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Abstract

In this paper we investigate wealth inequality/polarization properties related to the support of

the limit distribution of wealth in innovative economies characterized by uninsurable individual

risk. We work out two simple successive generation examples, one with stochastic human capital

accumulation and one with R&D, and prove that intense technological progress makes the support

of the wealth distribution converge to a fractal Cantor-like set. Such limit distribution implies the

disappearance of the middle class, with a “gap” between two wealth clusters that widens as the

growth rate becomes higher. Hence, we claim that in a highly meritocratic world in which the

payoff of the successful individuals is high enough, and in which social mobility is strong, soci-

eties tend to become unequal and polarized. We also show thata redistribution scheme financed

by proportional taxation does not help cure society’s inequality/polarization – on the contrary, it

might increase it – whereas random taxation may well succeedin filling the gap by giving rise to

an artificial middle class, but it hardly makes such class sizeable enough. Finally, we investigate

how disconnection, a typical feature of Cantor-like sets, is related to inequality in the long run.
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1 Introduction

How do we predict a fast growing and unequal society’s wealthdistribution to look like? In a global

highly competitive and technologically turbulent economyindividual success or failure may substan-

tially alter one’s position in the social scale. We argue that societies in a twin peak world would tend

to look polarized with a complex (fractal) structure.

This is proved by constructing a simple competitive economywith successive generations and

uninsurable individual risk to show how easily the support of their limit distribution of individual

relative wealth levels can look like a peculiar geometric object called Cantor set, provided that the

exogenous growth rate is high enough. A Cantor set is a fractal on the real line, that is, a totally

disconnected set with self-similar structure with an evident characteristic: it exhibits a “hole” in

the middle. Our definition of (extreme) inequality is based on such hole, which may obviously be

interpreted as the lack of a middle class, which, in turn, is often identified with the term ‘polarization’

by the mainstream literature on inequality.

Emerging phenomena of income or wealth inequality and polarization has been lately observed in

many economies. D’Ambrosio and Wolff (2008) document an overall increase in US wealth polariza-

tion in the 1983-2004; Wolff (2007) analyzes the dramatic debt-related squeeze in the middle-class

share of total wealth during the early 2000s; Drew-Becker and Gordon (2007) show convincing evi-

dence that 80-90% of the wage distribution fail to grow at theproductivity growth rate, whereas only

the top quintile captures the increase in the productivity growth. Therefore the gap between top in-

comes and lower incomes widens over time. They have shown that the 50-80% quantile of the income

distribution in the US have been steadily declining from 1966 to 2001.

Our main prediction is a positive relationship between polarization and growth, which has proved

empirically significant and robust in the multi-country regressions by Roine, Vlachos and Walden-

ström (2007). In their panel data analysis they showed that throughout the 20th century growth in

the developed world has been “pro-rich”. According to theirfindings, “high income groups in soci-

ety have a larger share of their income tied to the actual development of the economy”, while those

who fail to tie their income to the growth of productivity fail to the lower tail of the distribution. US

evidence suggests that computerization leads to displace ‘middle skilled’ workers, and “[d]isplacing

this ‘middle’ generates polarization” (Autor, Katz and Kearney, 2006). In a large panel of countries

Lundberg and Squire (2003) find that growth has a positive effect on income inequality. Perloff and

Wu (2005) show that during the fast growing period 1985-2001in China income inequality increased

dramatically both nation-wide and in urban areas. From the theoretical point of view, the literature

on income inequality/polarization appears to be already rich enough, both from the perspective of

the possible consequences that inequality/polarization may have on growth rates1 and from the per-

1See,e.g., Loury (1981), Banerjee and Newmann (1993), Galor and Zeira(1993), Alesina and Rodrik (1994), Pers-
son and Tabellini (1994), Benhabib and Rustichini (1996), Benabou (1996a), Aghion and Bolton (1997), Piketty (1997),
Aghion, Caroli and Garcia-Penalosa (1999), Benabou (2000), Alesina and Angeletos (2005a, 2005b). For related empir-
ical contributions see,e.g., Alesina and Rodrik (1994), Perotti (1996), Benabou (1996b), Benhabib and Spiegel (1997),
Barro (1999, 2000), Forbes (2000), Alesina and La Ferrara (2005).
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spective of analyzing what aspects of innovation and growthmay generate inequality/polarization.2

However, this is the first paper that enquires on the fractal properties of the support of the equilibrium

wealth distribution generated by the individual adoption of fast evolving technological change.

In this paper, economies with (possibly) polarized wealth distribution in the long run are analyzed

by means of Iterated Function Systems (IFS) to describe their dynamics and their limit distribution.

Even if the IFS approach seems to be capable of unveiling new aspects of economic dynamics, the

application of such methodology to economic models seems tobe at an early stage: up to our knowl-

edge, very few works appeared along this line, and none of them with the aim to explain wealth or

income inequality. Some examples are Bhattacharya and Majumdar (1999a, 1999b, 2001 and, for

an excellent survey, 2007), who dealt mainly with IFS with random monotone maps, Montrucchio

and Privileggi (1999), Mitra, Montrucchio and Privileggi (2004), and Mitra and Privileggi (2004,

2006 and 2009), who studied stochastic optimal growth models converging to invariant probabilities

supported on Cantor sets. From a different perspective, Bucci, Kunze and La Torre (2008) applied

the Collage Theorem to the inverse problem of finding a suitable IFS in order to estimate some key-

parameters of a Lucas-Uzawa type model (see also Kunze, La Torre and Vrscay, 2007a, 2007b, 2009,

and La Torre and Mendivil, 2008).

Our analysis is characterized by markets with equal opportunities for all individuals; such equal

opportunities fuel a strong mobility engine that, if associated to high growth rates, may generate in-

equality. Mobility is introduced through stochastic laborincome heterogeneity, which represents the

ability of the individuals to adopt better and better technologies. If better technologies entail some

adoption uncertainty at the individual level and if such risk is uninsurable, due to the unobservable

or unverifiable individual commitment into a learning effort, income heterogeneity becomes a nat-

ural consequence of aggregate growth, and the faster the aggregate growth the relatively larger the

magnitude of the uncertain part of the individual resources.

A faster growing environment implies stronger family mobility prospects, because a successful

individual from a poor family can more easily overtake the unsuccessful individuals of a richer family,

but it means a tendency for the middle class to disappear as well.3 Hence a “hole” in the middle of

the support of the wealth distribution is more likely to appear the faster the pace of technological

growth: the wealth distribution becomes polarized into a high and a low wealth classes. However, the

random dynamical system that governs the individual assignment across the ever expanding social

wealth distribution is not only polarizing the wealth distribution, but will mirror the central hole

everywhere through the wealth distribution itself: the absence of a middle class at the social level

implies the absence of “middle subclasses” at all levels, due to the diversity of the destinies of the

different individuals who travel stochastically through the society’s wealth distribution. It follows

2It is worth mentioning the literature on skill-biased technological change as well as directed technological change,
such as Acemoglu (1999, 2002 and 2007), Card and Di Nardo (2002), and Autor, Katz and Kearney (2006). For an
excellent survey, see Acemoglu (2008).

3As Mookherjee and Ray (2005, p. 13) notice: “if growth (from neutral technical progress) causes wages to grow at
a uniform rate, then fast growing countries are more likely to display wide spans, since higher growth in wages across
generations will dull the level of desired bequests”. Similarly in Mookherjee and Ray (2002). Unlike these models and
that in Mookherjee and Ray (2003), in our paper uncertainty plays a major role.
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that the very same process that generates a wealth distribution which is disconnected in the middle

multiplies such disconnection at infinity (in all its subintervals), thus generating a totally disconnected

support of the wealth distribution. Therefore we reach whatwe can call a “pulverized” society. Such

a “fractal society” is an intriguing mix of polarization andpulverization.

This kind of “polarization/pulverization” of the aggregate wealth distribution differs from the

traditional idea of “polarization”: though if we photograph the wealth distribution at each point in

time we get a highly “polarized” picture, when we track the processes for the successive wealth levels

of any single individual we observe a strong mobility. Dynamically, such societies are not polarized in

“durable classes”, but they show a tremendous impact of mobility. Indeed, it is the amplitude of such

mobility that generates polarization: the very fact that the gains of a lucky poor can make her richer

than an unlucky rich is at the same time an important mobilityaspect and the cause of polarization.

We will obtain “fractalized” wealth distributions from twoversions of a simple macroeconomic

model with no aggregate uncertainty and individual idiosyncratic income risk. Our specifications

generate enough linearity in the random dynamical system which immediately translates into well

known properties of the Barnsley IFS used to generate the Cantor set. The choice of such a simple

(textbook-like) model allows us to examine in depth the mostdirect relationship between growth rate

and wealth inequality in a dynamic framework.

An important consequence of our main result regards the effect of a fiscal policy aimed at eliminat-

ing polarization/pulverization through income taxation of those who are successful and redistribution

to the unlucky individuals. Intuitively, since such policydirectly attacks the mechanism responsi-

ble for the “fractalization” of society, one would expect that this would easily reach its target. We

show that this is not the case. In fact, simple redistribution schemes can never eliminate polariza-

tion/pulverization of society. What’s more, even if the free workings of the private economy itself did

not imply socioeconomic disconnection, a direct taxation of wealth of all individuals may be able to

induce polarization/pulverization of society. Also the adoption of a random taxation scheme, which

has in principle the potential of creating an artificial middle class in a polarized economy, proves

essentially ineffective whenever the incentive compatibility constraint is sufficiently tight.

A closer look at how inequality is being affected by the interplay between pulverization and po-

larization – two apparently contradictory aspects relatedto the same phenomenon that generates a

Cantor support for the limit distribution – in the long run isgiven by calculating the limit of the

Gini coefficient of the marginal distributions as time tendsto infinity: we find that inequality remains

positive for the invariant wealth distribution.

The main assumption underlying the (stochastic) dynamics in both models under study is that there

are only two states of nature: ‘failure’ or ‘success’. Such framework allows the best outcome under

the low realization to be worse than the worst outcome under the high realization whenever the growth

rate is large enough, as we shall prove in our main result. Thechoice of such an assumption, if on one

hand plays a key role in establishing a direct relationship between growth and wealth polarization, on

the other hand may appear extreme and unrealistic. At the endof the paper we shall show, by means

of a heuristic but robust argument, that the main idea developed in the ‘two shocks setting’ actually
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generalizes to i.i.d. stochastic processes defined by a density – i.e., quite the opposite scenario of

having the “highly discrete” process of only two states – provided that such density is bimodal, in the

sense that it concentrates most of the weight on the boundaries of its state space.

The paper is organized as follows. In Section 2 the two macroeconomic models of technological

change are introduced. Section 3 is devoted to a self-contained review of the basic mathematical meth-

ods we use to analyze the possibly fractal support of the limit distribution for a random dynamical

system. In Section 4 we provide sufficient conditions for thelimit wealth distribution to have a Cantor

support, which we interpret as a polarized/pulverized distribution; such conditions are expressed in

terms of (exogenous) growth rate and degree of intergenerational altruism of the population. In Sec-

tion 5 the main implications of the analysis of Section 3 on the inefficacy of inequality-eliminating

policies are reported in detail. In Section 6 we focus on a closer examination of the interplay be-

tween inequality and what we have somewhat tentatively called “pulverization”. Finally, Section 7

shows the robustness of our approach by proving that smooth perturbations of our discrete stochastic

process do not affect the main result. Section 8 concludes with some comments, while the Appendix

A contains the proof of the main result of Section 6 and Appendix B explains the formula for the

approximation in Section 7.

2 Technology and Growth

In this section we introduce two simple macroeconomic models with exogenously evolving technol-

ogy. In the first one, we assume a sequence of successive generations of altruistic individuals who take

consumption and bequest decisions on their wealth accumulated out of a stochastic income acquired

at the utility cost of learning a technology that is new at every generation. The second model hinges on

the same framework of the first one, but allows for exploitation of new discoveries by means of patents

which expire after one generation. Both models are characterized by a strong mobility engine (equal

opportunities for all individuals) and uninsurable individual risk. Unlike the mainstream literature,

no imperfections on credit markets or barriers to access education are assumed. On the other hand,

uncertainty is modeled in a standard fashion, similar to that adopted in Aghion and Bolton (1997):

there are only two states of nature describing achievementsof economic agents, either ‘success’, with

probability0 < p < 1, or ‘failure’, with probability1 − p.

