal sets is well beyond the
scope of this paper. Our goal is more modest: we just aim atkamg whether pulverization affects
inequality in the long run. For this purpose, the computatbthe limit of G in (38) asn — oc,
to see whether it remains positive or boils down to zero, khba sufficient. Such question is non
trivial, as two opposite effects occur by applying formud8) directly to our IFS in the case of real
(i.e., not adjusted by productivity) wealth dynamics: on one hainel weightsr; decrease after each
step, since, under our assumptions, the same unit populatimeing progressively spread over more
and more wealth clusters, and the same does the reciproited ofean] /x; on the other hand, after
each period new wealth groupis; are born and the distances between wealth clusters in¢tbase
raising both the number of addends in the sum and the véliies W;|.

Consider the dynamical system (3) discussed in Section 2.1

(39)

w, o~ ) AW with probability 1 — p
"] AW,_, + A, with probabilityp,

where W, denotes some wealth amount at time) < 3 < 1 is the degree of intergenerational
altruism, A, = 7' A, is the exogenous technology withy > 0, v > 1, and0 < p < 1 represents the
probability of success in the adoption of the technologye Thoice of studying system (39) instead
of system (7) — which is normalized on the inter{@l1] — is made to conform with the mainstream
literature on inequality, where real wealth values avé@diom statistical data are used, instead of
productivity adjusted values.

Theorem 1 cannot be applied directly to the IFS (39), whichdr@ounded support for— oo,
however we can refer to the invariant distribution of thejuogate system (7) as the equivalent of the
unique invariant distribution of (39) defined on the positieal line?® The system converges to this
distribution starting from any initial distribution of wka. Thus, for convenience, we may assume
that the distribution at timé = 0 concentrates a mass— p on some bequest > 0 inherited from
the past and a magson (b, + Ag); thatis,vg (W) = (1 — p) 0, (W) + pdpyra, (W), where, for any
b € R,, d, denotes the Dirac function:

5, (W) 1 fW=b
b ] 0 otherwise.

We may also write the initial condition for (39) as

b ith probability 1 —
O:{ 0 with probabilityl — p (40)

by + Ao  with probability p.

Zplternatively, since) < 3 < 1, one may invoke Theorem 7.2 in Lasota (1995) to prove exigt@md uniqueness of
the invariant distribution for IFS (39).
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Having an initial distribution concentrating masses ovéni¢e set of points implies that also the
distribution of wealths at each date- 0 concentrates masses over finite sets of points. This allows
a direct application of formula (38) to the distribution oéalths at each date By construction, it

is easily seen that, for afl > 0, the are2't! values of wealtdV!, ..., W2, each with weightr’,
i=1,...,2"1 Therefore, the Gini coefficient at tintés given by
1 2t+1 2t+1
_ i J i T
G, = 2 ZZ1 ;Wﬂt }VVt Wi, (41)
where
2t+1
= mw (42)
=1

denotes the mean of the marginal distributigfior all ¢ > 0, and, in view of (40), we may |6/} =
bo, W¢ = (bg + Ap), 7t =1 — pandri = p.
Since, by independence, for ali> 0, weightsr; have the form
m=p(—pTM, 0<h<t+1,  0<p<l,
clearly lim; . wiw{ = 0; in other words, massegs and 1 — p, initially concentrated orb, and
(bp + Ap), are progressively spread over a set of points that evéynt@hverge to a continuum of

points and thus vanish in the limit.
Next result shows that pulverization does not annihilaggurality.

Proposition 4 The limiting wealth distribution of the model discussedewtion 2.1 has positive Gini
coefficient for all feasible values of parametét®, v, by and A, such thaty > 23; specifically,

im G 1=A0=
oy = [(1=p)+p°] B

The proof is reported in the Appendix after some prelimidarngmas.

Proposition 4 states that, under the assumptions of Priodi, a unit weight progressively
spread over (finite) sets of points that exponentially caywéo a Cantor like set preserves inequality
also in the limit whenever inequality is measured by thetliafithe Gini coefficient for the finite
marginal distributions. Note that such result holds for astant (unit) population; clearly, we can
conjecture that some stronger result should hold undershenaption of population growth, in which
case a similar analysis might be carried out by means of spm®gariate polarization index.

