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Abstract

Pricing American options is an interesting research topic since there is no ana-

lytical solution to value these derivatives. Di¤erent numerical methods have been

proposed in the literature with some, if not all, either limited to a speci�c payo¤

or not applicable to multidimensional cases. Applications of Monte Carlo meth-

ods to price American options is a relatively new area that started with Longsta¤

and Schwartz (2001). Since then, few variations of that methodology have been pro-

posed. The general conclusion is that Monte Carlo estimators tend to underestimate

the true option price. The present paper follows Glasserman and Yu (2004b) and

proposes a novel Monte Carlo approach, based on designing "optimal martingales"

to determine stopping times. We show that our martingale approach can also be

used to compute the dual as described in Rogers (2002).
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I Introduction

Pricing American options is an interesting research area because there is no closed

form solution to price these derivatives. Di¤erent numerical methods have been

proposed in the literature with all the methodologies being either limited to speci�c

payo¤ functions or not applicable to multidimensional cases. Monte Carlo methods

to price American options is a relatively new area that started with Longsta¤ and

Schwartz (LS) (2001)1. Few variations of the LS methodology have been proposed

in the literature (see for example Rogers, 2002; Glasserman and Yu, 2004a; Cerrato,

2008 amongst the others). The general conclusion is that Monte Carlo estimators

underestimate the true option price because they use the least squares rule to de-

termine the optimal stopping times. In fact, since the least squares rule is not an

optimal stopping rule, the probability of choosing sub-optimal exercises decisions

increases and, consequently, so does the option price bias.

Glasserman and Yu (2004b) implement the LS estimator using martingales basis

in the regression and show that the estimator converges, almost surely, to the correct

option price. The main problem with their methodology is that the assumption of

�nite variance imposed on the basis functions might be too restrictive if the basis

considered are martingales. Glasserman and Yu (2004a) under the same assumption

of martingales basis and Geometric Brownian motion were able to derive the rate

of convergence for the typical Longsta¤ and Schwartz (2001) estimator without

imposing a subsequent limit on the number of stochastic paths used in the simulation

but rather using joint limit.

Rogers (2002) formulates the American option pricing problem as the dual and

shows that one can use a martingale approach to reduce the probability of choosing

sub-optimal policies when determining the early exercise value. For general mar-

tingales the option price given by the dual will form an upper bound for the true

option price. However, if the martingale used is an optimal martingale the option

price can be estimated exactly. The main problem with this methodology is that

it is unclear how an optimal martingale can be designed. Under certain assump-

1In e¤ect Carriere (1996) was the �rst to propose this approach. It was then extended in

Longsta¤ and Schwartz (2001).
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tions the Glasserman and Yu (2004b) and Rogers (2002) methods are similar. Chen

and Glasserman (2006) made recently an important theoretical contribution. They

suggest an improved additive dual obtained by iterations.

Designing optimal martingales to price American options has interesting empir-

ical applications. However as Rogers (2002) points out this important issue has

become more "an art than a science", in the sense that studies in the literature

have relied on ad-hock martingales. One of the contributions of this paper is to

propose a novel "optimal martingale" approach to determine stopping times. We

show that our approach produces very accurate prices. Furthermore the present pa-

per proposes two novel algorithms (lower and upper bounds) based on our optimal

martingale. The paper also discusses ways of implementing the LS approach using

Black and Scholes prices as basis functions. Finally the methodology is used to

price long-dated American options and the accuracy of the options prices estimates

investigated.

To quickly compare the estimator in Chen and Glasserman (2006) with the one

proposed in the present paper in Sections 3-5, we consider as an example, one of

the most di¢ cult options to price as in Chen and Glasserman (2006), (see page 23

in Chen and Glasserman). The put option is deep in the money. The initial stock

price S = $50, the strike K = 100, the interest rate is 20%, the stock price volatility

30%, and time to maturity one year. The best policy for the option holder should

be "exercise immediately". The true option price is $50. We use the �rst three

martingale basis, 100,000 replications and 70 time steps. After averaging �fty trials

the option value is $49.966, and the standard error 0.00151.