2.1 Adoption of New Technologies

Consider an infinite horizon discrete time economy with a continuum of infinitely lived families that

will be indexed byi. With no loss of generality we shall normalize population over the unit interval,

i.e., i ∈ [0, 1]. Each family is formed by a one-period lived altruistic individuals whose preferences

are represented by the following “warm glow” (see Andreoni,1989) utility function

u (c, b, e) = c1−βbβ − e
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wherec > 0 denotes end-of-life consumption,b > 0 the bequest left to the unique heir,e ≥ 0 a learn-

ing effort,4 and0 < β < 1 the degree of intergenerational altruism. As, for example,in Banerjee and

Newman (1993), Galor and Zeira (1993), or Piketty (1997), such Cobb-Douglas altruistic preferences

imply that a fractionβ of each individual’s end of life wealth will be passed over toher child. Hence,

the indirect utility of end-of-life wealthW is linear (risk neutral preferences) and equal to

U (W ) = (1 − β)1−β ββW − e.

The end-of-life wealthW of each family is uncertain at the beginning of each generation: it

depends on the wealth level inherited from the past, that is on the bequest left by the ancestor, and on

individual success in learning the technology that becomesavailable during her lifetime.

Individuals of generationt are endowed with one unit of labor time which they will inelastically

use to produce a perishable consumption good at the common productivity levelAt > 0. At the

beginning of periodt, a new General Purpose Technology (see Helpman, 1998) appears exogenously

and every individual has to learn it in order to successfullyenter production. Learning technology

At requires an effort that entails a certain utility costet > 0. Whether an individual exerts the

required effort for learning such technology is something that cannot be observed by anybody but the

individual.5 Moreover “success” in the adoption of the technology is not sure, but it occurs to each

individual with probability0 < p < 1 constant through time, independently of all other individuals.

In other words, all individuals of the same generation face the same opportunity of success. Since the

(exertion of) learning effort is unobservable, borrower-creditor interaction lasts one period only and

individual’s offspring cannot be sanctioned; accordingly, no idiosyncratic risk can be insured.

Technology is assumed to evolve exogenously:At = γAt−1, whereγ > 1. Consistently, we will

assume thatet = γet−1, that is, learning a more advanced technology requires moreeffort.

Provided that individuali ∈ [0, 1] alive in periodt undertakes the learning effortet at the beginning

of her life, her end-of-periodincomeYt will be:

Y i
t =

{

0 with probability1 − p

At with probabilityp
(1)

Notice that in this model income derives from the “ability” in the use of current technologies and

entails no utility loss. Failure to gain an effective education might be the outcome of cognitive and

non-cognitive skills, responsible of school drop-outs.6 Hence the economy of this section is charac-

terized by skill-biased technological change (see Acemoglu, 2008).

4As will become clear later, each agent chooses to exert effort e between two values: zero and a strictly positive fixed
amount which depends on time.

5Specifically, it is not the amount of learning effort which isnot observable, but whether an individual undertakes such
effort at all.

6Early interventions in favor of disadvantaged-children – such as Perry Preschool and other programs discussed by
Cuhna and Heckman (2006, 2007, and 2009) – may modify the probabilities of success at different wealth levels. This is
very important, but it will not alter the main results of thispaper, as we focus our attention to the support of the wealth
distribution.
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The evolution of technology yieldsAt = γtA0 and that of effortet = γte0, with bothA0 ande0

strictly positive. Individuali wealth at the beginning of her life in periodt is given by the bequest

inherited from periodt − 1:

bi
t = βW i

t−1,

whereW i
t−1 represents the wealth accumulated by her ancestor at the endof time t − 1. Provided

that individuali will perform effort et in order to learn technologyAt, her expected indirect utility

conditional to the past wealth and the performed effort is given by

E
[

U
(

W i
t

)

|
(

W i
t−1, et

)]

= (1 − β)1−β ββ
E
[

W i
t |W

i
t−1

]

− et

= (1 − β)1−β ββ
[

p
(

βW i
t−1 + At

)

+ (1 − p) βW i
t−1

]

− et (2)

= (1 − β)1−β ββ
(

βW i
t−1 + pAt

)

− et

where the probability of successp in adopting technologyAt does not depend on time.

We shall assume the following.

Assumption 1

0 < e0 < (1 − β)1−β ββpA0.

Assumption 1 implies that the expected indirect utility obtained by exerting effortet is greater

than the certain effort for allt ≥ 0, thus rational individuals will always put the required effort into

learning the new technology. It follows that the intergenerational motion of the wealth of family

i ∈ [0, 1] is described by

W i
t =

{

βW i
t−1 with probability1 − p

βW i
t−1 + At with probabilityp.

(3)

Let bi
0 ≥ 0 denote the “original” bequest available at the beginning ofperiodt = 0 to family i, then

W i
0 =

{

bi
0 with probability1 − p

bi
0 + A0 with probabilityp

SinceAt grows exogenously through time, the random dynamical system (3) described by the two

mapsf1 (W, t) = βW andf2 (W, t) = βW + At evolves along increasing sets of possible wealths.

In particular, at the end of periodt generationi will be endowed with some wealthW i
t in the interval

[

βbi
0, βbi

0 +

(

1 − (β/γ)t+1

γ − β

)

γt+1A0

]

(4)

which, sinceγ > 1, 0 < β < 1 andA0 > 0, diverges to[0, +∞) ast → +∞.

However, notice that, since0 < β < 1, both f1 andf2 in (3) are contractions in the variable

W , that is, wealth grows only thanks to technological parameter At as time elapses. Hence, a better
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highlighting of the features of this dynamics can be obtained by transforming system (3) into an

equivalent law of motion adjusted by the productivity levelAt, which turns out to be a contractive

process eventually remaining bounded inside a compact set,which we shall calltrapping region.

Dividing (3) byAt we get the equivalent system in terms ofwi
t = W i

t /At:

wi
t =

{

(β/γ)wi
t−1 with probability1 − p

(β/γ)wi
t−1 + 1 with probabilityp

(5)

whose trapping region, as can be easily shown, is the interval
[

0, (1 − (β/γ))−1]. Let

α =
β

γ
, (6)

which implies0 < α < 1, and consider the linear transformationyi
t = (1 − α)wi

t of (5). With this

change of variable we obtain the following productivity-adjusted dynamic:

yi
t =

{

αyi
t−1 with probability1 − p

αyi
t−1 + (1 − α) with probabilityp,

(7)

which, as we shall see more in detail in Section 3.3, has the unit interval [0, 1] as trapping region.

The stochastic dynamic (7) defines two possible levels of (productivity adjusted) wealth at time

t of individual i, yi
t, provided that her wealth at timet − 1 is yi

t−1. The lower level is reached with

probability1 − p while the upper level is reached with probability of successp.

System (7) belongs to an important family of random dynamical systems known in the literature

as (Hyperbolic) Iterated Function Systems(IFS). Before studying thoroughly IFS (7), which is the

topic of Section 3, we turn our attention to a second, slightly more sophisticated, model, mainly to

show that dynamics of the form expressed in (7) can be easily replicated.

2.2 Schumpeterian Growth with Patents

While keeping the same framework of Section 2.1, let us now assume that every individual of gen-

erationt at the beginning of her economic life has the same probability 0 < p < 1 of discovering a

better production method that allows the productivity of a numberθ ≥ 1 of individuals to jump to

the new technological frontierAt = γAt−1, provided she undertook an indivisible innovation effort

et = γet−1.

To render growth endogenous we will assume that productivity growth rateγ is an increasing and

bounded7 function of the aggregate innovative effort
∫ 1

0
ei
0di, where1 is the constant (normalized)

population size.8 Inventions are immediately patented and the patents expireafter one generation.

7With this simple assumption – that may be motivated by some kinds of congestion effects – we eliminate Jones (1995)
scale effects.

8It would not be difficult to allow for population growth. Interestingly, as will become clearer throughout the paper,
offspring’s division of bequest would reinforce inequality in this model and/or even generate it.
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We will assume that each individual can run only one researchproject during her life. Hence we

are building a simple Schumpeterian model in which the entrepreneurs are new people (Schumpeter,

1934, 1939) who try to adapt the ever-evolving society knowledge frontier to their sphere of pro-

duction, as in Aghion and Howitt (1998) and Howitt (1999). The parallel with Aghion and Howitt

(1998, Chapter 3) and Howitt (1999) cross-sector spilloveris in our assumption thatAt evolves as

an increasing function of social R&D adoption effort. This adds a zero growth equilibrium due to

R&D coordination failure: if each individual expects nobody to exert effort she will be better off not

exerting it. In the rest of the analysis we will concentrate only on the positive growth equilibrium.

Unlike usual Schumpeterian models we are here assuming a limited productive capacity per firms

and/or a limited number of patent licensees. In fact we will assume that in order to implement each

successful innovation the cooperation ofθ workers (including the innovator) is necessary. Hence, by

the law of large numbers, in the steady state there will be a fractionp of innovators, and a fractionpθ

of individuals employed in all innovative productive processes. Since we keep the whole population

normalized to1, in order to let all innovators carry on their activity, the fraction pθ of employed

individuals cannot exceed1, that is, the number of workers for each activity must be bounded by

1 ≤ θ ≤
1

p
. (8)

If the RHS of (8) holds with equality, the society is perfectly divided in a fractionp of entrepre-

neurs/ innovators and a fraction1 − p of workers. If the RHS of (8) holds with strict inequality, then

there will be a fraction of people who will be treated as self-employed in production processes that

use the technologyAt−1 available from the last period. Since patents expire after one period, the

technologyAt−1, available only for the innovators at timet − 1, becomes of public domain at timet.

Alternatively, if θ = 1/p, equilibrium unemployment would result in this simple economy.

Therefore we shall assume that, at each periodt, both employed workers in the innovative sectors

and self-employed workers in the old sectors perceive salaries equal to their productivity under the old

technologyAt−1. In this last scenario there will be a fraction0 < pθ < 1 of individuals employed in

theAt technology sector and a fraction1− pθ of individuals employed in theAt−1 technology sector.

Of these families, only a fractionp is able to reap the benefits of the innovative technologyAt (each

by employingθ−1 workers) by means of patents, while the other fraction1−p, being they employed

in the innovative sector or self-employed in the old sector,is remunerated by the productivity of the

At−1 technology.9

The innovations of this model can alternatively be interpreted as the discovery of an “entrepre-

neurial talent” that allows the innovator to found a firm thatpermits a more efficient use ofθ workers

by making them use the best productive practices available in her firm. As in Cuhna and Heckman

(2006, 2007, and 2009), and Heckman (2008), non-cognitive abilities matter as well as cognitive

abilities. In this sense, the model of this section can be viewed as an education model of the firm:

9If θ > 1/p, the innovators would not be able to implement their discoveries, and in a competitive equilibrium all
profits would be zero, leading to a society with a unique wealth group without inequality.
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in the particular caseθ = 1 the individual is only able to privately accumulate the “state of the art”

human capital. Unlike the previous example, the technologylearned by generationt will be observed

by everybody when it is operated, and, afterwards, every family will become able to use it at no ad-

ditional educational cost. Withθ = 1 this model depicts an economy similar to that of the previous

example, except for a perfect educational spillover which allows the wealth of the children of the

unlucky generation to instantaneously reach the level of the lucky members of the previous cohort.

Let us turn our attention to the evolution of wealth through time in this model. In every period,p

“innovators” will appear andpθ ≤ 1 skilled workers will be producing with the cutting-edge technol-

ogy, paying their extra productivity to each successful innovator. The innovator – as a patent holder

or as an entrepreneur – is able to extract the complete productivity increment for one period, thereby

rendering the appropriable technology of every non-innovator equal to the same valueAt−1. In other

words, besides directly benefitting from the new technologyAt, each single innovator in periodt can

appropriate the productivity gains of the non-innovators workers employed in her firm. Her end-of-

period income is thus equal to

At + (At − At−1) (θ − 1) = [1 + θ (γ − 1)] At−1. (9)

Hence, the wealth of individuali at the end of periodt, provided she undertook the indivisible

innovation effortet at the beginning of the period, will be

W i
t =

{

βW i
t−1 + At−1 with probability1 − p

βW i
t−1 + [1 + θ (γ − 1)] At−1 with probabilityp.

(10)

The unlucky will get only the one-period lagged productivity At−1 wealth, being her self-employed or

employed by some patent holder firm; in the latter case she must pay the full monopolistic rent to the

successful patent holder who employs her, though she can choose between different patent holders.