7 More General Processes

Itis clear from section 3 that the extreme version of poktian/pulverization envisaged by Definition
1 heavily relies on the assumption of having only two stafesture; as a matter of fact, it is crucial
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in letting the best outcome under the low realization to besexdhan the worst outcome under the
high realization when the growth rate is large enough. Thenpmenon quickly disappears as one
allows for more realizations: the more the number of prolsita realizations, the greater the chances
that the range of the corresponding maps in the IFS will agerln other words, more ‘degrees of
success’ translates into a IFS with a larger number of mapghyin turn, would fill the holes left
on the support of the marginal distributions by the iteragiof only two mapsg, andgs, in figure 4,
thus yielding a full supportX = [0, 1], for the invariant distribution. In such circumstancesther
“pulverized limits” or “disconnection” can appear, evethé overlap is only across neighboring pairs
of maps (one for each realization) and not across the wodsbast outcome.

Thus, all the main points of the model seem to rely on assumgtihat are quite peculiar; we
need to check economic relevance of our arguments in a malistie scenario. To test robustness of
our approach consider tiperturbedsystem obtained by adding some ‘noiseb the usual IFS (21):

Yir1 = g, (Yt) = Qyp + &, (43)

where{e,; },~, is a i.i.d. stochastic process such thahas a constardensitysupported on the com-
pact interval0, 1 — «]. The autoregressive process (43) extends our model to aletatydifferent
setting: from only two states — ‘failure’ or ‘success’ — wefsto a continuum of states governing the
affine maps of the IFS, all placed between the original mapsg,, which maintain their position on
the boundaries of the intervdl, 1 — «f, i.e, ¢1 (y) = ay + ¢ whene = 0 andgs (y) = ay + ¢ for
¢ = 1 — a. In order to keep the basic traits of the economic models teies that highly rewards
success — discussed in the previous sections, we need tmasduimodaldensity for the random
variables,; specifically, a density that concentrates most of the memad the two endpoints= 0
ande = 1 — o —i.e, on the two ‘boundary’ mapg, andgs,.

As an example, we may consider the density defined by

(1 _ p) 675/0 + pe[sf(lfa)}/a
o[l — e (-a)/] ’

fle)= (44)
wherep anda are the same as in the previous sections and parametartrols its dispersion around
the two boundaries = 0 ande = 1 — a: f (¢) becomes more concentrated around them for smaller
values of parameter. Figure 8 shows that, far = 1/3 andp = 1/3, if ¢ = 0.01, f (¢) is more
concentrated on the boundaries thandot 0.1.

We are now in the position to provide at least some heurigtjaraent supporting our conjecture
that — a softer than that of Definition 1, but still meaningfubtion of — polarization/pulverization is
not only implied by the (extreme) assumption of having omy realizations, but rather the conse-
guence of a strongly bimodal stylization of luck in a variefyframeworks, regardless of the process
being discrete or continuous.

The Foias operator analogous to (14) when the marginal piiities of the IFSy,.; = g (v)
are absolutely continuous and when the maphemselves are governed by a dengity) can be
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FIGURE 8: two examples of (¢) defined as in (44) for different values of

written as follows (see Appendix B):

Mav (y) = /O h X [9=" )] v [92" (v)] agg; “(y) f (e) de, (45)

Y
wherev is a density or{0, 1] andg- ! (y) € [0, 1] denotes the preimage ofe [0, 1] throughg. for
eache € [0,1 — o] andy 4 (-) is the indicator function for the set—its role in (45) istolet/ (1) = 0
outside the intervalo, 1]. It is easily seen that/, maps densities oft), 1] into densities o0, 1];
specifically, M, v (y) is the density associated to each pajng [0, 1] after one iteration of the IFS
starting from a density on [0, 1].

By invoking Theorem 1.1 in Diaconis and Freedman (1999) édee Section 6.1, p. 64, in the
same paper), it can be shown that the sequence of marginsitiden, = M, (M} 'v,_1) = Miv,
converges weakly to a unique invariant density- such that* = M,v* — starting from any density
1o on [0, 1], provided that ally. are Lipschitz with Lipschitz constanfs. satisfying the following
“average contraction” condition:

/1a In K. f (¢)de < 0. (46)
0

In other words, Theorem 1.1 in Diaconis and Freedman (1968gmalizes Theorem 1 reported in
Section 3.1 to IFS constituted by infinitely many maps (sse Hie references reported there).