II A General Framework for American Option

Pricing

Consider the following probability space (
; F; P ) and the �ltration (Fi)i=0;:::;n, with

n being an integer. De�ne byX0; X1; :::; Xn an Rd valued Markov chain representing

a state variable recording all the relevant information on the price of an asset. As-

sume that Vi(x), x 2 Rd is the value of an option exercised at time ti under the state
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x, and �(X) is the options payo¤. Following Glasserman and Yu (2004a) the option

pricing problem is de�ned by the following dynamic programming framework2:

(1) Vi(x) = sup
�2�

E[�� (X� )jXi = x]

(2) Vn(x) = �(x)

The value of an American option at time ti, under the state Xi = x, is given by

maximizing its expected payo¤ over all possible stopping times � 2 � (equation 1)
with �nal condition given by equation (2). Combining equations (1)-(2) we have

that the value of an American option at time ti is given by the maximum between its

value if immediately exercised and its expected value (i.e. the continuation value).

(3) Vi(x) = maxf�i(x); E[Vi+1(Xi+1)jXi = x]g

Finding the continuation value in (3) is a di¢ cult task since it involves solving an

optimal stopping problem. Di¤erent solutions have been proposed in the literature,

as for example replacing it with the simple regression

(4) E[Vi+1(Xi+1)jXi = x] =
KX
k=0

�ik (x)

Equation (4) can also be written in terms of the option�s continuation value Ci

(5) Ci(x) = E[Vi+1(Xi+1jXi = x]

where Ci is a linear combination of the coe¢ cients in (4)

(6) Ci(Xi) = �
0
 i(Xi)

2For simplicity we do not consider discounted payo¤s.
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with �
0

i = (�i1; �i2; :::�iK)
0
being the regression coe¢ cients and  i(Xi) = [ 1(X1);  2(X2); :::;  K(XK)]

some speci�c basis functions.

Computing the option price from (1)-(3) is rather demanding and therefore one

has to rely on approximations. The typical assumption made is that Vi(:) is a

function spanning the Hilbert space, therefore the conditional expectation can be

approximated by the orthogonal projection on the space generated by a �nite num-

ber of basis functions  ik , i = 1; 2; ::; n and k = 0; 1; :::; K: If we replace (1)-(3)

with their sample quantities, we have

(7) V �
n (x) = �n(x)

(8) V �
i (x) = maxf�i(x); E[Vi+1(Xi+1) jXi = xj]g

One can now use a simple regression to estimate the conditional expectation in

(8)

(9) E[(Vi+1(Xi+1)jXi) =
KX
k=0

�ik ik(X) + "i+1

Equation (9) will hold exactly since we have introduced the residual "i+1 on its

right hand-side. The advantage of working with equation (9) is that, as we shall

see, its coe¢ cients can be easily computed by Least Squares. Lemma 1 de�nes the

asymptotic convergence of the Least Squares estimator.

Lemma 1 if E("i+1jXi) = 0 and E[ i(Xi) i(Xi)
0
] is �nite and non-singular then

V �
i ! Vi for all i

See Longsta¤ and Schwartz (2001), Clement et al (2002), Glasserman and Yu

(2004a) for a proof.

Various proofs of convergence of this estimator have been discussed in Longsta¤

and Schwartz (2001), Clement et al (2002), Glasserman and Yu (2004a). In Equation
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(9) the conditional expectation has been estimated using current basis functions (i.e.

 ik, i = 1; 2; :::; n ). As explained in Glasserman and Yu (2004b) the option price at

time i+ 1 is likely to be more closely correlated with the basis function  i+1(Xi+1)

rather than  ik(Xi). Glasserman and Yu (2004b) suggest a methodology based

on Monte Carlo simulations where the conditional expectation is approximated by

 i+1(Xi+1). They show that their methodology has a regression representation given

by

(10) bVi+1(Xi+1) =
KX
k=0

$ik i+1;k(Xi+1) +d"i+1
where $ik are k coe¢ cients generally estimated by least squares. Proof of con-

vergence in this case requires using martingales basis functions

De�nition 1 (Martingale property of basis functions) E( i+1(Xi+1)j(Xi) =  i(Xi)

for all i

Under De�nition 1, Glasserman and Yu show that regressions (9) and (10) are

equivalent but standard errors from regression later are smaller. Option prices in