Once again, we need to make sure that all families find it convenient to undertake the indivisible

innovation effortet at the beginning of each periodt. The individuali expected utility gain conditional

on effortet is given by

E
[

U
(

Y i
t

)

|et

]

= pρ [1 + θ (γ − 1)] At−1 + (1 − p) ρAt−1 − et

= ρ [1 + pθ (γ − 1)] At−1 − et,

whereρ = (1 − β)1−β ββ, while the individuali certain utility gain obtained by exerting zero effort

is given by

U (At−1) = ρAt−1.

To achieve our goal,

E
[

U
(

Y i
t

)

|et

]

> U (At−1)

must hold, which easily translates into the next assumption.
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Assumption 2

0 < e0 < ρθ (1 − 1/γ) pA0.

whereρ = (1 − β)1−β ββ.

Notice that in this case nobody ends up with a zero wealth, butinstead even the “poorest” segment

of the population improves its standards of living at the same steady rateγ − 1 as the richest. In

particular, at the end of periodt each individuali will have some wealthW i
t laying in the interval

[

βbi
0 +

(

1 − (β/γ)t+1

γ − β

)

γtA0, βbi
0 +

(

1 − (β/γ)t+1

γ − β

)

γt [1 + θ (γ − 1)]A0

]

.

This is a consequence of the temporary nature of patents thatallows the inventors to “exploit” the un-

lucky only for a limited lapse of time and, upon expiry, makesthat innovation available for everybody

to be freely used.

Following the same technique as in Section 2.1, divide both equations in (10) byAt to get the

productivity-adjusted dynamic

wi
t =

{

αwi
t−1 + 1/γ with probability1 − p

αwi
t−1 + [1 + θ (γ − 1)] /γ with probabilityp,

(11)

whereα = β/γ. Through the affine transformationyi
t = [θ (γ − 1)]−1 [γ (1 − α) wi

t − 1] of (11), it

is immediately seen that we obtain the same IFS as in (7), taking the relevant values on the interval

[0, 1].

3 Iterated Function Systems and their Attractor

In this section we provide a self-contained description of the mathematical toolkit necessary to handle

IFS of the kind defined in (7). We shall confine our attention toIFS constituted by maps which are

contractions, since we heavily rely on a basic result on convergence of IFS requiring this property.

Then, we shall generalize the idea of normalizing linear dynamics over a compact interval (specifi-

cally, [0, 1]) already used in the previous sections, and we shall carefully study the geometric proper-

ties of the the fixed point – the attractor – of such normalizedIFS. On these geometric properties is

based the definition of wealth polarization/pulverizationthat will be used in subsequent sections.

3.1 A Well Known Result on IFS

There is a huge literature available on IFS, which has grown very fast since, a few decades ago,

it proved useful in techniques for generating approximatedimages of fractals on computer screens.

Exhaustive treatment can be found, among others, in Hutchinson (1981), Barnsley and Demko (1985),

Edgar (1990), Vrscay (1991), Stark and Bressloff (1993), Lasota and Mackey (1994), and Falconer
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(1997, 2003). For a simplified exposition, focused on discussing an optimal growth model exhibiting

the same dynamics as in (7), see also Mitra, Montrucchio and Privileggi (2004).

Let X be some compact subset ofR and consider a pair of maps,f1 : X → X, f2 : X → X, such

thatf1 < f2 with some constant0 < αj < 1 such that|fj (x) − fj (y)| ≤ αj |x − y| for all x, y ∈ X

andj = 1, 2. Given a fixed probability0 < p < 1, the triple{f1, f2, p} defines the (contractive) IFS

xt =

{

f1 (xt−1) with probability1 − p

f2 (xt−1) with probabilityp.
(12)

on the compact setX. System (12) induces an operatorT onR, calledBarnsley operator, defined by

T (B) = f1 (B) ∪ f2 (B) , B ⊆ X, (13)

wherefj (B) denotes the image ofB throughfj , j = 1, 2. Successive iterations ofT transformB into

a sequence of setsBt = T [T t−1 (B)] through time. We are interested in properties of the limiting set,

if it exists, to which the sequenceBt might eventually converge. A setA ⊆ X is called aninvariant

setor attractor for (12) if it is compact and satisfiesT (A) = A. It is a set such that, once entered by

the IFS, successive iterations ofT keep the system inside it.

Since (12) describes a stochastic dynamical system, another important aspect of the IFS is the

evolution through time of marginal probability distributions. Given any initial distributionν0 over

X, it is interesting to study how this probability evolves according to (12). LetB be theσ-algebra

of Borel measurable subsets ofX andP the space of probability measures on(X,B). Define the

Markov operatorM : P → P as

Mν (B) = (1 − p) ν
[

f−1
1 (B)

]

+ pν
[

f−1
2 (B)

]

, for all B ∈ B (14)

whereν ∈ P andf−1
j (B) denotes the preimage set{x ∈ X : fj (x) ∈ B}, j = 1, 2. OperatorM

is often calledFoias operator. As we did for operatorT , we want to study successive iterations of

M starting from some initial probabilityν0, νt (B) = M [M t−1ν0 (B)], which yields the evolution of

marginal probabilities of the system as time elapses. A probability distributionν∗ ∈ P is said to be

invariant with respect toM if

ν∗ = Mν∗. (15)

An invariant probability distribution is usually interpreted in economics as the stochastic steady state

to which the economy might eventually converge starting from some initial distributionν0 (see for

example Stokey and Lucas, 1989, and Montrucchio and Privileggi, 1999).

Below we recall an important result available for the fixed point of our IFS. Recall that thesupport

of a probability distributionν is the smallest closed setS ⊆ X such thatν (S) = 1, and that a

sequenceνt of probabilitiesconverges weaklyto ν∗ if lim
t→∞

∫

fdνt =
∫

fdν∗ for every bounded

continuous functionf : R → R.

12



Theorem 1 Consider the IFS described by{f1, f2, p}.

i) There is a unique attractor for the IFS; that is, a unique compact setA ⊆ X, such thatf1 (A) ∪

f2 (A) = A.

ii) There is a unique probability distributionν∗ on (X,B) satisfying the functional equation (15),

that is,

ν∗ (B) = (1 − p) ν∗
[

f−1
1 (B)

]

+ pν∗
[

f−1
2 (B)

]

for all B ∈ B. (16)

iii) A is the support ofν∗ and, for any probability10 ν0 on (X,B), the sequenceνt = M tν0 for

t = 0, 1, 2, . . ., converges weakly toν∗.

The original proof relies on a contraction mapping argumentand dates back to Hutchinson (1981).

See also Lasota and Mackey (1994) and Falconer (2003) for further discussion.

3.2 Scaling Maps

Consider the IFS (12) and assume that the mapsf1, f2 are increasing. Leta and b be their fixed

points respectively, that is,f1 (a) = a andf2 (b) = b, as in figure 1. Since the mapsf1, f2 are both

contractions, it is readily seen that, as time elapses, valuesxt that are admissible eventually must lay

inside the interval[a, b], that is,[a, b] is the trapping region of (12). In other words, the portion ofthe

mapsf1, f2 which is relevant in the long run is included in the squareT in figure 1 (where the plots

of f1 andf2 are in bold). Hence, with no loss of generality, we may letX = [a, b].

0 1

1

a

a

b

b

g1

g2

f1

f2

N

T

FIGURE 1: normalization of two contractive mapsf1, f2 over the unit square.

10To be precise, weak convergence holds for any initial probability ν such that
∫

|x − a| dν < ∞ for some constanta.
See Section 2.1.2 in Mitra, Montrucchio and Privileggi (2004) for more details.
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For any increasing contractive mapsf1, f2, such relevant region can be “normalized” over the

interval[0, 1] (that is, the squareT can be transformed into the squareN in figure 1) by the following

two transformations:

1. by arigid translationtowards the origin, so that the fixed pointa becomes the origin itself, and

2. byscalingthe whole systemby a factork = b − a.

The outcome of such transformation is a new IFS

yt =

{

g1 (yt−1) with probability1 − p

g2 (yt−1) with probabilityp
(17)

where the mapsgj are given by

gj (y) = k−1 [fj (ky + a) − a] , j = 1, 2, (18)

with k = b − a, as can be easily checked. Figure 1 illustrates this translation/scaling procedure

that transforms the original relevant regionT into the new “normalized” relevant regionN , which

is the unit square. Such normalization can be generalized tomapsf1 < f2 that are not necessarily

monotone,11 see Cozzi and Privileggi (2002) for details.

Transformations that are translations and scaling are called similarities (see Falconer, 2003, pp. 7

and 8). Asimilarity has the property of transforming sets into geometrically similar ones, in the sense

that it preserves relative distances between points of the original set; formally, it is a transformation

S : R
n→ R

n such that|S (x) − S (y)| = k |x − y| for all x, y ∈ R
n and some constantratio or scale

k > 0. Therefore, by construction, the IFS (17) obtained through(18), has graph similar to the graph

of the original IFS (12); this can be easily checked by notingthat the graphs inside the squaresT and

N in figure 1 are themselves similar. With a slight abuse of terminology, we shall say thatthe IFS

(12) and (17)are similar.

An important consequence of the normalization procedure described above is that the invariant

sets of both (12) and (17) have the same geometric properties, as they are generated by similar sys-

tems. Thus, similar IFS have similar attractors, and studying the geometric features of the attractor of

the normalized IFS (17) is equivalent to studying the geometry of (12).

3.3 Normalized Linear IFS

If the mapsfj are linear and with same slope0 < α < 1, that is, of the form

xt =

{

αxt−1 + z1 with probability1 − p

αxt−1 + z2 with probabilityp,
(19)

11To be precise, at least in the study of inequality phenomena,also the contractivity property could be relaxed some-
where in the “relevant region” (the squareT in figure 1). The only minimum requirement is that the graphics off1, f2 do
not intersect inside this area and that the maps are contractions outside such area, so that the system is being attractedto
the interval[a, b] as time elapses.

14



wherez1, z2 are any constants such thatz1 < z2, thena = z1/ (1 − α), b = z2/ (1 − α) and (18)

becomes the affine transformation

gj (y) = αy + (1 − α)
zj − z1

z2 − z1

, j = 1, 2, (20)

which transforms IFS (19) into the similar one

yt =

{

αyt−1 with probability1 − p

αyt−1 + (1 − α) with probabilityp
(21)

defined onX = [0, 1]. Figure 2 illustrates why interval[0, 1] is the trapping region of the contractive

system (21):0 is the fixed point of the mapg1 (y) = αy and1 is the fixed point of the mapg2 (y) =

αy + (1 − α); since, at each period, the system “jumps” from one map to theother with probabilities

1 − p andp respectively, it must eventually remain “trapped” between0 and1.

0 1

1

yt

yt+1

g1

g2

FIGURE 2: X = [0, 1] is the trapping region of system (21), whereg1(y) = αy + (1 − α) andg2(y) = αy.

Notice that (20) provides an alternative – and more general –tool to obtain the normalized IFS (7)

from the two (apparently) different systems (5) and (11) in Sections 2.1 and 2.2 respectively, where a

direct change of variable has been used instead.

It is important to stress that the affine transform (20) does not affect the slopeα of the mapsfj of

the original linear IFS (19); in other words, the (similarity) transformation (20)neutralizes the effect

of the additive constantsz1 andz2. We thus have proven a general property, stated in the following

lemma, which will be central in proving the main results of Section 5.

Lemma 1 The common slopeα of the maps in alinear IFSof the type (19) completely characterize

its dynamic properties, independently of the additive constantsz1 andz2. Accordingly, the geometric
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properties of its attractor depend uniquely on parameterα, and not on additive constants.

Specifically, the (similar) linear IFS (19) and (21), which have the common slopeα for both pairs

gj andfj, havesimilar attractors. Thus, we are entitled to concentrate our analysis exclusively on

IFS (21) – or, equivalently, on the IFS (7) – over the unit interval, X = [0, 1].

To see how parameterα (and not additive constants) affects the whole geometry of IFS (21),

observe that the graphs ofg1 andg2 are two increasing parallel lines crossing the lower left and the

upper right vertex of the unit square[0, 1]2 respectively: the largerα (close to1) the steeper and the

closer they are, the lowerα the flatter and the more apart they are. One may check (in this order)

figures 3, 2 and 4(a) to grasp how these graphs change as valuesof α decrease.

3.4 Geometric Properties of the Attractor

It is important to emphasize some features of the attractorA of the IFS (21) – the support of its

invariant distribution – which depend only on contraction factorα and are independent of probability

p. This will provide a key ingredient for our definition of wealth polarization/pulverization.