SinceK. = a < 1foralle € [0,1 — «, property (46) certainly holds for the IRB,; = ay; + ¢
defined in (43), which thus has a unique invariant densityBy using the change of variable formula
(see Appendix B), (45) becomes

min{y/a,1}
Mav () = [ v (@) f (y — o) da, (47)

max{1—(1-y)/a,0}

which can be approximated by numerical methods.
Figure 9(a) approximates the first six iterations of Foiaarafor)/, as defined in (47) fotv = 1/3
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(@) M$§ asin (47) fora =1/3,p=1/3,0 = 0.01 (b) M% asin (14) fora = 1/3,p=1/3

FIGURE 9: first six iterations of Foias operator starting from théamm density; a) IFS with a continuum of
maps with densityf (¢) defined in (44), b) IFS with only two mapg, g- of the type (21).

and f (¢) as in (44) withp = 1/3 ando = 0.01 starting from the uniform density. This is achieved
by numerical integratiott over a partition of500 subintervals of0, 1]. Recall that Foias operator
converges at a geometric rate, therefore figure 9(a) prevadeliable picture of what the invariant
densityr* might look like. Even if it is a density, it clearly exhibitsattern very similar to the
distribution in figure 9(b), which is the same as figure 5(fhene the first six iteration of the Foias
operator in the case of the IFS with only two mapg -with probability1 — p andg, with probability

p — is plotted. Not only a lack of the middle class, but also #ication of the same phenomenon
at smaller scale in each cluster of wealth after each itaradppear. Clearly, in figure 9(a) peaks
are shorter (below0) than those in figure 9(b) (up t64); also, self similarity on smaller scale
tends to blur in figure 9(a), due to the smoothing of the dgn&iaround the two ‘boundary’ maps
corresponding to the former and g, after each iteration. At any rate, however, the distrilngio
portrayed in figures 9(a) and 9(b) respectively exhibit vdoge qualitative traits, at least in terms of
— a broader meaning of — polarization/pulverization.

FIGURE 10: first six iterations of\/; as in (47) starting from the uniform density in case of a IF§\i
continuum of maps with density (¢) as in (44) fora =1/3,p=1/3,0 =0.1.

24The Maple code that generates plots like in figure 9(a) anddig@Q is available from the authors upon request.
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Figure 10 shows the same first six iterations\gf starting from the uniform density as in figure
9(a) but with a density (¢) more dispersed around the boundaries 0 ands = 1 — «, characterized
by o = 0.1 [see figure 8(a)]. It is remarkable that also when ‘succeassiore evenly distributed, less
weight on intermediate degrees of success still translatesome degree of wealth polarization due
to a smaller middle class — corresponding to the large halawe middle of the graph — compared to
the poor and the rich. Our conjecture is that a more genetadmof wealth inequality, determined
by a smaller size for the middle class with respect to the padrthe rich, is a direct consequence of
assuming a bimodal distribution of success. This will bettpec of future research.

8 Concluding Remarks

In this paper we have pointed out how wealth polarizatiolgrization is not to be contrasted with
equal opportunities characterizing economies with a higgrele of social mobility, but instead it
can be exactly the effect of a large amplitude of mobilitelits What really matters for polariza-
tion/pulverization is the reward from being successfuljolhs increasing in the size of the techno-
logical jump. Private investment in the human capital neagsto adopt an exogenous innovation
stream can be one cause; private investment in researcl ainmaproving everybody’s productivity
can be another cause. Despite the differences betweentih@smgines of growth, both induce the
disappearance of the middle class due to the fractal piepest the support of the invariant wealth
distribution, provided that the growth rate of the econoslgigher than a common threshold.

We have shown that in this framework polarization and putation cannot be eliminated by fis-
cal measures such as wealth redistribution through taxafithe successful people with tax revenues
lump-sum redistributed to the unsuccessful ones, whildtivéaxation can even create polarization.
Some more sophisticated device is required. A random t@xattheme may be able to reintroduce an
artificial middle class, but unlikely gives it enough strémgespecially if the incentive compatibility
constraint is tight.