(9) and (10) are linear combination of the same basis functions. They only di¤er

in the way coe¢ cients are estimated. Glasserman and Yu (2004b) call this method

regression later, since it involves using  i+1(Xi+1). On the other hand, they call

the LS (2001) method regression now since it uses the basis  i(Xi). Note that as

a consequence of De�nition 1 we now have that E(b"jXi) = 0 and therefore the

conditional expectation is approximated exactly. However, in this case, the �nite

variance assumption imposed on the basis functions might become restrictive. We

believe our martingale approach should make Assumption 2 in Glasserman and Yu

(2004b) more likely to hold.

An alternative way to formulate the option pricing problem has been suggested

by Rogers (2002). Rogers (2002) shows that the option pricing problem can be

formulated in terms of minimizing a penalty function given by a class of martingales

over the lifetime of the option. While any martingales will produce an upper bound

around the true option price, an optimal martingale will estimate it exactly.
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To see this, note that a consequence of the dynamic programming framework

in (1)-(3) is that the option price is a supermartingale. Therefore one can use the

Doob-Meyer decomposition for martingales and write

(11) Vi = V0 +Mi � Ai

where Mi is a martingale with M0 = 0 and Ai a previsible non-decreasing process

with A0 = 0:

Rogers (2002) shows that under the dual the value of the option at t0 is given

by

(12) V0 = inf
M2H0

E[sup(Vi �Mi)]

where H0 is the space of all martingales and the in�nitum is obtained when an

optimal martingale M =M� is chosen.

Therefore under this martingale one can price options exactly. However, this

result holds if the martingale chosen is an optimal martingale. As noted in Rogers

(2002) determining an optimal martingale turns out to be at least as di¢ cult as

solving the original option pricing problem! One of the contributions of the present

paper is to build on Glasserman and Yu (2004b) and Rogers (2002) and propose a

simple way to design optimal martingales.

III A Simple Approach to Designing Optimal Mar-

tingales

Before introducing our approach, let us �rst clarify what we mean by �optimal mar-

tingale�. Suppose that De�nition 1 holds and de�ne the following random variable

M�

(13) M�
i = Vi+1(Xi+1)� E[Vi(Xi)jXi�1]
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with M0 = 0

Lemma 2 Let �2be the space of martingales M�bounded in L2 such that any M�
i

in �2is an R martingale and therefore supE(M�2
i ) < 1 . The space �2inherit the

Hilbert structure from L2(1)

See Appendix 1 for a proof.

Re-write (13) using estimated quantities as

(14) M�
i = V �

i+1(Xi+1)� C�i (Xi)

(15) = V �
i+1(Xi+1)�

kX
k=0

��ik[ i(Xi)]

Under De�nition 1, we have

(16) M�
i = C�i (Xi)� ��

0
 i(Xi)

and therefore it follows that if M�
0 = 0, the process is a martingale

(17) E[(M�
i+1)jX1; X2; :::Xi; :::; �] =M�

i

An immediate consequence of Lemma 2 is that the martingale M� belongs to a

speci�c class of martingales. This martingale is well de�ned and di¤erent than

others proposed in the literature (see for example Rogers).

The next section clari�es the link between the martingale approach introduced

in this section and American options pricing.
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IV Optimal Martingales and American Option Pric-

ing

Using the martingaleM�
i one can design basis functions

3 asM�
ik(Xi). Thus equations

(9) or (10) become

Ci(Xi) =
KX
k=0

ai;kM
�
ik(Xi)

Consider the sample version of this equation

(18) C�i (Xi) =
KX
k=0

a�ikM
�
ik(Xi)

where a�i = (a
�
i0; a

�
i1; ::; a

�
iK)

0
are least squares coe¢ cients

Theorem 1 If De�nition 1 and Lemma 2 hold then C�i ! Ci and V �
i ! Vi for all

i

See Appendix for proof.

Remark 1 The proposed approach is similar in spirit to the one suggested by Glasser-
man and Yu (2004b) but the important di¤erence is that we suggest martingales that

are bounded in L2 and a novel algorithm based on this martingale to compute the

dual.