A quick glance at figure 2 makes clear that the support of our IFS will be the whole interval[0, 1]

whenever1/2 ≤ α < 1. This is becauseT ([0, 1]) = g1 ([0, 1])∪ g2 ([0, 1]) = [0, 1] if the images ofg1

andg2 overlap, that is, if1/2 ≤ α < 1, as figure 3 shows. In this case we shall say that all marginal

distributionsνt, and thus also the invariant distributionν∗, have “full support”.

0 1

1

yt

yt+1

g1

g2

FIGURE 3: g1([0, 1]) ∪ g2([0, 1]) = [0, 1] when1/2 ≤ α < 1.

More interesting is the case when imagesg1 ([0, 1]) andg2 ([0, 1]) do not overlap: this happens for

0 < α < 1/2, sinceg1 ([0, 1])∪g2 ([0, 1]) = [0, α]∪ [1 − α, 1], where[0, α] and[1 − α, 1] are disjoint.
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Forα < 1/2, there is a “gap” between the two image sets, with amplitude

h (α) = 1 − 2α > 0. (22)

Note thath (α) is decreasing inα, and the gap “spreads” through the unit interval by successive

applications of the mapsgj, reproducing itself, scaled down by a factor1/α, in the middle of each

subinterval born after each stept. Figure 4 reproduces the first three iterations of (21) starting from

[0, 1], generating a union of8 (= 23) intervals of lengthα3.

0 1

1

y0

y1

g1

g2

(a)

0 1

1

y1

y2

g1

g2

(b)

0 1

1

y2

y3

g1

g2

(c)

FIGURE 4: first three iterations of our IFS forα < 1/2 starting from[0, 1]. The third iteration gives a union of
eight intarvals of lengthα3, as can be seen on the vertical axis in (c).
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By pushing these iterations to the limit, we eventually find an attractor with features of the usual

Cantor ternary set; in fact, forα = 1/3, the support is precisely the Cantor ternary set. Cantor-like sets

of the kind constructed by computinglimt→∞ T t ([0, 1]) for 0 < α < 1/2 exhibit several geometrical

properties that are typical offractals.

The most bewildering – and intriguing – feature of fractals is the need of a more sophisticated tool

than the topological dimension – which allows only for integer values – to measure the “consistency”

of their structure. Several dimensions has been constructed for this purpose, like, among others, the

Hausdorff dimension, the Box-counting dimension and the Similarity dimension (for a discussion on

dimensions see, for example, Falconer, 2003). All fractalshave the peculiarity that their dimension is

a “fraction”, from which the name “fractal”; for instance, Cantor-like sets which are the attractors of

(21) for0 < α < 1/2 have Hausdorff dimension− ln 2/ lnα (positive but less than1), which, in this

case, is the same as the Box-counting and the Similarity dimensions.

Wheneverα < 1/2, the attractor of (21) has dimension less than1, which implies that it is totally

disconnected; that is, between any two points there are “holes” (points laying outside the attractor).

Conversely, even if dimensions less than1 denote sets with very “disperse” points, it can be shown

by means of a standard Cantor diagonal argument that Cantor-like sets contain uncountably many

points, which are all pulverized across the interval itself(in the mathematical literature they are often

referred as “Cantor dust”). Nonetheless, none of these points are isolated,i.e., all Cantor-like sets have

the paradoxical property that they are bothtotally disconnectedandperfect. A terse and accessible

discussion of the Cantor ternary set and its properties can be found in Chapter 11 in Strogatz (1994).

Also Crownover (1995) is a good reference for an introductory approach.

3.5 The Invariant Distribution

Properties of the attractorA discussed before shed some light also on the limiting distribution sup-

ported on it. A subset ofR with dimension less than1 have Lebesgue measure zero.12 SinceA is the

support of the invariant distributionν∗, ν∗ (A) = 1, from which we deduce thatν∗ turns out to be sin-

gular with respect to Lebesgue measure wheneverα < 1/2. However, singular invariant distributions

are not confined to the caseα < 1/2, as it is widely discussed in Mitra, Montrucchio and Privileggi

(2004), where singularity versus absolute continuity properties ofν∗ are systematically investigated.

To have a flavor of what such an invariant distribution might look like, one may draw some itera-

tions of Foias operator13 M defined as in (14) starting from the uniform distribution over [0, 1]. This,

in the case0 < α < 1/2, is equivalent to the following construction. Split a unit mass so that the

right interval ofT ([0, 1]) has massp and the left interval has mass1 − p. Then, divide the mass on

each interval ofT ([0, 1]) between the two subintervals ofT 2 ([0, 1]) in the ratiop/ (1 − p). Continue

in this way, so that the mass on each interval ofT t ([0, 1]) is divided in the ratiop/ (1 − p) between

its two subintervals inT t+1 ([0, 1]) (see also Example 17.1 in Falconer, 2003). Figure 5 depicts some

12A rigorous proof of this fact, which uses the notion ofHausdorff measure, can be found in Edgar (1990).
13The Maple code that generates plots like in figure 5 is available from the authors upon request.
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iterations ofM using this construction starting from the uniform distribution for α = p = 1/3.

0 1

1

2

(a) M1

0 1

2

4

(b) M2

0 1

4

8

(c) M3

0 1

8

16

(d) M4

0 1

16

32

(e) M5

0 1

32

64

(f) M6

FIGURE 5: first six iterations of operatorM starting from the uniform probability forα = 1/3 andp = 1/3.

Figure 6 shows two examples of eight iterations ofM in the overlapping case,i.e. for α ≥

1/2, when the invariant distributionν∗ has full support. Note that forα close to1 [high “degree

of overlapping” of the imagesg1 ([0, 1]) andg2 ([0, 1])] and p sufficiently close to1/2, figure 6(a)

suggests thatν∗ will be “smooth” (absolutely continuous); while, wheneverα gets closer to1/2 and

p gets closer to the endpoints0 or 1, as in figure 6(b), the approximation resembles the traits observed
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in figure 5(f), where the limiting distribution is known to besingular.

0 1

1

2

(a) α = 4/5 andp = 1/3

0 1

12

24

(b) α = 3/5 andp = 1/8

FIGURE 6: two examples of the first eight iterations of Foias operator M starting from the uniform probability
in the overlapping case, that is, forα ≥ 1/2.

We end this section by noting that Theorem 1 applied to our IFS(21) provides also some standard

information on the limiting distributionν∗. Denote byy∗ ∈ [0, 1] the random variable associated

to the invariant distributionν∗, that is, lety∗ be therandom fixed point14 of system (21). Then, the

functional equation (16) can be rewritten as

ν∗ (y∗ ∈ B) = (1 − p) ν∗

(

y∗

α
∈ B

)

+ pν∗

(

y∗

α
−

1 − α

α
∈ B

)

,

which allows for a direct computation of expectation and variance ofy∗:

E (y∗) = p (23)

V ar (y∗) =
1 − α

1 + α
p (1 − p) . (24)

Note that these computations are justified thanks to weak convergence, since expectation and variance

are the integrals of the identity functionf (y) = y and the functionf (y) = [y − Eg (y)]2 respectively,

which are both bounded and continuous on[0, 1].

4 Growth and Inequality

The stochastic dynamic model expressed by (7), or more generally by (21), turns out to be especially

useful for a slightly different interpretation, which is the main focus of this paper. One-period proba-

bility p of individual i of successfully adopting technologyAt at the end of periodt – or discovering

some innovative production method in the Schumpeterian version of the model – can be seen, by the

14See Arnold (1998) for a detailed treatment of random dynamical systems and random fixed points.
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law of large numbers, as the “average proportion of the wholepopulation” that in the long run is able

to catch the opportunity of benefitting from the (constantlyevolving) new technology. In this sce-

nario, the IFS (21) describes the evolution through time of the wealth distribution across a population

of a continuum of individuals normalized to1, which, by Theorem 1, in the long run converges to

some invariant wealth distributionν∗ supported on a subset of[0, 1].

From this aggregate perspective, expectation (23) can be read as the average productivity-adjusted

wealth in the steady state, and variance (24) as the dispersion of individual wealths. From (23)

it is immediately seen that the higher the individual probability p of exploiting technologyAt (or

successfully innovating), the “richer” the economy on average; while (24) shows that low values of

parameterα = β/γ (i.e., low altruism rateβ or high exogenous growth rateγ) and values of parameter

p close to1/2, entail a dispersed invariant wealth distributionν∗. Index (24) provides a very rough

measure of wealth inequality; incidentally, note that, forany fixed value of probability of successp,

the lower parameterα, the more dispersed the (steady state) wealth distribution.

In view of Section 3, we are in the position of saying much moreon the steady state of such kind

of economy. Specifically, we focus on the existence of a middle class, which is often considered

important for growth itself, for democracy, for sociopolitical stability, and for the law and order, as

quantified, among others, in the empirical analyses of Alesina and Rodrik, (1994), Perotti (1996) and

Barro (1999). A strong middle class in our economy is represented by an invariant distributionν∗

that gathers a proportionally larger fraction of the population around1/2 than close to the endpoints

0 and1 of the interval[0, 1]. Our main result, Proposition 1, provides clear-cut conditions for the

converse, thelack of a middle class, thus characterizing economies which are polarized in terms of

wealth distribution.

The self-contained description of such steady state in terms of attractor of the IFS (21) carried

out in Section 3.4 makes clear the relationship between values of parameterα and the very existence

of a middle class: economies featuring valuesα < 1/2 for the exogenous parameterα = β/γ have

the striking property that a middle class disappears already after one period starting from any wealth

distributionν0 on [0, 1]. Such disappearance is graphically represented by the “gap” between the

two disjoint image setsg1 ([0, 1]) andg2 ([0, 1]) in figure 4(a): already the first marginal distribution

ν1 concentrates wealth on two disjoint classes regardless of the wealth distributionν0 on [0, 1] in

t = 0. Furthermore, this gap is doomed to stay there forever, thatis, also the limiting (steady state)

wealth distributionν∗ turns out to be characterized by the same lack of a middle class. Note that,

as we observed in Section 3.4, this happens independently ofthe probability of successp, and the

size of the gap increases as parameterα decreases, which is consistent with the measure of dispersion

provided by (24). Since the lack of a middle class can be seen as an extreme case ofwealth inequality,

accordingly to the literature on inequality we shall refer to it with the termwealth polarization.15

Moreover, we have seen in Section 3.4, that whenever the images setsg1 ([0, 1]) andg2 ([0, 1]) are

15We shall see in Section 6 that the term polarization becomes problematic whenever a more technical definition of
polarization is needed for distributions supported on Cantor sets. Throughout most part of this paper, we shall employ the
term polarization to identify whatever wealth distribution characterized by a missing middle class, as formalized in the
next Definition 1.
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disjoint, after the first iteration of the IFS the hole appearing in the support of the marginal wealth

distributionν1 is being infinitely replicated on smaller scale in all supports of the successive marginal

distributionsνt, for all t ≥ 2, leading in the limit to a support for the invariant distribution ν∗ which

is a Cantor-like set. This phenomenon creates a form of intra-class social disconnection that we

somewhat tentatively will labelwealth pulverization.

The discussion above leads to the following definition of wealth polarization/pulverization based

on the (no) overlapping property of the image sets of the mapsg1 andg2 of the IFS (21).

Definition 1 Consider any economy of the type described in Section 2, where (productivity adjusted)

wealth distribution through time is described by the IFS{g1, g2, p} defined as in (21) onX = [0, 1].

We shall say that such economy ispolarized/pulverized whenever16

g1 (1) < g2 (0) . (25)

A direct application of Definition 1 leads to our main result.

Proposition 1 Under Assumption 1 for the model introduced in Section 2.1, or condition (8) plus

Assumption 2 for the model described in Section 2.2, ifγ > 2β the supportA of the limit distribution

ν∗ of both economies is a Cantor-like set, and thus they are polarized/pulverized in the long run.17

Moreover, the largerγ (and/or the smallerβ), the larger the gap between the fractions of the pop-

ulation – the the “poor” and “rich” – near the endpoints of theinterval [0, 1], independently of the

values of parametersp andθ.

Proof. Sinceα = β/γ, γ > 2β ⇐⇒ α < 1/2, which itself is equivalent to (25). The latter

statement follows from (22), which measures the size of the gap between the “poor” and the “rich”

fractions of the population as a decreasing function ofα = β/γ.

Proposition 1 shows that a high economic growth rate, by rewarding the successful individuals and

penalizing in relative terms those who are not ready to catchthe opportunities associated with the new

technologies, make the middle class disappear and polarizesociety in two different wealth classes.

Polarization becomes dramatic the larger the jump in productivity γ and the smaller the individual

degree of altruismβ (or, equivalently, the more selfish the individuals).