Hence, there seems to be a general lesson one can learn galimett relationship between high
growth rates and inequality emerged by applying the IFS @gagr to wealth dynamics in a society
characterized by equal opportunities and fast social nghihe goal of containing inequality may be
better achieved through policies aimed at tackling the ¢noate itself —-e.g, by means of monetary
policies devised to “cool down” the economy — rather thamri@sg on redistributive devices. Our
proof of this new effect of growth on wealth distribution giegts future works in which fiscal policy
is endogenized and polarization/pulverization is incoaped in people’s preferences, linking social
mobility to the demand for redistributio.

In view of recent works on optimal growth theory (seeg, Mitra and Privileggi, 2004, 2006,
2009), further investigation on wealth inequality may bespeed by means of models characterized
by an infinitely lived representative agent, as well as modglose wealth dynamics can be described
by non-linear IFS — note that the second part of our Definitiamreadily applicable to such cases.

2°See e.g, Alesina and Glaeser (2005), Alesina and Giuliano (2008)Alasina, Cozzi, and Mantovan (2009).
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Also IFS with state-dependent probabilities might be wadhsidering, as they can introduce a
“damping effect” on social mobility — for example throughigler probability for both the poor and
the rich to remain in the same wealth cluster and a lower fitibato switch from one class to the
other — which may seem closer to reality. For example, the poght find educational costs unbear-
able or access to credit market precluded, thus indireetycing their probability of success, while
for the rich an easier access to education and credit marketsves their probability of being rich
also in the future. These observations suggest that modeigalth inequality from the traditional
stream of research, like the ones in Galor and Zeira (199B) Aghion and Bolton (1997) (see also
the whole literature cited in the introduction), which assumperfect capital markets, may easily fit
our framework with the necessary modifications.

In so far as people of similar wealth levels tend to live tbget gaps in wealth levels imply
gaps in location, and therefore geographic segregatioe. résidential segregation associated with
wealth polarization implies that the “city” partitionséi into a (polarized) fractal as a result of fast
growth. Adding state-dependence would be natural, aseesal segregation entails educational
segregation: our results may then be extended and wouldilmatet to the literature on segregation,
such as Benabou (1993, 1996a), and Sethi and Somanathat).(200

Appendix

A Gini Coefficient and Cantor-like sets

This appendix is devoted to the proof of Proposition 4 in ®ac6. Since both wealth®’} and
weightsr! have a recursive formulation generated by dynamic (3%,ébinvenient to write formula
(41) in a form more suitable for direct handling.

Lemma 2 For eacht > 0, label the set of wealths so that they are orderétd! < W? < --- <
W2 Then formula (41) can be rewritten as follows:

2t+1 1 2t+1

Z Z U 7Tt — W ), (48)

Jj=1 i=1+y
wherey; is given by (42).

Proof. If the initial condition for system (39) is given by (40), ing sum (41) there agg'™! — 1) 2¢
non-zero addends of the fong’ — W
ming up all ordered non-zero differencdg — W/, with 7/ > W/, we get

2t+1 1 2t+1

Z Z mml (Wi — W) |,

j=1 i=14j

= 2/~Lt

which is (48)m
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It is convenient to label the sum on the RHS of (48)/ky so we can use the shorthand

D
Gt — —t
Mt
The next three lemmas provide a recursive formulation fah llee mearn.; and the sumD, which
allow to compute=; directly in terms of parameters and initial conditions.

Lemma 3 The mean, has the following recursive formulation:

pirr = By + Ay, (49)
thus, -
1—
py = 3'bo + %VHPAO- (50)

Proof. The construction of thé marginal distribution/, through system (39) implies that each
point W7 with associated weight! at timet is being split into two wealth valugd’?, = 31} and
WY, = BW} + Ay with weightszih, = (1 — p) «f andm,Y, = pri respectively at time + 1, for
i = 1,...,2%% Therefore, al*? terms in the sum defining,,; as in (42) can be grouped into
2t+1 pairs, each of them generated by a single term in the sum dgfini thus all such pairs can be
written as functions ofV; andr; as follows:

2t+2 2t+1 2t+1 2t+1 2t+1
Hi+1 = Z 7Tt+1WtZ+1 = Z Z 7Tt+1VV;i1 + Wt+1W;£1 Z WZ-LHVth-fL—l + Z 7Tt+1Wﬁr]1
ip=liy=1 ir=1 iv=1
2t+1 2t+1 2t+1
=" (= p)mBW Y pri (BW] + Ar) = Y [(1 = p) miBW, + pri (BW] + Apys)]
i=1 =1 i=1
2t+1 2t+1

= Z T BW, + pAiia Z T = B + pAita,
—1 i=1

where in the second and third equalities we have indexed, bgrms of the typer), W, =

(1 — p) i W} (corresponding to the lower branch of a terfiV, in ¢) and byi;; terms of the type
U WY, = pri (BW] + Ay1) (corresponding to the upper branch of a terii’} in ¢), while in the
last equalltny:l1 7t = 1 holds, as population is normalizedtoHence, (49) is established, and, as
1o = by + pAg, (50) follows accordinglym

Before giving a recursive formula fdp,, we need the following lemma which states that, under
the assumption that a middle class disappears after oa¢igeiof (39) as prescribed by Proposition
1, the poorest individual at timewhich is successful at time+ 1 becomes richer than the richest
individual at timet which is not successful at time+ 1. Recall that, under the (ordered) labeling as
in Lemma 2,W}! andI/I/’ft+1 denote the smallest and the largest wealth at tinespectively.
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Lemma 4 LetW, = 8W}! + A, denote the wealth of the individual which is the poorestragti
t+1 t - .. .
but becomes successful at time 1 and ijl — W2 denote the wealth of the individual which
t42
is the richest at time but becomes unsuccessful at time 1. Then, ify > 23, W\, > W/ for all
t > 0.

Proof. It is easily seen thall; = 5, andW2™" = by + (v — 8) " [1 — (3/7)""] v+ 4.
Hence,
thfl = 3"y + 4" A4y

1—(8/7)™*
v =

2t+2

YAy =3 | + VA | = Wi

t+1
> 8%y + 8 i

where the inequality follows fromy > 25.m
An immediate consequence of Lemma 4 is the following Corglla

Corollary 1 Under the assumption > 23, if W; > W7, thenW}", = W/ + A, andW;t, = fW}
are such thatV/’, > W/x,.
Lemma 5 Under the assumptiofn > 25 the sum

2t+1 1 2t+1

= > Y mr (W -Ww7) (51)

j=1 i=1+4j

in (48) has the following recursive formulation:

Dy = [(1 - p)2 +p2] BD; +p (1 —p) A1, (52)
thus, )
1— (s t+
p, =1zl 7 p (1= p) Ao, (53)
Y—=35
wheres = [(1 — p)? +p?] B.
Proof. We follow an argument parallel to that in the proof of Lemmd&8r;j =1,...,2 — 1
andi =1+ j,...,2""%, each addend{r] (W; — W/) in (51) at timet contains two wealth values,

W, andW/, such thatV; > W/, with associated weights andn/ respectively. The construction of
the t'* marginal distribution/, through system (39) implies that both such terms are beiligisio
two wealth values at timée—+ 1, for a total of four terms, that we can label as follows:

Wtjﬁ = W/ with welght7rHl (1—p)nd,
Wity = BW + Awea with weightr/, = pr,
Wik, = W} with weightr}%, = (1 — p) i,

WY, = BWi+ Ay with weightr,V, = pr.
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Hence, each addendn]/ (W; — W) in D, at timet corresponds to the followin(®? —1)2 = 6
positive addends i, ; at timet + 1:

7Tt+17Tt+1 (Wtzil t+1) = ( p) 7Wﬂtﬁ (WZ Wtj)

7Tt+17Tt+1 (Wtjfrjl Wt]fl) =(1-pp ( ) A

7Tt+17Tt+1 (Wﬁrjl Wtjﬁl) = (1 —p)prjxi [B (W] — Wtj) + Api1] (54)

7Tt+17Tt+1 (Wtjfl Wtz-iL-l) =(1-p) pﬂ-tﬂ-t [ (W] - VVtZ) + At+1}

7Tt+17Tt+1 (thﬂ thil) =1-pp(r t) A

7Tt+17Tt+1 (ngl Wg&) = ﬁ”éﬁﬁ (Wti - Wt]) )

each of them defined as functionsigf, W/, = andx/. Note that all such terms are positive provided
that~y > 23, which, by Corollary 1, guarantees that also the fourth tevmthe LHS of the equation)
IS positive.