V A Simple Algorithm for American Option Pric-

ing

In this section we show how our approach can be used to extend the LS (2001)

method. A simple algorithm, that can be extended to price exotic options, is pre-

sented below
3Notation 1 in the Apenndix gives further details on this.
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1)At each time ti, in a recursive fashion, use a regression approach that satis�es

De�nition 1. Start, for example, with two basis functions and save the residuals.

2)Repeat the step in (1) increasing the number of basis from two to three, and

save the residuals.

3)Use the residuals in (1) and (2) to obtain L2martingales as explained in Sec-

tion III4. Run a new regression using the two martingales basis and estimate the

conditional expectation.

4)Repeat (1)-(3) in a recursive fashion.

Remark 2 The proposed approach seems to be computationally ine¢ cient. How-
ever note that this multiple regressions approach does not impact massively on the

computational speed. The approach in Rogers (2002), for example, would be more

ine¢ cient than ours in terms of computational speed. Intuitively, using our approach

we would expect each martingales obtained by iterative least squares regressions to

have smaller and smaller variance as we increase the number of regressions.

The empirical results are reported in Table 2 and discussed in the next section.

We have used �ve and six basis functions in the �rst regression and three and four

in the second.5

VI Empirical results

To start with, we price an American put options written on a stock. The empirical

example follows very close Longsta¤ and Schwartz (2001) and therefore assumes

the same parameters as in that study. Some of the parameters such as stock price,

strike, volatility and time to maturity are reported in the tables. s is the initial

stock price, k is the strike, v the stock price volatility, and �nally T the time to

4At this point one can also use cross-products to increase the number of basis. Please refer to

Notations 1 in the Appendix for more details.
5Note that numbers at the top of the tables refer to the basis functions used in the two regres-

sions.
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expiry of the option.6 The short term interest rate is assumed to be 6%p.a. and we

use 100,000 replications, 50 time steps and antithetic variates. Standard errors and

root mean squares errors were calculated as in Cerrato (2008) and obtained from

�fty trials.

We start with a simple martingale. We use the discounted Black & Scholes price

as martingale basis. In fact, this is �rst martingale basis that one should consider.

We price long dated options since it is well known that standard methodologies do

not perform well in this case (see for example Barone Adesi and Whaley (1987)).

On the other hand binomial or �nite di¤erence methods are ine¢ cient and not

applicable to multidimensional problems. In Table 1, we compare two regression

methods. The �rst uses Black & Scholes prices as martingales (see columns three

and four), the second uses simple exponential basis functions (see column six). We

also report prices obtained by binomial methods (see column �ve) with 10,000 time

steps. We assume this price to be the true price. Estimated prices using Black and

6We have also calculated standard errors (SE) and root mean squares errors (RMSE). These

are reported in brakets.
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Scholes basis are in general higher than the ones obtained by the LS method. Root

mean squares errors are generally smaller when four basis functions are considered.

We now turn to the martingale approach described in Sections III and IV. Ta-

ble 2 shows the empirical results. We compare our methodology with the recent

methodologies proposed in Longstadd and Schwatz (2001) and Glasserman and Yu

(2004b). To implement our methodology, we use up to six basis functions in the

�rst regression and three and four martingales basis in the second. Three basis are

su¢ cient to obtain a good �t. Standard errors are small and overall of the same

order of magnitude as the root mean squares errors. Generally our methodology

produces standard errors and root mean squares errors that are lower than the LS

(2001) methodology. Standard erros and root mean squares errors of the Glasserman

and Yu (2004b) methodology are intead generally higher. These results may sug-

gest that our simple martingale approach can reduce the probability of choosing a

sub-optimal strategy when determining stopping times. Note that to implement our

method one has to apply multiple regressions. Furthermore basis functions in the

�rst regression must be martingales. Following Cerrato (2008) we use martingales

obtained from exponential functions under Geometric Brownian motion.
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VII Computing Upper Bounds