Remark 1 It is important to highlight that a polarized wealth distribution does not mean that wealth

classes are trapping the individuals: all individuals havethe same opportunity to become rich or poor

in this economy and it is precisely the amplitude of thesocial mobility– and not the frequency, that

is the probabilityp of catching the technological opportunity, or finding some innovative production

method – that generates wealth polarization.

16For a discussion of the no overlap property (25) applied to stochastic optimal growth models of the Brock and Mirman
(1972) type, see Mitra and Privileggi (2004, 2006 and 2009).

17Conditionγ > 2β is both necessary and sufficient for the attractorA to be a Cantor set. However it is clearly only
sufficient for polarization, since, generally speaking, aninvariant distribution may well have full support and at thesame
time exhibiting some degree of polarization, as it will be shown in Section 7.
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5 Redistribution and Social Cohesion

It turns out that normalizing maps of IFS as in (19) on the interval [0, 1] has important policy impli-

cations. Specifically, redistribution schemes based on lump-sum transfers from the rich to the poor

aimed at doing away with social polarization/pulverization are not capable of achieving such goal,

while direct wealth taxation may even make polarization worse. This happens because the “hole” that

generates polarization depends only on parametersβ (preferences) andγ (growth rate), as it has been

widely argued in the previous sections, and cannot be affected by mere transfers of income, as the

latter simply translate into different values for constantsz1, z2 in system (19).

This result appears counter-intuitive at a first glance. We shall devote the next sections to analyze

in detail whether and how alternative forms of government intervention may affect wealth polariza-

tion. First, two types of lump-sum transfers which fail to eliminate wealth polarization, one for the

model described in Section 2.1 and one for the Schumpeterianversion of Section 2.2, are discussed.

Thereafter, such a result is being even strengthen by showing that direct wealth taxation may actually

worsen polarization. In Section 5.2, however, we shall offer a fiscal solution based on random taxation

of the rich that may wipe out polarization, at least in the sense of “filling the gap” in the support of

a polarized invariant distribution. For simplicity, we will not assume that polarization/pulverization

implies productivity losses.

5.1 Lump-Sum Transfers

In the model of Section 2.1, let us assume that the gains from success are taxed at the end of each

period a proportion0 ≤ τ < 1 and that proceeds are redistributed lump-sum to the unluckies.18 If all

individuals exert effortet in order to learn technologyAt, the steady state proportion of rich families

in the economy will still bep. Hence, the government in the long run will be able to collecttax

revenues equals topτAt, which – assuming a balanced government budget every period– equals the

aggregate lump sum transfer received at the end of periodt by the whole poor.

Since taxation further reduces the expected benefit derivedfrom having the opportunity of adopt-

ing technologyAt, in order to let all individuals keep putting effortet even under taxation and thus

obtain a dynamic similar to that in (3), an upper bound on tax rateτ is needed. Let us discuss in

detail how Assumption 1 needs to be modified to avoid free riding behavior due to the possibility

of receiving, out of nothing, a transfer that generates a higher utility than the expected utility gain

produced by putting effortet.

Let 0 ≤ l ≤ 1 denote the fraction of the population who decides to put effort et in learning

technologyAt. Then, at the steady state, the total amount of tax revenues is plτAt, and each non-

successful individuali – which are both the unlucky ones who exerted effortet and the lazy ones who

18Note that, assuming lumps sum redistribution to all individuals – not only to the unluckies – would not alter the
qualitative results of our analysis.
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did not exert any effort, that amount to a proportion1 − pl of families – receives a transfer given by

T i
t =

pl

1 − pl
τAt. (26)

In view of (2), the individuali expected utility gain conditional to effortet is given by

E
[

U
(

Y i
t

)

|et

]

= ρ
[

p (1 − τ) At + (1 − p) T i
t

]

− et

= ρ

[

p (1 − τ) At + (1 − p)
pl

1 − pl
τAt

]

− et,

whereρ = (1 − β)1−β ββ, while the individuali certain utility gain obtained by exerting zero effort

is given by

U
(

T i
t

)

= ρ
pl

1 − pl
τAt.

In order to let all the families put the effortet = γte0 required to learn technologyAt, we need

E
[

U
(

Y i
t

)

|et

]

> U
(

T i
t

)

to hold for all0 ≤ l ≤ 1, which leads to

(

1 −
τ

1 − pl

)

pρA0 > e0.

Since the minimum of the left hand side is reached forl = 1, then, for each givene0 satisfying

Assumption 1, the following restriction on parameterτ guarantees that all families will always put

effort et in learning technologyAt also under government taxation.

Assumption 3 Assumption 1 holds and

0 ≤ τ < (1 − p)

(

1 −
e0

pρA0

)

, (27)

whereρ = (1 − β)1−β ββ.

Hence, in view of (3), the dynamics of individuali’s wealth becomes:

W i
t =

{

βW i
t−1 + p (1 − p)−1 τAt with probability1 − p

βW i
t−1 + (1 − τ) At with probabilityp,

(28)

wherep (1 − p)−1 τAt represents the transfer received by a single unlucky family, i.e., T i
t in (26) with

l = 1. By dividing both equations in (28) byAt we get productivity-adjusted linear dynamics:

wi
t =

{

(β/γ)wi
t−1 + p (1 − p)−1 τ with probability1 − p

(β/γ)wi
t−1 + (1 − τ) with probabilityp.

(29)
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Under Assumption 3, the RHS in (27) impliesτ < 1 − p, which, in turn, impliesp (1 − p)−1 τ <

(1 − τ). If we let α = β/γ, z1 = p (1 − p)−1 τ andz2 = (1 − τ), (29) becomes as in (19), which is

similar to (21), and thus a direct application of Lemma 1 immediately yields the following result.

Proposition 2 If γ > 2β, polarization/pulverization never disappears for all income tax ratesτ

satisfying Assumption 3.

Figure 7 shows that only the common slope of the two maps constituting the IFS affects polariza-

tion/pulverization while lump-sum transfers – which are nothing else than additive constants – have

no effect in reducing inequality.

gap

gap
smaller

g1

g2

g1+tax

g2−tax

tax

tax

FIGURE 7: redistribution from the rich to the poor has the only effect of shrinking the size of the gap, it does
not make it disappear.

There is, however, an important difference with respect to the dynamics obtained in Section 2.1.

Observing the evolution through time of the supports of the marginal distributionsνt of systems (28)

or (29), it is clear that the standard of living of the poor under wealth redistribution will be bounded

away from zero in the long run, that is, nobody will end up witha zero wealth in the steady state. As

a matter of fact, the feasible wealths of system (28) at timet lay in some subset of the interval

[

βbi
0 +

(

1 − (β/γ)t+1

γ − β

)

γt+1p (1 − p)−1 τA0, βbi
0 +

(

1 − (β/γ)t+1

γ − β

)

γt+1 (1 − τ) A0

]

,
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where the left endpoint is strictly positive and increasingover time. Therefore, although govern-

ment redistribution does not affect polarization/pulverization, it still proves effective in sustaining the

wealth of the poor. Clearly also the “rich side” of the population is being affected by having a reduced

– by factor(1 − τ) – maximum possible wealth compared to that of the original feasible region (4).

Thus, the overall effect of a redistributive policy by the government is to narrow the whole absolute

wealth around its mean, without changing polarization/pulverization features in relative terms.

It would be natural to endogenize fiscal policy along the lines of Alesina and Angeletos (2005a)

and Alesina, Cozzi, and Mantovan (2009), with the importantdifference that here luck and unluck are

not additive, but multiply effort. As shown by Alesina, Cozzi, and Mantovan (2009), the implied dy-

namics will depend on how preferences for a desired distribution are chosen: somewhat unexpectedly,

the present model suggests that the introduction of the disutility of living in a polarized/pulverized

society could get voters to support lower taxation.

5.2 Government Purchase of Innovations

If the effort et required to promote innovation is sufficiently small, in theSchumpeterian model of

Section 2.2 the government could reward the innovator by purchasing the innovation and at the same

time making the innovation itself immediately publicly available to everybody, as suggested by Kre-

mer (1998).

Provided that population is normalized to1, the society as a whole will put effortet in R&D for

new technological projects and at the steady state there will be a fractionp of successful innovators

who possess technologyAt. Suppose that the government, in order to make technologyAt publicly

available in periodt, buys the technological know-how from thep fraction of innovators at the lowest

incentive compatible price,19 i.e., atp−1et, and allows the fraction1 − p of unluckies to freely use it

in their own firms. Assume further that the government charges all the unluckies the whole costet

of research through a lump-sum tax to be fully transferred tothe luckies. Then, the law of motion of

wealth becomes:

W i
t =

{

βW i
t−1 + At − (1 − p)−1 et with probability1 − p

βW i
t−1 + At + p−1et with probabilityp,

(30)

where(1 − p)−1 et denotes the per capita cost of research charged to the unluckies andp−1et denotes

the per capita compensation for the productivity gain loss (9). We will assumee0 small enough to

guarantee that the unluckies are better off under this forced purchase of the new technology than under

laissez faire.

Observe that, at least for the casep < 1/2, which seems sufficiently realistic, system (30) can

be reduced to system (7) – or (21) – through formula (20). Therefore, once again, Lemma 1 and

Proposition 1 apply stating that polarization/pulverization is completely determined by conditionγ >

2β and a result similar to Proposition 2 holds: government financing private innovations does not

19Note that any price slightly higher thanp−1et makes each individual strictly better off undertaking the R&D effort.
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affect polarization/ pulverization.

The delicate part, as usual, is enforceability of such a policy: nobody would vote a government

policy which leaves everybody worse off. The individual expected indirect utility gain is

E
[

U
(

Y i
t

)]

= ρ

[

p

(

At +
et

p

)

+ (1 − p)

(

At −
et

1 − p

)]

− et

= ρpAt − et,

and thus, the effort condition turns out to be the same as20 in Assumption 1:

e0 < ρpA0. (31)

Note that, by assumingp < 1/2, necessarilyρp < 1 − p, and thus (31) impliese0 < (1 − p) A0,

which guarantees that the left endpoint of the support of themarginal probabilities of process (30),

which at timet is

βbi
0 +

(

1 − (β/γ)t+1

γ − β

)

γt+1

(

A0 −
e0

1 − p

)

,

is strictly positive for allt. This means that, like in the previous section, the poorest segment of the

population improves its standards of living at the same steady rateγ − 1 as the richest.

5.3 Direct Wealth Taxation

Let us now consider wealth taxation (not redistributed lump-sum) for the model described in Section

2.1. If final wealth is taxed at a rate0 < τw < 1, the dynamical system (5) becomes:

wi
t =

{

(1 − τw) (β/γ)wi
t−1 with probability1 − p

(1 − τw) (β/γ)wi
t−1 + (1 − τw) with probabilityp

(32)

which, again in view of Lemma 1 and Proposition 1, immediately implies the following result, as can

be easily established by lettingα = (1 − τw) (β/γ), z1 = 0 andz2 = 1− τw, so that (32) is as in (19)

and thus similar to (21).

Proposition 3 Suppose Assumption 1 holds and0 < τw < 1−(pρA0)
−1 e0. Then, ifγ > (1 − τw) 2β,

polarization/pulverization emerges.

In this case, government intervention proves effective (for the worse) in modifying polariza-

tion/pulverization as it is capable of affecting the commonslope of the maps of (5) – and thus also

that of the maps in (7) or (21) – besides the additive constants. Therefore, a high enough wealth

tax rate can generate a polarized wealth distribution even if γ < 2β, that is, even if growth and al-

truism are such that that the private sector let alone does not generate polarization. In other words,

20This seems to be reasonable since utility is linear and what is taken from the unluckies goes to the luckies, leaving
the expected utility gain unchanged.

27



somewhat paradoxically, in this model the middle class may disappear and the economy becomes

polarized/pulverized as a result of an active redistributive policy. Here, to isolate the pure effect of

taxation, we have not assumed any transfer from the government; recall, however, from Section 5.1,

that any lump sum transfer would not have any effect on wealthpolarization.

5.4 Random Taxation

We here show that a redistribution scheme based on random taxation may reduce and, in some cases,

even eliminate polarization.21 The idea is to increase the uncertainty in the model so that the two-

maps IFS (28) is being replaced by a three-maps IFS in which the image set of the second map might

fill the hole left by the other two images set in case of polarization.

In the framework developed in Section 2.1, let us assume thatthe gains from success are taxed

at some rate0 < τ < 1 with probability 1 − q, with 0 < q < 1. At each period, the successful

individuals face a tax lottery such that they have to payτAt with probability1 − q and0 with proba-

bility q. Probabilityq is constant through time and is independent of the probability of successp. The

government controls parametersq andτ . The total amount of proceeds are redistributed lump-sum to

the unluckies.