Therefore, all(2t+2 — 1) 2! terms in the sum definind@,,, as in (51) can be gathered into
(21 — 1) 2t groups of six addends, with each group generated by a siegtein the sum defining
D,, as follows:

2t+2 -1 2t+2

o i J i J
Diy1 = E E M1 41 (Wt+1 - Wt+1)
=1 i=1+j
2t+1 1 2t+1 2t+1 1 2t+1

Ju JL
E E 7Tt+17Tt+1 VVt+1 - VVt+1)

_ ir JL
= E § 7Tt+17Tt+1 Wt+1—VVt+1

Jr=1 ip=14jr
2t+1 1 2t+1

+ Z Z m i (Wi — Wik) +

Jjr=1 iy=1+jr
2t+1 1 2t+1

i iL
+ E E 7Tt+17Tt+1 Wt+1 - Wt+1

ir=1 1y=1+ip,
2t+1 1 2t+1

= [A=p’+p78 Y >, mnl(
7j=1 i=1+j
2t+1

+p(1—p) A Z (Wf)2+2
k=1

= [(1=p)* +p%] BD, +p(1 = p) Ay,

where in the second to the sixth lines we have substituteastes in (54) and simplified terms, while

the last line holds sincel's add up ta and

2t+ 2t+1 1 2t+1
k

§ 7Tt

k=1 7j=1 i=1+4j5

gt+1
P42 Z Z mir] = (Zﬁf) =1
k=1

Jr=1 ju=l+jr
2t+1_1 2t+1

D

ir=1 ju=1+ig
2t+1 1 2t+1

iy
E E 7Tt+17Tt+1 Wt+1

Jju=1 iv=1+ju

— W)

2t+1_1 2t+1
i, J
> 5 inf

j=1 i=1+j

2

Hence, (52) is established, and, siri¢g= p (1 — p) Ao, (53) follows accordinglym
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Proof of Proposition 4. By Lemmas 2 -5,

1 - (5/7)t+1 t+1

— 1-p)A
T N CE e
= [ =p)*+p7] B

D
lim G; = lim L = lim 1
t—o0 t—00 Lt t—o00 1— (ﬁ/ry)

Btbo + YAy

wheres = [(1 — p)2 + p2] G, and the proof is completem

B The Foias Operator for Densities

We first construct formula (45) for the Foias operator whenES is of the kind (43). (y) = ay+e,
that is, it has a continuum of maps each chosen by means ofsitylé¢ric) on the interval interval
0,1 —al.

If X andY” denote two random variables with densitieand A/, on [0, 1] respectively, then:

-«
Pr(Y € B) = / Pr[X € g7 (B)] f () de.
0
For B = [0, y] this is equivalent to
y 1-a X 91 ()
[ M @di= [ o [t 0] [ v 7 @) dude,
0 0 9:(0)

which, sinceMyv (y) = (8/9y) [, Mav (u) du, leads to

l—a g9c (y)
M (y) = a% / vou [97 )] / v (u) f () duds

=10

1-a 9= ()
:/0 X [9:" ()] [%/ v (u) du] f(e) de,

9= (0)

which is (45).
Noting that(9/9y) g-' (y) = 1/a for all ¢ € [0,1 — a] and by using the change of variable
r=g-'(y) = (y — €) /o, which is a strictly decreasing transformation of variahlé5) can easily
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be transformed into (47):

11—«

X 95" )] v 9= ()] f (e) de

y/a

Mav (y) =

1

2
J

X () v (2) f (y — ar) adx
@ J1-(1-y)/a

y/a
- / You () v (2) f (y — ax) de

—(1-y)/e

min{y/a,1}
:/ v (@) f (y — ax) da,

max{1—(1-y)/a,0}

where in the last equality we translated the bounds giverheyrtdicatoryj 1 (-) into the limits of
integration.
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