Following Rogers (2002) researchers have proposed di¤erent methodologies to com-

pute the dual. Glasserman and Yu (2004b), for example, show that, if De�nition

1 holds, one can use simulations to obtain upper and lower bounds with a mini-

mal e¤ort. The martingale approach described in the previous sections can also be

extended to this case with little extra e¤ort. We �rst describe our algorithm, sub-

sequently we discuss the main di¤erences with the existing methods. Our approach

follows Rogers and it is based on an additive dual as opposed to the multiplicative

dual suggested in Jamshidian (2003). We use this approach since, as discussed in

Chen and Glasserman (2006), it produces estimators of the upper bound with the

lowest variance. Our goal is to obtain a fast algorithm to compute upper bounds

and see if there is scope for further reduction in the variance. Following Rogers

(2002) the dual is given by the right hand side of equation (19) below

(19) E[�� (X� ) � V0(X0) � E[ max
i=0;1:::

(�n(Xn)�M�
n)]

As discussed in Rogers (2002), any martingales will generate an upper bound in

(19). However, equation (19) will hold with equality only if the martingale used is

an optimal martingale. Our approach is simpler and more e¢ cient than the ones

discussed in the literature (see for example, Haugh and Kogan, 2004; Rogers, 2002;

and Glasserman and Yu, 2004b). It can be summarized as follows

1) Use the algorithm described in the previous section to compute at each

tiestimates of the martingales basis.

2) Use the out-put in step (1) to obtain an estimate of the conditional expecta-

tion.

3)Along each path,compute the summation M�
n =

Pn�1
i=0 [V

�
i+1(Xi+1)� C�i (Xi)]:

4)Along each path, compute the ��n = max(�n; Vn(Xn)).

5)Estimate the right hand side of Equation (19) along each path.

6)Repeat 1-5 and iterate across each simulated path to compute the option price7

7As Glasserman (2004) pointed out, martingales basis in this case can be obtained in a trivial
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Remark 3 The dual estimator proposed in this study is similar in spirit to the one
suggested in Glasserman and Yu (2004b) but the martingale M�

nis obtained directly

from residuals of regression (10). Furthermore, it has also similarities with the

approach proposed in Chen and Glasserman (2006)8. In e¤ect, the rationale for the

iterative regression scheme above is that by designing martingales from ordinary least

squares residuals one would expect to obtain martingales with smaller and smaller

variance as we increase the number of basis functions. Therefore the iterative scheme

is similar in spirit to the one proposed in Chen and Glasserman (2006). If the

martingale used is an optimal martingale,we would expect the di¤erence between

upper (Table 3) and lower (Table 2) bounds to be very small.

Proof of convergence of this estimator can be obtained using Theorem 1 along

the lines as in Rogers (2002). It is worth stressing again that this estimator of the

upper bound can be obtained at a minimal e¤ort and therefore it has noticeable

advantages with respect to the upper bound estimators suggested in the literature.

VIII Empirical Results

Table 3 shows the empirical results for the upper bounds using the dual algorithm

proposed in this study. For completeness, as we have done before, we also report

prices estimates using the Longsta¤ and Schwartz (2001), and Glasserman and Yu

way. In fact in Section 3 we suggest using the regression residuals from regression later and the

initial ad-hock condition.
8That is, they both rely on iterations. Note that although in Lemma 5.4 Chen and Glasserman

(2006) point out that their scheme converges even for processes that are not necessarerly martin-

gales, on the other hand, they had to characterise the process as a martingale to prove Proposition

6.6. Therefore, yet the problem of �nding a valid martingale remains an open issue.
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(2004b) methods.

Table 3 reports results with �ve martingales basis in the �rst regression and 3 in

the second regression. We consider long dated options, that, in general, are more
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di¢ cult to price and compute standard errors and absolute errors. We use 100,000

replications and �fty time steps. Prices are averages of �fty trials. The upper bounds

are very close to the true price. The other two methodologies do not reach the same

accuracy (in terms of standard errors and root mean squares errors). Absolute

errors are smaller for all the combinations of input parameters. The low standard

errors show that the sample uncertainty is relatively modest. The computation of

the upper bound takes about 7 seconds on a standard Intel Core 2 processor. Given

the e¢ ciency gain and the options prices estimates in Table 3, we believe that our

methodology is also very relevant for practitioners.