If all individuals exert effortet in order to learn technologyAt, the steady state proportion of rich

families in the economy will still bep. A fraction q of this proportion will be tax exempt, while the

other fraction1 − q will be taxed at rateτ . Hence, the government in the long run will be able to

collect tax revenues equals to

p (1 − q) τAt,

which – assuming a balanced government budget every period –equals the aggregate lump sum

transfer received at the end of periodt by the whole poor.

The dynamics of individuali wealth becomes:

W i
t =



















βW i
t−1 +

p (1 − q)

1 − p
τAt with probability1 − p

βW i
t−1 + (1 − τ) At with probabilityp (1 − q)

βW i
t−1 + At with probabilitypq,

where, in the first line,p (1 − p)−1 (1 − q) τAt represents the transfer received by a single unlucky

family. Let α = β/γ and consider the productivity-adjusted dynamics:

wi
t =



















f1

(

wi
t−1

)

= αwi
t−1 +

p (1 − q)

1 − p
τ with probability1 − p

f2

(

wi
t−1

)

= αwi
t−1 + (1 − τ) with probabilityp (1 − q)

f3

(

wi
t−1

)

= αwi
t−1 + 1 with probabilitypq.

(33)

System (33) contains three (affine) contractive maps identified by parametersα, p, q andτ , where the

21We owe the idea of studying the effects of a random tax on polarization/pulverization to Salvador Ortigueira.
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last two are decision variables for the government. We want to investigate for what values of these

parameters 1) incentive compatibility holds,i.e., all individuals exert effortet, 2) the three maps are

ordered so thatf1 < f2 < f3, and 3) whether values of the parameters exist so that the image set off2

fills the (possible) gap left by the image sets off1 andf3. The last point would mean the possibility

of eliminating polarization through government redistribution under this random scheme.

With no loss of generality for the rest of this section we shall assume

1

3
≤ α <

1

2
.

The right inequality implies that the two maps in (21) exhibit polarization (their images do not over-

lap), while the left inequality allows for the introductionof a third affine map with the same slope

α between the two given maps, so that the hole left by the two pre-existing image sets can be com-

pletely “filled”. From figure 4(a), it is easily understood that maps with slopeα < 1/3 have images

sets which cannot fill the whole interval[0, 1]. Clearly, for maps withα < 1/3, arguments similar to

the one carried out in this section can be implemented for random taxation schemes that use different

tax rates. For example, ifα < 1/n, n − 1 tax rates, each with positive probability, are necessary.

In order to let all individuals keep putting effortet even under taxation, an upper bound on the tax

rateτ similar to that in Assumption 3 is needed. By replacing the certain tax rate with the expected

rate tax(1 − q) τ we are easily led to the following inequality:

τ <
1 − p

1 − q

(

1 −
e0

pρA0

)

, (34)

whereρ = (1 − β)1−β ββ. Moreover, in order to havef1 < f2

τ <
1 − p

1 − pq

must hold; whilef2 < f3 follows from0 < τ < 1. Hence, the following assumption is what we need.

Assumption 4 Assumption 1 holds and

0 < τ < min

{

1 − p

1 − q

(

1 −
e0

pρA0

)

,
1 − p

1 − pq

}

,

whereρ = (1 − β)1−β ββ.

To analyze the possibility of eliminating polarization, let us normalize the three maps IFS (33)

to the interval[0, 1] along the argument discussed in Section 3.3. We shall apply formula (20) with

α = β/γ, z1 = p (1 − p)−1 (1 − q) τ andz2 = 1 to get the lower and higher maps as in (21), while the

constant intercept of the map in the middle will be obtained by letting zj = (1 − τ) in (20). Hence,
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we get the normalized system

wi
t =











g1

(

wi
t−1

)

= αwi
t−1 with probability1 − p

g2

(

wi
t−1

)

= αwi
t−1 + (1 − η) (1 − α) with probabilityp (1 − q)

g3

(

wi
t−1

)

= αwi
t−1 + (1 − α) with probabilitypq,

(35)

where

η =
(1 − p) τ

(1 − p) − p (1 − q) τ
.

Note that, under Assumption 4,0 < η < 1.

The overlapping condition for the three image sets is a straightforward computation that leads to

1 − 2α ≤ (1 − α) η ≤ α,

which, in terms ofτ , boils down to

(1 − 2α) (1 − p)

(1 − p) (1 − α) + (1 − 2α) p (1 − q)
≤ τ ≤

α (1 − p)

(1 − p) (1 − α) + αp (1 − q)
. (36)

Note that condition (36) is nonempty for1/3 ≤ α < 1/2, and coincides with a single value forτ

whenα = 1/3, that is when inequalities in (36) become equalities and there is only one mapg2 in

(35) whose image set can fill the whole gap left by the other two.

The left hand side of condition (36) is the most important in our analysis: it requiresτ to be

sufficiently large in order to eliminate polarization. However, in view of Assumption 4, we observe

thatτ must be not too large to let the incentive compatibility (34)be always satisfied. If this constraint

is too tight, due,e.g., to a high value of the ratioe0/ (pρA0), the left hand side in (36) might not hold,

thus leaving the government with no room for applying redistributive policies against polarization.22

Specifically, polarization is neglected ifτ is chosen to be equal to the left hand side of (36) and

e0

pρA0

< 1 −
(1 − 2α) (1 − q)

(1 − p) (1 − α) + (1 − 2α) p (1 − q)
. (37)

Note that we did not discuss any restrictions for the choice of parameterq by the government so

far. Since by Assumption 1e0/ (pρA0) < 1, there always exist values for parameterq < 1, possibly

close to1, such that (37) is satisfied. In other words, there is always room for the government to

eliminate polarization through a random taxation and lump-sum redistribution scheme in the sense

of making the support of the steady state distribution of system (35) to be the whole interval[0, 1].

However, values ofq close to1 imply that almost the wholep fraction of the steady state successful

22Note that the other component of Assumption 4 is always satisfied since

(1 − 2α) (1 − p)

(1 − p) (1 − α) + (1 − 2α) p (1 − q)
<

1 − p

1 − pq

is always true.
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population,i.e., pq out of p, is paying no taxes, while only a negligible fractionp (1 − q) of the suc-

cessful population is paying taxes; but this amounts exactly to the “middle class” artificially created

through the random taxation. Therefore, as the new middle class carries nearly no weight, polariza-

tion remains substantially unaltered in terms of “wealth distribution”, even if such distribution has

full support. That is, once again, a tight incentive compatibility constraint in Assumption 4 leaves

little room for government intervention and substantiallyreduces hopes of eliminating polarization

even through random taxation.

6 Inequality Versus Pulverization

So far we have used the term polarization to generically describe an extreme degree of inequality due

to the disappearance of a middle class in a distribution supported on a Cantor set (as in Definition

1). A more “technical” concept of polarization assumes, besides the inequality produced by different

wealth levels between groups, also a certain degree of concentration, or “clustering”, of wealth within

each group: if the distribution of wealth is highly gatheredwithin groups but very diverse between

groups in a population, then wealth is considered “polarized” between the groups (see,e.g., Esteban

and Ray, 1994, Wolfson, 1994, and, for a survey, Zhang and Kanbur, 2001). In other words, the

generation of tensions possibly evolving to rebellion, revolt, or social unrest is more likely if wealth

is distributed among groups which have a strong self-identity feeling.

However, we have seen in the previous sections that the striking inequality phenomenon possibly

occurring after one period, the lack of a middle class, is being replicated on a smaller scale among

wealth sub-clusters after each iteration of any IFS similarto (21), provided thatγ > 2β [see,e.g.,

figure 5]. In Section 4 we somewhat tentatively called “pulverization” such dispersion of wealth over

a Cantor set. Clearly, pulverization runs against polarization, since it may be seen as the result of a

progressive erosion of the wealth concentration around thetwo main clusters appeared after the first

period. In the limit, whenever the invariant distribution of wealth is supported over a Cantor set, all

wealth groups are distinct (a Cantor set is disconnected) and each of them bear zero weight (a Cantor

set has a continuum of points over which a unit mass is being spread, as we shall see in short).

All these considerations should be enough to discourage anyattempt for providing meaningful

polarization measures for distributions supported on Cantor sets by means of any standard index

available in the literature. Nonetheless, in this section we aim at shading some light on whether

pulverization may or may not affect, if not – technically speaking – polarization, at least inequality

in the long run. Such goal is achieved by adapting the most popular inequality measure, the Gini

coefficient, to our invariant wealth distribution when it issupported on a Cantor set.

Formally, given a finite distribution of weightsπ1, . . . , πn on wealthsW1, . . . , Wn, with πi, Wi >

0, the Gini coefficient is given by

G =
1

2µ

n
∑

i=1

n
∑

j=1

πiπj |Wi − Wj| , (38)
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whereµ denotes the mean wealth across the whole sample. Clearly (38) is meant to measure in-

equality by using statistical data available for societieswith finite populations. The pursue of some

generalization of (38) to include infinite distributions supported over fractal sets is well beyond the

scope of this paper. Our goal is more modest: we just aim at checking whether pulverization affects

inequality in the long run. For this purpose, the computation of the limit of G in (38) asn → ∞,

to see whether it remains positive or boils down to zero, should be sufficient. Such question is non

trivial, as two opposite effects occur by applying formula (38) directly to our IFS in the case of real

(i.e., not adjusted by productivity) wealth dynamics: on one hand, the weightsπi decrease after each

step, since, under our assumptions, the same unit population is being progressively spread over more

and more wealth clusters, and the same does the reciprocal ofthe mean,1/µ; on the other hand, after

each period new wealth groupsWi are born and the distances between wealth clusters increase, thus

raising both the number of addends in the sum and the values|Wi − Wj|.

Consider the dynamical system (3) discussed in Section 2.1:

Wt =

{

βWt−1 with probability1 − p

βWt−1 + At with probabilityp,
(39)

whereWt denotes some wealth amount at timet, 0 < β < 1 is the degree of intergenerational

altruism,At = γtA0 is the exogenous technology withA0 > 0, γ > 1, and0 < p < 1 represents the

probability of success in the adoption of the technology. The choice of studying system (39) instead

of system (7) – which is normalized on the interval[0, 1] – is made to conform with the mainstream

literature on inequality, where real wealth values available from statistical data are used, instead of

productivity adjusted values.

Theorem 1 cannot be applied directly to the IFS (39), which has unbounded support fort → ∞,

however we can refer to the invariant distribution of the conjugate system (7) as the equivalent of the

unique invariant distribution of (39) defined on the positive real line.23 The system converges to this

distribution starting from any initial distribution of wealth. Thus, for convenience, we may assume

that the distribution at timet = 0 concentrates a mass1 − p on some bequestb0 ≥ 0 inherited from

the past and a massp on (b0 + A0); that is,ν0 (W ) = (1 − p) δb0 (W )+ pδb0+A0
(W ), where, for any

b ∈ R+, δb denotes the Dirac function:

δb (W ) =

{

1 if W = b

0 otherwise.

We may also write the initial condition for (39) as

W0 =

{

b0 with probability1 − p

b0 + A0 with probabilityp.
(40)

23Alternatively, since0 < β < 1, one may invoke Theorem 7.2 in Lasota (1995) to prove existence and uniqueness of
the invariant distribution for IFS (39).
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Having an initial distribution concentrating masses over afinite set of points implies that also the

distribution of wealths at each datet > 0 concentrates masses over finite sets of points. This allows

a direct application of formula (38) to the distribution of wealths at each datet. By construction, it

is easily seen that, for allt ≥ 0, the are2t+1 values of wealthW 1
t , . . . , W 2t+1

t , each with weightπi
t,

i = 1, . . . , 2t+1. Therefore, the Gini coefficient at timet is given by

Gt =
1

2µt

2t+1

∑

i=1

2t+1

∑

j=1

πi
tπ

j
t

∣

∣W i
t − W j

t

∣

∣ , (41)

where

µt =
2t+1

∑

i=1

πi
tW

i
t (42)

denotes the mean of the marginal distributionνt for all t ≥ 0, and, in view of (40), we may letW 1
0 =

b0, W 2
0 = (b0 + A0), π1

0 = 1 − p andπ2
0 = p.

Since, by independence, for allt ≥ 0, weightsπi
t have the form

πi
t = phi (1 − p)t+1−hi , 0 ≤ hi ≤ t + 1, 0 < p < 1,

clearly limt→∞ πi
tπ

j
t = 0; in other words, massesp and 1 − p, initially concentrated onb0 and

(b0 + A0), are progressively spread over a set of points that eventually converge to a continuum of

points and thus vanish in the limit.