IX Conclusions

Monte Carlo method to price American options is now an active research area. In

fact this methodology can be easily extended to account for path dependency or

multi-dimensionality. Longsta¤ and Schwartz (2001) suggested using least squares

approximation to approximate the option price on the continuation region and

Monte Carlo methods to compute the option value. Proofs of asymptotic conver-

gence of the LS estimator are derived under various assumptions and therefore more

work is needed in this case. Clement et al (2002) showed that the LS option price

converges, almost surely, to its true price. But the theoretical proof in Clement et

al (2002) has some limitations in that it is based on a sequential rather than joint

limit.

Glasserman et al (2004a) considered the limitations in Clement et al (2002) and

proved convergence of the LS estimator as the number of paths and the number of

polynomials functions increase together. However, the assumption of martingales

polynomials is required in this case. Glasserman and Yu (2004b) implemented the

LS estimator using martingales basis in the regression and showed that the estimator

converges to the correct option price.

In this study we proposed a novel approach to designing optimal martingales

to price American options. We proposed two novel algorithms (upper and lower

bound) based on our optimal martingale and showed that the estimated options
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prices are precise and not disperse. The methodologies are simple to implement and

computationally e¢ cient and therefore very relevant for practitioners. Extensions

of our methodologies to price path dependent options and basket options are left on

the agenda for future research.

X Appendix

Proof of Lemma 2

Lemma 2 speci�es the type of martingale considered and shows that the space

spanned by this martingale inherits a Hilber structure.

First note that if M�is in L2then supi>0EM
�2 < 1:De�ne jjM�jj2 = E(M�2

1 )

the norm for the �2martingales M�:Jensen inequality implies

(20) E(M�2
1 jFi) � E(M�

1jFi)2

(21) E(M�
i )
2 � E(M�2

1 jFi)

Then it follows that

(22) M�
i : �

2 �! L2(F1)

Proof of Theorem 1

First note that if the process M1;M2; :::is a martingale then it follows that C�i is

a martingale and therefore supEC�2i = jjC�21 jj22 = E[C�21 ] <1:

De�nition 2 Let C�(C�i ) be a martingale such that E[C
�2
i ] < 1: It follows, using

Lemma 2, that C� 2 �2 ! L2(1):Also, let Ci := E(C1jFi), where C1 is the the

limit of the sequence C�i
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The Doob�s L2inequality implies that

(23) sup
i>0
jC�i � Cij �! 0

is in L2

De�ne the value function

(24) V �
i (Xi) = max(�i; C

�
i (Xi))

with X0 �xed, we have

(25) C�0(X0) =
1

R

RX
j=1

V �
1 (Xi;j)

(26) V �
0 (X0) = max(�0(X0); C

�
0(X0))

Since C�0 ! C0, it follows that V �
0 ! V0

Notation 1 Martingales Basis Functions
We now clarify how the regression in Section IV has been implemented using

the martingale M�
i . As mentioned the approach we suggest is a multiple regression

approach. In the �rst regression, we have used regression later and the martingale

suggested in Cerrato (2008) as well as in this paper on page 13. For example, sup-

pose we are considering three martingales basis. In this case we can start with,

say, two regressions, using regression laters, and increasing in each the number of

martingales basis (i.e. �rst regression one martingale basis, second regression two

martingale basis). We then save the residulas from each of these two regressions.

The martingale M�
i can now be computed using the residuals and the approach de-

scribed in Section III. Using this martingale one can now specify the basis functions

for the second regression. We have speci�ed three and four martingales basis (in
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the second regression) to compute the prices in Table 2. For example with three

basis functions we have considered fc; Ste�rt;M�
1tM

�
2t; g, where M�

j;t; j = 1; 2 are the

martingales obtained from the �rst two regressions. Cross section products of these

quantities can also be used to increase the number of basis.

Notation 2 The Dual algorithm works in the same way. However, in order to

use equation (19) we now need to compute the discounted value of the quantity

in equation (1).This can be easily obtained from the estimation of the conditional

expectation and using the martingale approach suggested in this paper. Furthermore

we also need to compute the martingale M�
n. The latter is not di¢ cult to obtain

given that it is given by summing up M�
i , from i; 1; :::; n.
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