Next result shows that pulverization does not annihilate inequality.

Proposition 4 The limiting wealth distribution of the model discussed in Section 2.1 has positive Gini

coefficient for all feasible values of parametersβ, p, γ, b0 andA0 such thatγ > 2β; specifically,

lim
t→∞

Gt =
(γ − β) (1 − p)

γ −
[

(1 − p)2 + p2
]

β
> 0.

The proof is reported in the Appendix after some preliminarylemmas.

Proposition 4 states that, under the assumptions of Proposition 1, a unit weight progressively

spread over (finite) sets of points that exponentially converge to a Cantor like set preserves inequality

also in the limit whenever inequality is measured by the limit of the Gini coefficient for the finite

marginal distributions. Note that such result holds for a constant (unit) population; clearly, we can

conjecture that some stronger result should hold under the assumption of population growth, in which

case a similar analysis might be carried out by means of some appropriate polarization index.

7 More General Processes

It is clear from section 3 that the extreme version of polarization/pulverization envisaged by Definition

1 heavily relies on the assumption of having only two states of nature; as a matter of fact, it is crucial
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in letting the best outcome under the low realization to be worse than the worst outcome under the

high realization when the growth rate is large enough. This phenomenon quickly disappears as one

allows for more realizations: the more the number of probabilistic realizations, the greater the chances

that the range of the corresponding maps in the IFS will overlap. In other words, more ‘degrees of

success’ translates into a IFS with a larger number of maps, which, in turn, would fill the holes left

on the support of the marginal distributions by the iterations of only two maps,g1 andg2 in figure 4,

thus yielding a full support,X = [0, 1], for the invariant distribution. In such circumstances, neither

“pulverized limits” or “disconnection” can appear, even ifthe overlap is only across neighboring pairs

of maps (one for each realization) and not across the worst and best outcome.

Thus, all the main points of the model seem to rely on assumptions that are quite peculiar; we

need to check economic relevance of our arguments in a more realistic scenario. To test robustness of

our approach consider theperturbedsystem obtained by adding some ‘noise’ε to the usual IFS (21):

yt+1 = gεt
(yt) = αyt + εt, (43)

where{εt}
∞
t=0 is a i.i.d. stochastic process such thatεt has a constantdensitysupported on the com-

pact interval[0, 1 − α]. The autoregressive process (43) extends our model to a completely different

setting: from only two states – ‘failure’ or ‘success’ – we shift to a continuum of states governing the

affine maps of the IFS, all placed between the original mapsg1, g2, which maintain their position on

the boundaries of the interval[0, 1 − α], i.e., g1 (y) = αy + ε whenε = 0 andg2 (y) = αy + ε for

ε = 1 − α. In order to keep the basic traits of the economic models – societies that highly rewards

success – discussed in the previous sections, we need to assume abimodaldensity for the random

variableεt; specifically, a density that concentrates most of the mass around the two endpointsε = 0

andε = 1 − α – i.e., on the two ‘boundary’ mapsg1 andg2.

As an example, we may consider the density defined by

f (ε) =
(1 − p) e−ε/σ + pe[ε−(1−α)]/σ

σ [1 − e−(1−α)/σ]
, (44)

wherep andα are the same as in the previous sections and parameterσ controls its dispersion around

the two boundariesε = 0 andε = 1 − α: f (ε) becomes more concentrated around them for smaller

values of parameterσ. Figure 8 shows that, forα = 1/3 andp = 1/3, if σ = 0.01, f (ε) is more

concentrated on the boundaries than forσ = 0.1.

We are now in the position to provide at least some heuristic argument supporting our conjecture

that – a softer than that of Definition 1, but still meaningful, notion of – polarization/pulverization is

not only implied by the (extreme) assumption of having only two realizations, but rather the conse-

quence of a strongly bimodal stylization of luck in a varietyof frameworks, regardless of the process

being discrete or continuous.

The Foias operator analogous to (14) when the marginal probabilities of the IFSyt+1 = gε (yt)

are absolutely continuous and when the mapsgε themselves are governed by a densityf (ε) can be
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FIGURE 8: two examples off (ε) defined as in (44) for different values ofσ.

written as follows (see Appendix B):

Mdν (y) =

∫ 1−α

0

χ[0,1]

[

g−1
ε (y)

]

ν
[

g−1
ε (y)

] ∂

∂y
g−1

ε (y) f (ε) dε, (45)

whereν is a density on[0, 1] andg−1
ε (y) ∈ [0, 1] denotes the preimage ofy ∈ [0, 1] throughgε for

eachε ∈ [0, 1 − α] andχA (·) is the indicator function for the setA – its role in (45) is to letν (·) ≡ 0

outside the interval[0, 1]. It is easily seen thatMd maps densities on[0, 1] into densities on[0, 1];

specifically,Mdν (y) is the density associated to each pointy ∈ [0, 1] after one iteration of the IFS

starting from a densityν on [0, 1].

By invoking Theorem 1.1 in Diaconis and Freedman (1999) (seealso Section 6.1, p. 64, in the

same paper), it can be shown that the sequence of marginal densitiesνt = Md

(

M t−1
d νt−1

)

= M t
dν0

converges weakly to a unique invariant densityν∗ – such thatν∗ = Mdν
∗ – starting from any density

ν0 on [0, 1], provided that allgε are Lipschitz with Lipschitz constantsKε satisfying the following

“average contraction” condition:
∫ 1−α

0

ln Kεf (ε) dε < 0. (46)

In other words, Theorem 1.1 in Diaconis and Freedman (1999) generalizes Theorem 1 reported in

Section 3.1 to IFS constituted by infinitely many maps (see also the references reported there).

SinceKε ≡ α < 1 for all ε ∈ [0, 1 − α], property (46) certainly holds for the IFSyt+1 = αyt + ε

defined in (43), which thus has a unique invariant densityν∗. By using the change of variable formula

(see Appendix B), (45) becomes

Mdν (y) =

∫ min{y/α,1}

max{1−(1−y)/α,0}

ν (x) f (y − αx) dx, (47)

which can be approximated by numerical methods.

Figure 9(a) approximates the first six iterations of Foias operatorMd as defined in (47) forα = 1/3
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(a) M6

d
as in (47) forα = 1/3, p = 1/3, σ = 0.01

32

64

0 1
(b) M6 as in (14) forα = 1/3, p = 1/3

FIGURE 9: first six iterations of Foias operator starting from the uniform density; a) IFS with a continuum of
maps with densityf (ε) defined in (44), b) IFS with only two mapsg1, g2 of the type (21).

andf (ε) as in (44) withp = 1/3 andσ = 0.01 starting from the uniform density. This is achieved

by numerical integration24 over a partition of500 subintervals of[0, 1]. Recall that Foias operator

converges at a geometric rate, therefore figure 9(a) provides a reliable picture of what the invariant

densityν∗ might look like. Even if it is a density, it clearly exhibits apattern very similar to the

distribution in figure 9(b), which is the same as figure 5(f), where the first six iteration of the Foias

operator in the case of the IFS with only two maps –g1 with probability1− p andg2 with probability

p – is plotted. Not only a lack of the middle class, but also the replication of the same phenomenon

at smaller scale in each cluster of wealth after each iteration appear. Clearly, in figure 9(a) peaks

are shorter (below10) than those in figure 9(b) (up to64); also, self similarity on smaller scale

tends to blur in figure 9(a), due to the smoothing of the density f around the two ‘boundary’ maps

corresponding to the formerg1 andg2 after each iteration. At any rate, however, the distributions

portrayed in figures 9(a) and 9(b) respectively exhibit veryclose qualitative traits, at least in terms of

– a broader meaning of – polarization/pulverization.

0 1

1

2

FIGURE 10: first six iterations ofMd as in (47) starting from the uniform density in case of a IFS with a
continuum of maps with densityf (ε) as in (44) forα = 1/3, p = 1/3, σ = 0.1.

24The Maple code that generates plots like in figure 9(a) and figure 10 is available from the authors upon request.
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Figure 10 shows the same first six iterations ofMd starting from the uniform density as in figure

9(a) but with a densityf (ε) more dispersed around the boundariesε = 0 andε = 1−α, characterized

by σ = 0.1 [see figure 8(a)]. It is remarkable that also when ‘success’ is more evenly distributed, less

weight on intermediate degrees of success still translatesinto some degree of wealth polarization due

to a smaller middle class – corresponding to the large hollowin the middle of the graph – compared to

the poor and the rich. Our conjecture is that a more general notion of wealth inequality, determined

by a smaller size for the middle class with respect to the poorand the rich, is a direct consequence of

assuming a bimodal distribution of success. This will be thetopic of future research.

8 Concluding Remarks

In this paper we have pointed out how wealth polarization/pulverization is not to be contrasted with

equal opportunities characterizing economies with a high degree of social mobility, but instead it

can be exactly the effect of a large amplitude of mobility itself. What really matters for polariza-

tion/pulverization is the reward from being successful, which is increasing in the size of the techno-

logical jump. Private investment in the human capital necessary to adopt an exogenous innovation

stream can be one cause; private investment in research aimed at improving everybody’s productivity

can be another cause. Despite the differences between thesetwo engines of growth, both induce the

disappearance of the middle class due to the fractal properties of the support of the invariant wealth

distribution, provided that the growth rate of the economy is higher than a common threshold.

We have shown that in this framework polarization and pulverization cannot be eliminated by fis-

cal measures such as wealth redistribution through taxation of the successful people with tax revenues

lump-sum redistributed to the unsuccessful ones, while wealth taxation can even create polarization.

Some more sophisticated device is required. A random taxation scheme may be able to reintroduce an

artificial middle class, but unlikely gives it enough strength, especially if the incentive compatibility

constraint is tight.

Hence, there seems to be a general lesson one can learn from the direct relationship between high

growth rates and inequality emerged by applying the IFS approach to wealth dynamics in a society

characterized by equal opportunities and fast social mobility: the goal of containing inequality may be

better achieved through policies aimed at tackling the growth rate itself –e.g., by means of monetary

policies devised to “cool down” the economy – rather than resorting on redistributive devices. Our

proof of this new effect of growth on wealth distribution suggests future works in which fiscal policy

is endogenized and polarization/pulverization is incorporated in people’s preferences, linking social

mobility to the demand for redistribution.25

In view of recent works on optimal growth theory (see,e.g., Mitra and Privileggi, 2004, 2006,

2009), further investigation on wealth inequality may be pursued by means of models characterized

by an infinitely lived representative agent, as well as models whose wealth dynamics can be described

by non-linear IFS – note that the second part of our Definition1 is readily applicable to such cases.

25See,e.g., Alesina and Glaeser (2005), Alesina and Giuliano (2009) and Alesina, Cozzi, and Mantovan (2009).

37



Also IFS with state-dependent probabilities might be worthconsidering, as they can introduce a

“damping effect” on social mobility – for example through a higher probability for both the poor and

the rich to remain in the same wealth cluster and a lower probability to switch from one class to the

other – which may seem closer to reality. For example, the poor might find educational costs unbear-

able or access to credit market precluded, thus indirectly reducing their probability of success, while

for the rich an easier access to education and credit marketsimproves their probability of being rich

also in the future. These observations suggest that models on wealth inequality from the traditional

stream of research, like the ones in Galor and Zeira (1993) orin Aghion and Bolton (1997) (see also

the whole literature cited in the introduction), which assume imperfect capital markets, may easily fit

our framework with the necessary modifications.

In so far as people of similar wealth levels tend to live together, gaps in wealth levels imply

gaps in location, and therefore geographic segregation. The residential segregation associated with

wealth polarization implies that the “city” partitions itself into a (polarized) fractal as a result of fast

growth. Adding state-dependence would be natural, as residential segregation entails educational

segregation: our results may then be extended and would contribute to the literature on segregation,

such as Benabou (1993, 1996a), and Sethi and Somanathan (2004).

Appendix

A Gini Coefficient and Cantor-like sets

This appendix is devoted to the proof of Proposition 4 in Section 6. Since both wealthsW i
t and

weightsπi
t have a recursive formulation generated by dynamic (39), it is convenient to write formula

(41) in a form more suitable for direct handling.

Lemma 2 For eacht ≥ 0, label the set of wealths so that they are ordered:W 1
t < W 2

t < · · · <

W 2t+1

t . Then formula (41) can be rewritten as follows:

Gt =
1

µt

2t+1−1
∑

j=1

2t+1

∑

i=1+j

πi
tπ

j
t

(

W i
t − W j

t

)

, (48)

whereµt is given by (42).

Proof. If the initial condition for system (39) is given by (40), in the sum (41) there are(2t+1 − 1) 2t

non-zero addends of the form
∣

∣W i
t − W j

t

∣

∣, with i 6= j, and each of them is counted twice. By sum-

ming up all ordered non-zero differencesW i
t − W j

t , with W i
t > W j

t , we get

Gt =
1

2µt

[

2
2t+1−1
∑

j=1

2t+1

∑

i=1+j

πi
tπ

j
t

(

W i
t − W j

t

)

]

,

which is (48).
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It is convenient to label the sum on the RHS of (48) byDt, so we can use the shorthand

Gt =
Dt

µt
.

The next three lemmas provide a recursive formulation for both the meanµt and the sumDt which

allow to computeGt directly in terms of parameters and initial conditions.

Lemma 3 The meanµt has the following recursive formulation:

µt+1 = βµt + pAt+1, (49)

thus,

µt = βtb0 +
1 − (β/γ)t+1

γ − β
γt+1pA0. (50)

Proof. The construction of thetth marginal distributionνt through system (39) implies that each

point W i
t with associated weightπi

t at timet is being split into two wealth valuesW iL
t+1 = βW i

t and

W iU
t+1 = βW i

t + At+1 with weightsπiL
t+1 = (1 − p)πi

t andπiU
t+1 = pπi

t respectively at timet + 1, for

i = 1, . . . , 2t+1. Therefore, all2t+2 terms in the sum definingµt+1 as in (42) can be grouped into

2t+1 pairs, each of them generated by a single term in the sum definingµt; thus all such pairs can be

written as functions ofW i
t andπi

t as follows:

µt+1 =
2t+2

∑

i=1

πi
t+1W

i
t+1 =

2t+1

∑

iL=1

2t+1

∑

iU=1

(

πiL
t+1W

iL
t+1 + πiU

t+1W
iU
t+1

)

=
2t+1

∑

iL=1

πiL
t+1W

iL
t+1 +

2t+1

∑

iU =1

πiU
t+1W

iU
t+1

=

2t+1

∑

i=1

(1 − p) πi
tβW i

t +

2t+1

∑

i=1

pπi
t

(

βW i
t + At+1

)

=

2t+1

∑

i=1

[

(1 − p) πi
tβW i

t + pπi
t

(

βW i
t + At+1

)]

=
2t+1

∑

i=1

πi
tβW i

t + pAt+1

2t+1

∑

i=1

πi
t = βµt + pAt+1,

where in the second and third equalities we have indexed byiL terms of the typeπiL
t+1W

iL
t+1 =

(1 − p)πi
tβW i

t (corresponding to the lower branch of a termπi
tW

i
t in t) and byiU terms of the type

πiU
t+1W

iU
t+1 = pπi

t (βW i
t + At+1) (corresponding to the upper branch of a termπi

tW
i
t in t), while in the

last equality
∑2t+1

i=1 πi
t = 1 holds, as population is normalized to1. Hence, (49) is established, and, as

µ0 = b0 + pA0, (50) follows accordingly.

Before giving a recursive formula forDt, we need the following lemma which states that, under

the assumption that a middle class disappears after one iteration of (39) as prescribed by Proposition

1, the poorest individual at timet which is successful at timet + 1 becomes richer than the richest

individual at timet which is not successful at timet + 1. Recall that, under the (ordered) labeling as

in Lemma 2,W 1
t andW 2t+1

t denote the smallest and the largest wealth at timet respectively.
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Lemma 4 LetW 1U

t+1 = βW 1
t + At+1 denote the wealth of the individual which is the poorest at timet

but becomes successful at timet + 1 andW
2t+1

L

t+1 = βW 2t+1

t denote the wealth of the individual which

is the richest at timet but becomes unsuccessful at timet + 1. Then, ifγ > 2β, W 1U

t+1 > W
2t+2

L

t+1 for all

t ≥ 0.

Proof. It is easily seen thatW 1
t = βtb0 andW 2t+1

t = βtb0 + (γ − β)−1 [1 − (β/γ)t+1] γt+1A0.

Hence,

W 1U

t+1 = βt+1b0 + γt+1A0

> βt+1b0 + β
1 − (β/γ)t+1

γ − β
γt+1A0 = β

[

βtb0 +
1 − (β/γ)t+1

γ − β
γt+1A0

]

= W
2t+2

L

t+1 ,

where the inequality follows fromγ > 2β.

An immediate consequence of Lemma 4 is the following Corollary.

Corollary 1 Under the assumptionγ > 2β, if W i
t > W j

t , thenW jU

t+1 = βW j
t +At+1 andW iL

t+1 = βW i
t

are such thatW jU

t+1 > W iL
t+1.

Lemma 5 Under the assumptionγ > 2β the sum

Dt =
2t+1−1
∑

j=1

2t+1

∑

i=1+j

πi
tπ

j
t

(

W i
t − W j

t

)

(51)

in (48) has the following recursive formulation:

Dt+1 =
[

(1 − p)2 + p2
]

βDt + p (1 − p)At+1, (52)

thus,

Dt =
1 − (s/γ)t+1

γ − s
γt+1p (1 − p) A0, (53)

wheres =
[

(1 − p)2 + p2
]

β.

Proof. We follow an argument parallel to that in the proof of Lemma 3.For j = 1, . . . , 2t+1 − 1

andi = 1 + j, . . . , 2t+1, each addendπi
tπ

j
t

(

W i
t − W j

t

)

in (51) at timet contains two wealth values,

W i
t andW j

t , such thatW i
t > W j

t , with associated weightsπi
t andπj

t respectively. The construction of

the tth marginal distributionνt through system (39) implies that both such terms are being split into

two wealth values at timet + 1, for a total of four terms, that we can label as follows:

W jL

t+1 = βW j
t with weightπjL

t+1 = (1 − p)πj
t ,

W jU

t+1 = βW j
t + At+1 with weightπjU

t+1 = pπj
t ,

W iL
t+1 = βW i

t with weightπiL
t+1 = (1 − p)πi

t,

W iU
t+1 = βW i

t + At+1 with weightπiU
t+1 = pπi

t.
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Hence, each addendπi
tπ

j
t

(

W i
t − W j

t

)

in Dt at timet corresponds to the following(22 − 1) 2 = 6

positive addends inDt+1 at timet + 1:

πiL
t+1π

jL

t+1

(

W iL
t+1 − W jL

t+1

)

= (1 − p)2 πi
tπ

j
t β
(

W i
t − W j

t

)

πjU

t+1π
jL

t+1

(

W jU

t+1 − W jL

t+1

)

= (1 − p) p
(

πj
t

)2
At+1

πiU
t+1π

jL

t+1

(

W iU
t+1 − W jL

t+1

)

= (1 − p) pπi
tπ

j
t

[

β
(

W i
t − W j

t

)

+ At+1

]

πjU

t+1π
iL
t+1

(

W jU

t+1 − W iL
t+1

)

= (1 − p) pπi
tπ

j
t

[

β
(

W j
t − W i

t

)

+ At+1

]

πiU
t+1π

iL
t+1

(

W iU
t+1 − W iL

t+1

)

= (1 − p) p (πi
t)

2
At+1

πiU
t+1π

jU

t+1

(

W iU
t+1 − W jU

t+1

)

= p2πi
tπ

j
t β
(

W i
t − W j

t

)

,

(54)

each of them defined as functions ofW i
t , W j

t , πi
t andπj

t . Note that all such terms are positive provided

thatγ > 2β, which, by Corollary 1, guarantees that also the fourth term(on the LHS of the equation)

is positive.

Therefore, all(2t+2 − 1) 2t+1 terms in the sum definingDt+1 as in (51) can be gathered into

(2t+1 − 1) 2t groups of six addends, with each group generated by a single term in the sum defining

Dt, as follows:

Dt+1 =

2t+2−1
∑

j=1

2t+2

∑

i=1+j

πi
t+1π

j
t+1

(

W i
t+1 − W j

t+1

)

=
2t+1−1
∑

jL=1

2t+1

∑

iL=1+jL

πiL
t+1π

jL

t+1

(

W iL
t+1 − W jL

t+1

)

+
2t+1−1
∑

jL=1

2t+1

∑

jU=1+jL

πjU

t+1π
jL

t+1

(

W jU

t+1 − W jL

t+1

)

+

2t+1−1
∑

jL=1

2t+1

∑

iU=1+jL

πiU
t+1π

jL

t+1

(

W iU
t+1 − W jL

t+1

)

+

2t+1−1
∑

iL=1

2t+1

∑

jU=1+iL

πjU

t+1π
iL
t+1

(

W jU

t+1 − W iL
t+1

)

+

2t+1−1
∑

iL=1

2t+1

∑

iU=1+iL

πiU
t+1π

iL
t+1

(

W iU
t+1 − W iL

t+1

)

+

2t+1−1
∑

jU=1

2t+1

∑

iU=1+jU

πiU
t+1π

jU

t+1

(

W iU
t+1 − W jU

t+1

)

=
[

(1 − p)2 + p2
]

β
2t+1−1
∑

j=1

2t+1

∑

i=1+j

πi
tπ

j
t

(

W i
t − W j

t

)

+ p (1 − p)At+1

[

2t+1

∑

k=1

(

πk
t

)2
+ 2

2t+1−1
∑

j=1

2t+1

∑

i=1+j

πi
tπ

j
t

]

=
[

(1 − p)2 + p2
]

βDt + p (1 − p)At+1,

where in the second to the sixth lines we have substituted terms as in (54) and simplified terms, while

the last line holds sinceπk
t s add up to1 and

2t+1

∑

k=1

(

πk
t

)2
+ 2

2t+1−1
∑

j=1

2t+1

∑

i=1+j

πi
tπ

j
t =

(

2t+1

∑

k=1

πk
t

)2

= 1.

Hence, (52) is established, and, sinceG0 = p (1 − p) A0, (53) follows accordingly.
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Proof of Proposition 4. By Lemmas 2 – 5,

lim
t→∞

Gt = lim
t→∞

Dt

µt
= lim

t→∞

1 − (s/γ)t+1

γ − s
γt+1p (1 − p) A0

βtb0 +
1 − (β/γ)t+1

γ − β
γt+1pA0

=
(γ − β) (1 − p)

γ −
[

(1 − p)2 + p2
]

β
,

wheres =
[

(1 − p)2 + p2
]

β, and the proof is complete.

B The Foias Operator for Densities

We first construct formula (45) for the Foias operator when the IFS is of the kind (43),gε (y) = αy+ε,

that is, it has a continuum of maps each chosen by means of a density f (ε) on the interval interval

[0, 1 − α].

If X andY denote two random variables with densitiesν andMdν on [0, 1] respectively, then:

Pr (Y ∈ B) =

∫ 1−α

0

Pr
[

X ∈ g−1
ε (B)

]

f (ε) dε.

ForB = [0, y] this is equivalent to

∫ y

0

Mdν (u) du =

∫ 1−α

0

χ[0,1]

[

g−1
ε (y)

]

∫ g−1
ε (y)

g−1
ε (0)

ν (u) f (ε) dudε,

which, sinceMdν (y) = (∂/∂y)
∫ y

0
Mdν (u) du, leads to

Mdν (y) =
∂

∂y

∫ 1−α

0

χ[0,1]

[

g−1
ε (y)

]

∫ g−1
ε (y)

g−1
ε (0)

ν (u) f (ε) dudε

=

∫ 1−α

0

χ[0,1]

[

g−1
ε (y)

]

[

∂

∂y

∫ g−1
ε (y)

g−1
ε (0)

ν (u) du

]

f (ε) dε,

which is (45).

Noting that(∂/∂y) g−1
ε (y) ≡ 1/α for all ε ∈ [0, 1 − α] and by using the change of variable

x = g−1
ε (y) = (y − ε) /α, which is a strictly decreasing transformation of variableε, (45) can easily
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be transformed into (47):

Mdν (y) =
1

α

∫ 1−α

0

χ[0,1]

[

g−1
ε (y)

]

ν
[

g−1
ε (y)

]

f (ε) dε

=
1

α

∫ y/α

1−(1−y)/α

χ[0,1] (x) ν (x) f (y − αx) αdx

=

∫ y/α

1−(1−y)/α

χ[0,1] (x) ν (x) f (y − αx) dx

=

∫ min{y/α,1}

max{1−(1−y)/α,0}

ν (x) f (y − αx) dx,

where in the last equality we translated the bounds given by the indicatorχ[0,1] (·) into the limits of

integration.
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